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ABSTRACT

The paper reviews the size effect accompanying biunt fracture in brittle heterogeneous materials such as
concrete and its applications to structural analysis and design. Various refinements of BaZant's size effect
law are summarized, and recent results of fracture tests of Bazant and Pfeiffer which establish measurements
of concrete fracture energy on the basis of size effect are given. These test results confirm that fracture
energy may be uniquely defined by size extrapolation to infinity. Furthermore, changes in the size effect
caused by temperature and humidity are considered, a new formula for the effect of temperature on fracture
energy is derived on the basis of the activation energy concept, and some of the test results of Prat and
Bazant which determine the temperature and humidity effect on fracture energy are given. Finally, similitude
of brittle failures due to blunt fracture is analyzed in three dimensions and it is shown that the same form
of the size effect law as for two dimensions is applicable.

INTRODUCTION

The size effect, which consists in the fact that the nominal stress at failure of geometrically similar
structures of different sizes is not constant but decreases with the size, is no doubt the most important
aspect of fracture mechanics, setting it apart from stress-based failure theories such as plasticity. The
present paper will review -various recent advances in this subject and focus particular attention on the use of
the size effect for determining the fracture energy, as well as the changes in the size effect brought about
by changes of temperature, and their consequence for the dependence of fracture energy on temperature. A
generalization of the size effect law to three dimensions will be also studied.

SIZE EFFECT LAW AND ITS REFINEMENTS

The size effect may be isolated from other influences by considering geometrically similar structures of
different sizes. For fractures blunted by distributed cracking, the simplest description of the size effect
is provided. by the approximate size effect law [1] (Fig. 1):

d \ ~1/2
7o) / (1)
in which o, is the nominal stress at failure (the fajlure load divided by the characteristic dimension and
structure’ghickness), d is the characteristic dimension of the structure, d, is the maximum size of material
inhomogeneities, e.g., the aggregate size in concrete; f! = tensile stength (from direct tensile tests}, and
B, X, = empirical constants. The size effect law has been shown to follow by dimensional analysis and
simi?1tude arguments from the following two simplifying hypotheses:

oy = Bfé(l +

1. The energy release W due to failure is a function of the length a2 of the fracture.

2. At the same time, W is a function of the volume of the zone of cracking or, alternatively, of the
size of the fracture process zone at fracture front.

The second hypothesis alone leads to plastic limit analysis, which exhibits no size effect. and the first
hypothesis alone leads to classical linear elastic fracture mechanics, which exhibits the strongest possible
size effect. We deal with the type of failure which requires a combination of both.

Eg. (1) represents the simplest possible formula for, the transition between failures dominated by the
strength limit and failures dominated by energy dissipation at fracture front and characterized by fracture
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snergy. It has been shown that Eq. Sl) correctly describes the results of fracture tests of concrete within
the scatter range of measurements [5], and that it can also be applied to the failure of various concrete
structures which fail in a brittle manner, These include the diagonal shear failure of prestressed and
inprestressed reinforced concrete beams without stirrups, the torsional failures of concrete beams, the beam
ind ring failures of unreinforced pipes, the punching shear failure of reinforced concrete slabs, etc. In
naking these applications, two further hypotheses are implied in the use of the size effect law in Eq. (1):

1. The shapes of the final fractures at failure in specimens of different sizes are geometrically
similar; and

2. The failure does not occur at crack initiation.

The latter hypothesis is practically always satisfied since it is prohibited by codes to design concrete
structures which would fafl at the first crack imitiation. The approximate applicability of the first
hypothesis appears to be verified by the existing test data.

The scatter of existing measurements is not sufficiently small to make it possible to detect significant
deviations from the size effect law in Eq. (1). However, finite element computations can be carried out to
make comparisons with the size effect law [3,4]. One such calculation has recently been carried out by
Hitlerborg [4] using his fictitious crack model for a three-point bent fracture test. Considering specimen
size range of <he ratio 1:250 (which dis wmuch broader than one can realize in practice, due to cost
limitations), he detected appreciable deviations from Eq. 1; see the results in Table 1.

TABLE 1. Comparison of size effect law.(with.r=0.44, B=306, x0=0.608) and Hillerborg's finite
element results with fictitious crack model

oy /Ty
dféz /E6, Finite Elements Size Effect
. (Hillerborg) Law
0.02 2.43 2.44
0.05 2.22 2.21
0.1 2.00 2.00
0.2 1.77 1.78
0.5 1.46. 1.46
1 1.222 1.222
2 0.992 0.995
5 0.725 0739

It has been shown, however, [3], that a refinement of the size effect law 1s possible such that it closely
agrees with Hillerborg's finite element results; see the last column in Table 1 which is so close to
Hillerborg's results that- a graphical distinction 1is hardly. possible. These results are based on the
following generalized size effect law [2,20]:"

d )TJ - -1/21'

% Bl + g (2)
which itself is a special case of the general asymptotic series expansion [2]:
. d
-1 2 3 -
oy = BIlcgt ™ + 1+ e &+ o8 + egf )T VA, e (A (3)

in .which f; = f_ if the aggregate size d, is the same for all specimens, and B, X,, r are empirical
parameters, " and Eo are the coefficients Cg> Cys Cpye-e If the aggregate size da.is varied, then theoretical
analysis leads to the formula [5]:

c
= fl1 e ) ()
a

which 4s similar to the Petch formula [6,7,8] for the effect of grain size on the yield limit of
polycrystalline metals.

It has been established [8] that there is a one-two-one relationship between the size effect law and the
shape of-the softening portion of the stress-displacement diagram used in Hillerborg's type models. When one
of these relations is known, the other one can be determined. The same is true for the crack band model, in
which the front of the strain-softening damage is assumed to have a certain constant width which is a material
property; to each shape of the strain-softening stress-strain diagram there corresponds a certain size effect
law and vice versa. No doubt this is also true of the damage laws. Furthermore, if the front of the band of
strain-softening damage is variable, this has a direct effect on the size effect law, and from size effect
observations it is possible to make inferences on the size of the strain-softening zone. '

- A similar one-to-one relationship was previously established between the size effect law and the R-curves
from blunt fracture tests _[8].



The size effect is of interest not only with regard to fracture testing and design of structures. Tpe
size effect is equaly valuable for checking the soundness of finite element models. At present, models gf
cracking which are formulated strictly on the basis of stress-strain relations and pay no attention to strain.
localization instabilities and energy aspects of failure are still in prevalent use. A1l these finite element
codes predict the nominal stress at failure for structures of different sizes which are geometrically simiiap
and are analyzed with geometrically similar meshes to be the same. Experimental evidence cleariy indicateg
that for brittle fajlures such predictions are incorrect. This may be one reason that despite two decades of
effort, the existing finite element codes still cannot reliably predict brittie failures of concrete
structures, except.perhaps when the parameters of the model are calibrated for one structure size apg
predictions are made for roughly the same size.

A check for the size effect, and comparisons with the theoretically derived size effect law o
experimental evidence, if available, should be an integral part of evaluation of the applicability of every
finite element code to brittle failures due to cracking of concrete as well as rock.

DEFINITION AND DETERMINATION OF FRACTURE ENERGY ON THE. BASIS OF SIZE EFFECT

The .size effect observed on geometrically similar specimens appears as the best means for identifying the
material properties which govern fracture. The most important among these properties is the fracture
energy. The fracture energy of materials such as concrete has proven difficult to determine as well ¢
define., Various testing methods currently in use yield results which may differ by several hundred percent,
and aside from that, none of the existing definitions of the fracture energy appears to yield unique results,

Based on the size effect, it now appears that a unique definition of fracture energy can be provided ag
follows [2,9]: -

The fracture energy Ge of 2 heterogeneous brittle material is the specific energy required for fracture
propagation in a geometrically similar specimen of infinite size.

It has been shown [2,8] that ‘this definition leads to the formula:

9 42
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in which B, ., d_ are the parameters of the size effect law, £ 1is the elastic. modulus of the material, A =
siope of the Regrdssion 1ine in Fig. 1, and gr is the nondimens{onal energy release rate for a sharp fracture,
calculated according to linear elastic fracture mechanics. 1t can be theoretically shown that the fracture
energy for specimen size.extrapolated to infinity.must be the same for all specimen shapes [9]. Indeed, for
an infinitely large specimen, the relative size of the strain-softening damage zone is infinitely small, and
the ‘zone is surrounded by the asymptotic elastic field known from linear elastic fracture mechanics, which is
the same -regardiess of the structure geometry. Therefore, at extrapolation to infinity, the detailed picture
of the fracture process zone must be the same for all structure geometries.

This theoretical conclusion -has been verified experimentally [9]. Specimens made of the same concrete
were cast in different sizes, and different types of notches as well as different types of loading were
used. The test series inciuded three point bent specimens, centrically tensioned edge-notched specimens, and
eccentrically compressed specimens (Fig. 1). These shapes include just about the extreme of the range of
conditions to -which the ligament cross section may be exposed: bending moment over the ligament, tensile force
over the ligament, and a combination of bending moment and force over the 1igament.

- The results-of these tests conducted at Northwestern University are exhibited in Fig. 1 in terms of the
plots of o2 'versus d/d,. According to the size effect law, these plots should ideally be straight lines,
which make§ ‘it possible %o use linear regression for the determination of the parameters of the size effect
law. The slope of the regression line is proportional to the inverse of the fracture energy, in view of Eg.
(5)." 'Based .on slopes of the regression lines of the test results in Fig. 1, it is found that the fracture
-energy for the three types of specimens are .about the same, and do not deviate from each other more than is
:li_ne;/it;ble for a heterogeneous material such as concrete {the deviations from the mean are within + 3%); see
able 2.

‘TABLE 2. Fracture Energy Values Obtained fronp Measurements Evaluated by Size Effect Law (1b./in.)

Specimen Type Concrete . Mortar
1) Three-Point .Bent 0.229 0.129
2) tdge-Notched Tension 0.210 0.118
'3) Eccentric Compression 0.233 0.132
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Noting at the same time that, by definition, this method of determining fracture energy js independent of
the specimen size, it appears that the determination of fracture energy on the basis of the size effect indeed
yields unique results. This cannot be said of other existing methods.

The size effect law in Eq. (1) is nevertheless an approximation, and deviations occur when a broad range
of sizes is considered or accurate results are desired. Important work in this direction has been recently
carried out by Planas and Elices at Technical University in Madrid (private communication, 1986). They
considered varijous strain-softening formulations and calculated the corresponding size effect curves for’
certain types -of specimens using the Green's function approach. By matching such curves to test results it
should be possible, in principle, to gain further information on the material parameters that govern strain-
softening.

SIZE EFFECT IN THREE DIMENSIONS

The -size effect due 1o blunt fracture has so far been treated in a two-dimensional context, assuming the
state of plane stress or plane strain and uniform conditions throughout the thickness. In two experimental
studies [9,10], however, the size effect law (Eq. 1) was used for brittle three-dimensional failures -- the
punching shear failure of circular reinforced concrete slabs and the torsional failure of unreinforced or
longitudinally reinforced concrete beams. In the course of these studies it was experimentally verified that
‘Eq. 1 can be extended to three-dimensions, and the theoretical proof will be presented now.

The two fundamental similifying hypotheses listed under Eq. 1 remain applicable in three-dimensions.
Similar to the previous derivation [1,2], these fundamental hypotheses mean that the failure is describable in
terms of two parameters, a and koa*nd » the latter one representing the volume of the cracking zone (Fig.
2). Coefficient kg characterizes” the %eometny of the failure zone and is constant if geometrically similar
bodies with geometrically similar failure modes are considered; da = maximum aggregate size {or more generally
inhomogeneity size), and n = empirical coefficient, for concrete typically about n = 3, such that nda
represents the effective width of the front of cracking or alternatively the length of the fracture process
zone (these two meanings were shown to lead to the same result; see Ref. 21). The foregoing two parameters,
however, are not nondimensional. 1t must, of course, be possible to describe the failure in terms of
nondimensional parameters, and for this purpose length a must be divided by a guantity of the dimension of
length, and volume k.a nd_ by a quantity of the dimension of volume. We choose to divide these two parameters
by d and k azd..resgectiQer ( other choices are equally possible and yield .the same result, but the
derivation is the simpiest for this choice). Thus, the nondimensional parameters for our problems are:

X azznd ‘nd, -
g. =2 6. = 0 - (6)
1 " d°? 2 K 3 d
0 2 d

Parameter 6, represents the relative size of the fracture, and parameter 8, the relative volume of the
cracking zone. Fig. 2a shows an example of three-dimensional fracture wH%ch is axisymmetric, but the
foregoing description holds for arbitrary three-dimensional geometries provided there is geometrical
similarity -between various sizes; see Fig. 2b.

We now consider geometrically similar specimens or structures of . different sizes d (Fig. 2b),
characterized by a constant ratio a/d. Thus, parameter 8, is size-independent, while parameter 6, charac-

-terizes the size. As in the previous studies [1,2],*the total release of potential energy W from the
structure may always be given in the form: :

2 2 F(e,, 8,)
Vel ) 1 Rl o) s (7)

in which E. is the Young's elastic modulus of concrete, P is the maximum Yoad (i.e., the failure load under
1oad-contréﬁled conditions), and -F is a certain function of the nondimensional parameters, characteristic of
the given geometry of the structure and the cracking zone. The essential point is that function F must be the
same for different sizes if the -structures or specimens are geometrically similar. Energy balance during
failure requires that:

oW
% d = const. f

fh which kd represents the length of the perimeter of the fracture front, k being an empirical coefficient
independent of size d, and G¢ is the fracture energy of the material. Differentiating Eq. 7 with respect to a
and substituting into Eq. 8, we have:

P2 aF 1

S 2=kd& (9)
'ZE:&ael'a f

-
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The nominal stress at failure may be defined in three-dimensions as oy = P/dz. and so we get:

b b i;b E. 172
NTgZT (Zar/ael) ) (10)

The state &, = 0, which corresponds to an infinitely large structure (d/d_+ =) may now be chosen as the
reference state, “and 3F/ae1 may be expanded as .a function of 82 in Taylor series:

aF(8;, 8,) 2 3 '
.___55.1___. fol8y) + F,(81) 0, + £,(8)) €5 + f(6,) 6, + ... (11)

in which we introduce the notations:

2 3
1 (9F 1 (9°F 1 (8°F
f,08,) =47 [-—33—2] fo(8)) =37 ['3—62-] R ACPRE [303] (12)
e, =0 2 2 -
2 ez 0 82 0
Substitution of E£q. 11 into Eq. 10 then yields for the size effect the asymptotic expansion:
2 3
d d d - 172
. d
o = Bfell + -+ &y THh @) s n5E0 + -] (13)
2
in-which we introduced the following constants:
oz B e.) /2 £, f f "
find, Tt L P S P T A |

and f! denotes the direct tensile strength of the material. The constants in Eq. 14 depend on the geometry of
the structure and of the cracking zone.

1f .we -adopt the viewpoint of a cracking band of effective width nd, at ‘the cracking front, we may express
the fracture energy as:

£.2
G = nd, —5— (%:: - %;) (25)

in .which E, denotes the mean softening modulus, i.e., the mean slope of the descending branch of the stress-
strain diagram. Then the expression for B becomes

E 1/2
B = (1 )] (15a)

Eq. 13, which is of the same form as derived before for two dimensions (Ref. 2, Eq. 39), describes the
most yeneral possible size effect.. The first-degree approximation is obtained by deleting the terms with
coefficients AI’ AZ,..-,.and this yields Eq. 1.stated at the outset and originally derived for two-dimensions.

.1t may_be noted that the function which is .expanded into the asymptotic series in Eq. 11 could be.chosen
as (3F/26.) instead of»aFlael. In that case, one obtains in the same manner a still more general expression
for the s}ze effect:

6 = Bt + 1+ E v g + @ ¢ VI e (g, ) (16)

in which.co, ¢p: C3... are certain constants. 'This expansion makes it possible to describe the size effect
over a broader range with fewer terms, as illustrated in the example of Table 1. However, it is not clear
whether Eq. 16 for r = 1 yields the correct initial asymptotic behavior for a very small size (d - 0).

The idea that the approximate size effect law should be of general applicability was initially conceived

[1] upon noting that calculations for various specific geometries yield the same result. Let us now carry out
a similar caiculation, choosing as an example the axisymmetric specimen in Fig. 2a with a cylindrical cracking
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zone 123456 of diameter a (Fl% 2a). Before cracking, the specimen is under uniform uniaxial stress

, with resultant P = o, d“/4 where d is chosen to represent the diameter of the specimen. The energy
reVease may be considered to approximately equal the strain energy initially contained within the cracking
layer (cylinder 123456) and in cones 1237 and 4568 (Fig. 2a) adjacent to this layer. The height of these
cones is considered as kya, k, being an empirical constant, imagined to represent the slope of the "“stress
diffusion" lines, represented here by the slope of the cone. The stress diffusion concept is of course
approximate, however, it yields dimensionally correct results, and this is al] that matters for our purpose,
The total energy release may thus be expressed as:

We(2 _22.123 + nd 123) UNZ (17
34"a42€2 )

Eq. 8 for energy balanqe now takes the form:
/3 = %a b (18)

Substituting for G¢ Eq. 15, evaluating the derivative of Eq. 17 with respect to a, and solving for
Oys We now get again Eq. 1 in which:

172 nd
va’?(l-%t—) . %t klﬂg (19)

So the result agrees with the first order approximation according to Eq. 13. A simitar agreement can be
demonstrated for various other simple geometries such as edge-cracked cy]inder. or square prism with a square
crack layer, etc.

SIMILITUDE OF FRACTURE RATES AND DEPENDENCE OF FRACTURE ENERGY ON TEMPERATURE

It is generally assumed that the fracture energy of concrete depends on temperature, but no formula is
apparently available. While heating causes in metals abrupt increases of fracture toughness, due to brittie-
ductile transitions which change the fracture mechanism, the fracture toughness of purely brittie materials,
such as glass, ceramics, graphite and rocks is known to smoothly decrease with increasing  temperature
[11,12,13]. We will now show the derivation of a simple formula, exploiting the similitude of fracture rates
at various temperatures. This is, of course, a completely different type of similitude than that which
governs the size effect.

It is generally accepted that fracture is a thermally activated rate process. This means that the atomic
bond ruptures which constitute the mechanism of fracture are -provoked by the energies of thermal vibrations
[14]. These energies are statistically distributed, which is known to be described by the . Maxwell
distribution, and a rise of temperature causes an increase of the probability (or frequency) that the atom's
energy would exceed the activation energy barrier of the bond. Therefore, a rise of temperature produces an
increase in the growth rate of fracture, which generally follows a formula of the type [15]:

S (20)

in which a = rate of growth of fracture length, U = activation energy of bond -rupture, R = universal gas
constant, T = absolute temperature, K = stress intensity factor, and ¢(K) = an empirical function, increasing
monoton1cal1y. .

Recently, Evans [16,17] and Thouless et ai. [18] proposed and verified for ceramics & special form of Eq.

20:
K =U/RT
a = v () (21)
where f = critical value of fracture toughness, and Ves 1 = empirical constants characterizing the given
materia

A formula of this type may be expected to apply also for concrete, Eq. 21 is not exact but only
approximate, for two reasons: 1) the proportionality of a to K" s only empirical, and 2) more than one
mechanism of atomic bond rupture, with different activation energies, might be involved, and the type of
fracture mechanism might change with temperature.

172

Because of the well-known relations K = (GEC) and Kc = (Gg Ec)llz, where G = rate of energy release

395



from the structure into the fracture process zone [19,20], Eq. 21 may be rewritten as:

(22)

Eq. 22 may serve as the basic relation for determining the crack growth in time. Although the time.
dependent fracture description in terms of the crack growth rate is no doubt physically more fundamental, the
time-independent fracture description prevails in applications, In fact, what is known as fracture mechanics
is a time-independent theory. So we need to deduce the consequences of Eq. 23 for time-independent fracture
description, using a comparison of the fracture growth rate as the basis for similitude at various
temperatures.

The choice of the reference temperature in Eq. 22 is of course arbitrary. If we choose temperature T as
the reference temperature, then according to Eq. 22, the crack growth rate at temperature T is simply
expressed as:

: n/2
as= vc(s/ef) (23)

because 1/Tp - /T = 0 in this case.

As a basic condition of similitude of fracture at different temperatues, we must now require that the
crack growth rate at temperature T must be the same whether expressed on the basis of reference temperature
Tgs OF reference temperature T.. Thus, equating the expressions in Egs. 23 and 22, we obtain the following
approximate formula:

= g° X_X
G = G exp (5 TOJ (24)
in .wh'ich
¥ = 2U/nR (25)

v is a constant characterizing the giveh material.

Eq. -24 may be simply transformed to a linear plot of £n G¢ versus T'l, and linear regression in this plot

then.yields 6% as well as y. However, the activation energy values U cannot be determined unless constant n
is obtained sgparateU.- .

Extensive experiments .aimed at determining the effect of .temperature as well as humidity on the fracture
enerqy of concrete have recently been conducted at Northwestern University by Prat [19]. Fracture energies
were obtained for different temperatures according to the size effect (Eq. 5), and it was checked that
different types of specimens yield at various temperatures about the same fracture enerqy values., The
dependence of the fracture energy on temperature was found to closely agree with Eq. 24 for both dried
concrete and concrete -with the saturation water content. The test results obtained by Prat [19] are exhibited
in Fig. 3; for a detailed descrintion of the tests and their analvsis. see Ref. 19.

CONCLUSION

The size effect, the salient property of fracture mechanics, represents for brittie heterogeneous
material such as concrete -a smooth transition between failures governed by the strength or yield limit and
failures governed purely by fracture energy. This transition is describable by a relatively simple size
effect law, which has proven useful as an improvement for various desion formulas for concrete structures
(diagonal shear in beams, punching shear in slabs, torsional failure of beams, ring and beam failures of
pipes,. etc.) as well as for the determination of nonlinear fracture parameters of the material, especially the
fracture energy. The simple formula represented Bazant's size effect law is also appliicable in three
dimensions provided that structures that are geometrically similar in three dimensions are considered. A
different type -of similitude, based :on the notion of equivalent crack growth rates, may be exploited “to

determine the dependence of fracture energy on temperature inm the context of time-independent fracture
mechanics theory.
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Fig. 1. Nominal stresses at failure vs. specimen size as measured by
Bazant and Pfeiffer (1986), and ifts by size effect law.
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Fig. 2. Three-Dimensicnal Fracture and ‘its Geometrical Similarity
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Fig. 3. Test Results of Prat and Bazant (198f) on Temperature
Dependence of Fracture Enerqy of Ory and Wet Concrete
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Appendix 1. - Deviations from Size Effect Law and Other Size Effects

Transition to Yielding

The similitude of brittle fracture as described by the size effect law may be either limited or entirely
overridden by plastic energy dissipation which can occur in plain concrete if there is high confining
pressure. £.g., consider the split-cylinder brazilian test on a cylinder of diameter d and thickness (length)
b, The formation of the splitting fracture is a brittle event, and so the corresponding load Pf and nominal
stress ¢, = o, = P./bd approximately follows the size effect law. The splitting fracture, however, does not
represen§ 3 !5mplé§e failure because 2 wedge-shaped zone under the load (Fig. 4) must subsequently also slip
in order to obtain complete failure, Let the limit load for shearing the wedge off be P_. 1If the cylinder is
not thin but long, the slip failure of the wedge is essentially plastic since it occlrs at high confining
pressure (this would not be true for a_ thin cylinder in which the normal stress in the direction of cylinder
axis is small). So the normal stress °§ = Py/bd must be essentially size-independent.

For small enough sizes d we have P > P.. Then the maximum load is governed by the size effect law and
the plastic wedge shear-off occurs later undet a smaller load. However, for a certain sufficiently large size
dpay» oy becomes smaller than o, and then the ioad must further increase after the formation of the splitting
fracturd until it reaches meximum P, when the wedge shears off plastically. For this type of behavior the
size effect plot has the shape shown {n Fig. 4b, given as

- f = ' __9___-1/2
=, =8, (1 if o, > a{* (26)

o )
A da N

N

Otherwise oy = cﬂ

The size effect in the brasilian test was recently measured by T. Shioya and T. Hasegawa at Shimizu
Institute of Technology, Tokyo ({private communication in May 1985 and Jan. 1987). Their results appear to
agree with the behavior shown in Fig. 4b, although there is inevitably considerable random scatter in this
kind of test. It may be noted that if the specimens for all the sizes were thin and had the same thickness,
sufficient confining pressure could not develop to permit plastic failure of the wedge, and .then would be
negligibly small. It should also be noted that when the large specimens are much thicker than the sﬂa]] ones,
they can heat up significantly due to hydration, and this effect as well as the effect of heating on moisture
loss can then superimpose 2 different size effect.

A different type of yielding effect may apparently be obtained when the yielding occurs simultaneously
with the propagation of the-cracking- zone (fracture) at meximum load. This is apparently the case for the
diagonal shear ailure of beams.with stirrups. As shown in Ref. 1, the size effect for this type of yielding
effect should fallow the equation:

d 12,

oy = B'f,'c (1 +ﬁ y {27)

as one can show by analyzing the energy balance at failure.

_Other Types of Size Effect

Three types of size effects can be distinguished in concrete structures:

1. Fracture mechanics size effect. due to fracture propagation and energy release,
2. Diffusion-type size effect due to heat conduction and water diffusion.

3. Statistical size effect due to randomness of material properties.

The size effects due to heat condition and water diffusion play a major role in creep and shrinkage but
they can also interfere with the size effect law for blunt fracture. Particularly when specimens that are
geometrically similar in three rather than two dimensions are compared, the large specimens may heat up
significantly due to hydration, which accelerates the hardening of concrete. This then leads to higher f,
as well as Gg, thus altering the parameters of Eq. 1. At the same time, the heating may produce thermal
stresses which cause -tracking or at least tensile strain-softening. This may then reduce the effective
strength and fracture energy for externally applied load. Drying arrests hydration, and, therefore, a smaller
specimen has a smalier gain in strength and in fracture energy than a larger specimen over the same period of
time. But in 2 larger specimen, nonuniform drying may cause more cracking or tensile strain-softening, which
could cause an gpposite tendency. The diffusion type size effects may be described by simpie formulas only in
some simple situations (e.g., in the BP Model for shrinkage and drying creep). Generally they defy
description by a simple law and call for complete stress and cracking analysis.
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Statistical Size Effect

The statistical size effect in failure is described by Weibull theory. This theory is applicable to the
failure of a chain of brittle elements. It predicts the strength of the chain to decrease as the length of
the chain is increased, because the chance of encountering a lower strength in a longer chain increases as the
length of the chain increases. Thus, e.g., Weibull theory. no doubt applies to the length effect in tensile
failure of a long and thin uniaxially stressed concrete bar without notches.

However, for failures that occur after a large crack has already developed, which is the majority of
failures in concrete structures, the Weibull-type statistical effect plays probably an insignificant role.
The reason is that the zone in which the fracture front at failure can be located is, due to the mechanics of
failure, rather small compared to the volume of.the structure, even if the structure is rather large.

The Weibull distribution of strength R is defined as F(R) = 1 - exp[-k,V(R=-Rn) °] where V = volume of the
structure, and Rg,, kl,-u = constants, Ry = minimum strength. The mean of k is é%e tensile strength f,. It
can be shown thag the statistical aspect of fracture would cause in the size effect law (Eg. 1) a modification
of f%. With the inclusion of. the effect of d, {Eq. 4), this modification may be written as follows:

Ve 1/a -2/a
B [Ry + <(=) t%—;) ] (28)

N

1+
o da

Vir is .the volume of the zone in which the mechanics of failure .permits the crack front a the moment of

failure to be possibly located (Fig. 5), and V = total volume of the specimen,

Now, an important point js that, for brittle structural. failures-with fairly reproducible failure modes,
such as the diagonal. shear failure of beams, the volume V. 1is very small compared to V. .This means that the
effect of statistical variation of strength must be much smaller than it is for a long bar in tension. I[f the
material parameters R,, k, and a are calibrated to give a reasonable statistical size effect for a long thin
concrete bar in tension, the use of the same material parameters for structural failures such as the diagonal
shear failure given in Eq. 27 yields only a very small correction, because the ratio V. /V is rather small.
1t is for this reason that the statistical size effect. in diagonal shear failure appears Eo be unimportant..

Derivation of Eq. 5

For d + =, the size effect law (Eq. 1) yields:

o= B ¢ (ko a ) z (29)

This must be equivalent to linear elastic fracture mechanics, which yields for all structure geometrieé:
172 -1/2
oy = [&¢ E/9(ag)]™"" d (30)

Eqs. 29 and 30 must be equivalent, and equating them one gets the last expression'1n Eq. 5. A slightly"

dif;erent derivation was originally given on p. 293 in BaZant, Kim and Pfeiffer (1986, J. of Str. Eng. ASCE
112). .

L ¢ ?
f
1 2% n ,l

Fig. 4 Brittle Fallure with Yielding (a), and the
corresponding stie effect (bl.

¢ D
Fig. § Volume v" In which crack front can be located
{due to random scatter of materiii properties).
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Appendix 1I. - Brittleness Number

The fact that the size effect law yields approximately the same fracture.energ_y values regardiess of
specimen size and shape makes it possible to base on the size effect law a nondimensional characteristic for
the type of fracture behavior, which we may call the brittleness number. It may be defined as

and can be calculated after 1. has been determined either experimentally or by finite element analysis. The
value 8 = 1 indicates the va]u% of d¢/d, at the point where the horizontal asymptote for the strength criterion
intersects the inclined straight-line asymptote for linear elastic fracture mechanics (Fig. 1). So, 8
represents the center of the transition between these two extreme types of fracture behavior. For g8 > 1, the
behavior 1is closer to plastic limit analysis, and for 8 <1 it 1is closer to linear elastic fracture
mechanics, For 8 < 0.1, the plastic limit analysis may be used as an approximation, and for 8 > 10, linear
elastic fracture mechanics may be used as an approximation, For 0.1 < 8 < 10, nonlinear fracture analysis
must be used. The brittlenmess number can serve as 2 basic gualitative indicator of the type of fracture
response, and in this semse it is in fact analogous to the nondimensional characteristics used, e.g., in fluid
mechanics, .such as the Reynolds mumber.

A. Carpinteri (Engng. Fract. Mech, 16, 1582, p. 467-481) previously proposed to characterize the efect of
the structure size on its brittleness Dy the ratio s = Gf/b f. A, Hillerborg (Mat. Str., RILEM, 18, 1985,
pp. 25-30) characterized the effect of size on spructure brit‘f‘\eness by the ratio of the structure size to the
characteristic length defined as ¢ E_G./f.". The use of these characteristics is, however, limited,
.Since they can correlate only specﬁkens br Etrf:ctures of the same geometry. They have the disadvantagé that
for the same value of this brittleness characteristic, a specimen of .one shape may be quite brittle (i.e.,
close to linear elastic fracture mechanics), wnile 2 specimen of another shape may be quite ductile (i.e.,
close to plastic limit analysis). The brittleness number defined by Eq. 31 is free of this limitation, making
it possible to compare in brittleness a small structure of one shape with 2 large structure of another
shape. The greater generality of g is due to the fact that it is5 related nct only to 8¢, E, and f! {through
‘Eq. 1) but also to the size (width or length) of the fracture process zone (see Ref. 7) which is iﬁdependent
of the aforementioned characteristic length Loy and aiso to geometry of the structure,

: The change of load~deflection response of a structure of a certain geometry as a function of 8 is
ATustrated in_Fig.-6... An .increase -in structure size causes that a further elastic deformation (Fig. 6b) is
:superimposed on the original deformation for small size at the same load P (Fig. 6a). This means that the
displacements A and B or A and D“in Fig. 6a and b or-6a.and d.{1ines 1 and 1I) must be added. The resulting
‘response diagrams are shown in Fig. 6c for the case that the additional elastic deformation is of medium
‘value, or large. It is clear that for a sufficiently large structure the resulting load-deflection diagram
‘must exhibit snap-back, and when this structure is loaded in a displacement-controlled manner this must then
‘lead to snap-down instability represented by the dynamic passage from point 2 to point 4 in Fig, 6e, in which
the structure atguires the kinetic energy indicated by the cross-hatched area which is ultimately dissipated
a5 heat. This graphical construction clearly illustrates that a sufficiemt increase of size must lead to
purely brittle, i.e., dynamic, explosive failure,
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Fig. 6§ - Explanation of the Effect of the Size on Brittleness
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