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ABSTRACT

Compression failure due to propagation of shear bands is studied by
finite elements, using Mohr-Coulomb's plasticity with a degrading yield
1imit and normality rule. Strain-softening is modeled through a negative
value of the plastic hardening modulus. To serve as a localization
limiter, the yield 1imit {is assumed to depend on a nonlocal plastic
strain, while the elastic response is local. It is found that the model
is capable of producing shear bands inclined with regard to the mesh,
provided the element size is smaller than about 30% of the characteristic
length of the material. If the element size js reduced further, the
results appear to converge, Calculations indicate bifurcations of the
response path after the peak load point, The correct path is identified
on the basis of BaZant's second-order work criterion for path stability,
and it is found that the stable response path corresponds to a breakdown
of symmetry, with asymmetric shear bands of which one is active and
another one unloads. The results indicate the need to include checks for
path stability in finite element programs for strain-softening,

INTRODUCTION

Checks for path bifurcations and determination of the stable path
after bifurcation are an important ingredient of finite element programs
for the analysis of damage in structures. A preceding paper in this
volume [1] established, on the basis of the second law of thermodynamics,
the basic stability criteria of inelastic systems which generalize the
well-known criteria of Hill [2] for a stable equilibrium state and for
bifurcation of equilibrium path, '

It was shown that for irreversible structural systems distinction
must be made between stable states and stable paths. An equilibrium state
is stable if any admissible deviation from this state decreases its
internal entropy, S. ; i.e., Asin< 0. The tracing of an equilibrium
path of the structdfe may be imagined to consist of infinitesimal dis-
ruptions of equilibrium followed by infinitesimal approaches toward new
equilibrium states. The condition of stable paths 1is that these
approaches to a new equilibrium state must maximize the increment AS. of

the internal entropy as compared to ail other equilibrium paths eman%ging
from a common infinitely close bifurcation point. It was shown also that
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the path which is stable minimizes the second-order work done during the
increments along the path if the displacements are controlled, and
maximizes this work if the loads are controlled.

For inelastic structures, examination of stability of equilibrium
states is generally insufficient. The reason is that inelastic structures
can exhibit a spurious, unstable path which consists entirely of stable
equilibrium states. The finite element programs can follow such a
spurious unstable path without any indication of trouble, e.g., without
any divergence of iterations in the loading steps. Therefore, distinction
between stable states and stable paths is particularly important.

In the present follow-up paper, the thermodynamic criterion of stable
path is applied to finite element analysis of a structure which is
destabilized by material strain-softening due to yield limit degradation
[3,4]. To avoid spurious localization of damage energy dissipation to a
zone of zero volume, the nonlocal continuum approach is used. The
particular form of the nonlocal approach is a recently developed nonlocal
continuum with local strain {4,5,6], which has been shown to be computa-
tionally efficient and easily programmable, In this concept, the only
state variables which are nonlocal are those which are associated with
strain-softening, and all the other variables, especially those which
determine the elastic response, including unloading and reloading, are
Tocal. In the particular case of yield limit degradation as a function of
the effective plastic strain, the nonlocal variable is the yield limit

£3,4].

Attention is focused in the present paper on the problem of shear
band formation and propagation. As will be seen, the nonlocal continuum
with local strain is an effective approach to such problems, and among
various possible equilibrium solutions the correct one can be obtained on
the basis of the thermodynamic criterion of stable path.

NONLOCAL PLASTICITY WITH YIELD LIMIT DEGRADATION

Strain-softening which 1s associated with degradation of materijal
stiffness and 1is manifested by a decrease of the unloading slope is
properly modeled according to continuum damage mechanics or some type of
fracturing theory, Strain-softening which is not accompanied by any loss
of material stiffness, i.e., the unloading slope is given by the elastic
moduius, is properly modeled as a decrease of the yield limit of the
material, In practice, both types of strain-softening are usually
combined, which is reflected in modeis such as the plastic-fracturing
theory. In the present investigation we consider, for the sake of
simplicity, only the strain-softening associated with the decrease of the
yield 1limit, There exist various materials for which the yield limit
degradation seems to be a realistic approach; e.g., low strength concretes
or soils stabilized by cement grout.

Strain-softening of any type is an unacceptable concept for a local
continuum, This follows from stability analysis [7-9) which shows that
strain-softening, at least in certain situations, tends to localize into a
zone of vanishing volume if the finite element mesh is refined to zero
size. The consequence is that the structure is predicted to fail with a
zero energy dissipation, an unacceptale conclusion, Therefore, strain-
softening must be restricted to a zone of a certain minimum size which is
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a material property. This can be achieved by various mathematical
formulations called localization limiters. The most elementary type of
such a formulation is the crack band model [10-12], in which the finite
element size is restricted to a certain minimum value which is related to
the characteristic dimension of the in-homogeneties in the material. This
approach has been shown to yield good results in problems of nonlinear
fracture mechanics and has been found to be essentially equivalent in
these problems to the discrete crack models with a softening cohesive zone
characterized by a stress displacement relation [13,14]. The latter
models, however, are not completely general since they lack a condition
for the minimum spacing of discrete cracks.

For the case when the finite elements are much Tlarger than the
characteristic size of the localization zone, models in which a strain-
softening localization band is embedded in the finite element have been
developed [15-18].

A more general and versatile approach is the nonlocal continuum.
This concept, originally introduced on the basis of statistical analysis
of heterogeneous materials, has been widely applied in elasticity; see
e.g., Eringen and Edelen [19]. Application of the nonlocal concepts to
strain-softening was proposed by Bazant, Belytschko and Chang [20). The
early form, however, was relatively unwieldy, requiring a complicated mesh
in which the finite. elements were imbricated. It also exhibited certain
spurious zero energy instability modes which had to be suppressed by
artificial means. These problems were recently circumvented by the
concept of nonlocal damage or, more generally, the nonlocal continuum with
focal strain [4-6]. In this approach the main idea is that only those
variables which cause strain-softening should be subjected to a nonlocal
description. In particular, the total strain remains a local variable.
In such a case, the variational derivation of the differential equations
of motion or equilibrium and of the boundary conditions from the principle
of virtual works, leads to field equations and boundary conditions which
are of the standard form [6,7], while in the previous nonlocal theories
additional terms arose in the field equations and boundary conditions.

The concept of nonlocal continuum with 1local strain has been
successfully applied to the classical incremental plasticity [4,5]. 1In
this case, the variable which introduces strain-softening is the plastic
strain increment ¢", defined as the plastic shear strain increment which
is equivalent to the plastic increment tensor in terms of work. This
strain is processed through an averaging operator denoted by < > to obtain
the nonlocal plastic strain increment:

<P -1 - x) P(s) av

< (f)’ V_r—(f)_{a(f f)i(f) (1)
in which

"r‘j) = !v a (s - x)dv (2)

where V is the volume of the body; X and s are the coordinate vectors;
and a(x) is the given weighting funcfion, which is an empirical material
property. Although from the physical viewpoint the shape of this function
does not seem to have a great influence and a uniform weighting function
for a certain finite zone can be used, it appears to be computationall
more efficient if the weighting function is smooth. A suitable form o
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this function is the Gaussian errof density function

a (x) = e'(klﬁl/’)z (3)
in inch one has for 1, 2 or 3 dimensions:

10 |x|%=4h k =/

20 : [x|2= 2+ k=2 (4)

30 lez = x2 + y2 + 22, k = (6 /?)1/3

% is the characteristic length, a material property related to the size
of the material inhomogeneties. It defines in 1 D the length of the
segment, in 2 D the diameter of the circle, and in 3 D the diameter of the
sphere which has the same volume as the function a{x) extending to
infinity. The characteristic length plays the role of localization
limiter and approximately equals the minimum thickness of the strain-
softening zone that can develop.

For a finite body, the error density function extends beyond the
boundary of the body. The region outside the body is deieted from the
integration domain in both Eqs. 1 and 2, This fact causes vr to depend
on location x.

For numerical finite element computations, the. integrals in Eqs. 1
and 2 are approximated by finite sums over all the integration points of
all elements. However, only the integration points whose contribution is
significant (“(i - 5) > 0.01) need to be included in the summation.

The numerical implementation of this nonlocal model for the plastic
yield limit degradation has been described in detatl by Bazant and Lin
[5]. The computer program is obtained from a classical incremental
plasticity program [21] by replacing in the calculation of the current
yield limit the local effective plastic strain increment with the nonlocal
effective plastic strain increment, and incorporating an averaging sub-
routine to calculate the latter quantity for every integration point of
every finite element.

NUMERICAL RESULTS

As an example, the failure process of a concrete block loaded in
compression has been studied by finite elements. The Mohr-Coulomb yield
criterion, which allows for unequal strength 1limits in tension and
compression and can describe internal friction, has been selected. The
flow rule has been assumed to be associated, 1i.e., satisfying the
normality condition. Softening has been introduced by changing the value
of the plastic hardening modulus H' which is normally positive, to a
negative valug, called the softening parameter. The plasticity model was
charactirized'by the following data: Young's elastic modul%§ t E =21 x
10° N/m®; Poisson's ratio : v 0.15; cohesion : C = 5 x 107 N/m%; anglg
of fnternal friction : ¢ = 45" ; softening parameter : H' = - 4.45 x 10
N/mz. The dimensions of the block were 30 x 30 x S54cm; the compression
was parallel to the longest side, The characteristic length t was assumed
to be 12cm. This value corresponds to approximately 5-times the maximum
aggregate size of a concrete which.could be used in an actual experiment
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(d, = 24cm).

Calculations have been made with two regular meshes, mesh 1 with a
finite element size h, = 3cm, and mesh 2 with h, = 6cm. Two kinds of
boundary conditions, namely lubricated (laterally Sliding) ends and bonded
ends have been considered, and the loading as well as the reaction was
assumed to be applied through rigid plates. The loading in compression
was implemented by prescribing the increments of vertical displacements at
the top end, which were all equal. Four-node isoparametric finite
elements and a constant stiffness algorithm [21] have been used for
computation. The plane strain hypothesis was assumed.

As an imperfection from which the plastic zone initiates, it has been
assumed that there is a weak zone in the middle of the specimen, as shown
by the shaded finite elements in Figs. 2a, 3a, 4a and 5a. In these
elements the cohesion value was assumed to be 1% less than in the
remaining finite elements.

Mesh 1, Sliding Boundary

Calculations indicate that failure occurs through the formation of
two symmetric inclined shear bands crossing each other. Fig. 2b
represents the force-displacement curve (dashed line). Fig. 2¢ shows the
pattern of the symmetric shear bands just after the peak load. The stars
represent the points in which there is active plastic loading in the
strain-softening range, and the circles represent the points which are
elastically wunloading or reloading after previously experiencing
plasticity.

It may be noted that the width of the two shear bands obtained is
approximately equal to the characteristic length, 2.

In another calculation, all the parameters were the same except that
two interior nodes have been slightly displaced laterally so as to
introduce asymmetry. The results reveal that just after the peak load one
of the two diagonal shear bands unloads while the other remains active;
Fig. 2d. The force-displacement curve (solid line in Fig, 2b) is common
for the two calculations up to the peak-load point, at which a bifurcation
occurs, The bifurcation is caused by a breakdown of symmetry in the
specimen response, and it is a consequence of instability due to strain-
softening of the material.

As shown in Ref. 1, the path which occurs after the bifurcation point
must minimize, for the present conditions of control displacement, the
second-order work AW = &f 6u/2 where f is the applied force on top of the
specimen and u the prescribed displacement. Calculations show that a
smaller value of AW is obtained for the asymetric response mode; see Fig.
2b. This indicates [1] that the symmetric response mode represents a
spurious, unstable path, even though it consists of a succession of stable
equilibrium states, as has been checked on the basis of the second-order
work criterion of stability [1]. The stable response path after the peak-
load point consists of the propagation of a single asymmetric inclined
shear band,
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Mesh 1, Bonded Boundary

The same analysis has been carried out for a specimen in which the
nodes at top and bottom ends cannot displace laterally, A regular square
mesh of elements is again used, The analysis leads to the asymmetric
response mode of two fintersecting inclined shear bands, of which one
exhibits continued strain-softening and the other undergoes elastic
unloading after the peak-load point; see Fig. 3b,c. The asymmetric
response has been obtained here even without assuming any asymmetric
initial imperfection, merely as a consequence of the numerical round-off
of errors, which occur with a slight asymmetry.

A second calculation has been performed with enforced symmetry, by
considering only one-half of the finite element mesh with the boundary
conditions of symmetry on the vertical symmetry plane. This calculation
produces a symmetric response mode with two intersecting inclined shear
bands which are both active even after the peak-load point. (Certain
numerical manipulations of symmetry had to be introduced in the computer
program 1in this case, 1in order to correctly evaluate the nonlocal
variables near the plane of symmetry.

Again, the condition of minimum second-order work along the path

indicates that the stable response path is the asymmetric one, which leads
after the bifurcation point to a steeper descent.

Mesh 2, Sliding Boundary

The results obtained with the coarser mesh appear to be different
from those described previously. After the spread of plasticity from the
assumed weak zone, the specimen fails with active plasticity only (i.e.,
strain-softening). No unloading is observed in this case, even if the
Yoading steps are extremely refined. The force displacement curve is
similar to that observed previously (Fig. 4b) but the failure pattern is
completely different as no shear band is observed (Fig. 4c).

The same result is obtained if the two internal nodes mentioned
previously are considered to be initially slightly displaced.

Mesh 2, Bonded Boundary

The same calculation has also been performed with a regular mesh, and
a very stiff response of the specimen has been obtained in this case. The
peak load is much higher (the dashed line in Fig. 5b), and no tendency to
a shear band is observed (Fig. 5¢c).

If the two aforementioned internal nodes are assumed to be initially
slightly displaced, still the same kind of response is observed (Fig. 5d),
except that a few more points which undergo unloading are present and the
load deflection_curve lies, consequently, lower,

MESH SIZE AND SHEAR BAND

from the results obtained with the coarse mesh (Mesh 2), one may
conclude that a shear band cannot be modeled with a nonlocal plasticity
theory if the element size h is greater than a certain fraction of the
characteristic length t. In particular, the numerical results show that:
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for h > ¢/n : modeling of shear band is impossible
(s)
for h < t/n : modeling of shear band is possible

in which n approximately equals 3.5.

Further numerical studies indicated that this conclusion remains
valid for different choices for the characteristic length t. Preliminary
results further reveal that the solutions obtained with the fine mesh
(Mesh 1) are very similar to those with a still finer mesh, for which h =
2cm.  This seems to confirm that after a certain minimum refinement of the
mesh, the finite element solution converges for further mesh refinement.

If a coarse finite element mesh has to be used in calculations, a
different approach to the modeling of shear bands has to be adopted. A
shear band must be embedded in the finite elements, occupying only a small
portion of the element. This can be done, e.g., in the manner shown
previously by Pietruszczak and Mroz [15], Willam, Hurlbut and Sture [16],
and Ortiz, Leroy and Needleman [17].

The problem with the use of coarse finite elements is formally
identical to that encountered in the modeling of tensile fractures. Such
fractures, too, can also be modeled with large finite elements in which a
discontinuous shape function is embedded, as has been shown by Droz [22].

CONCLUSIONS

Nonlocal plasticity theory with a degrading yield 1limit is a
computationally effective model for studying the failure behavior of
concrete structures in compression. The calculations show that there
exists a path bifurcation associated with a breakdown of symmetry of the
shear bands which form. The correct response path after the bifurcation
can be determined on the basis of the second-order work criterion for
stable paths [1]. Since the equilibrium states on both bifurcation
branches of the equilibrium path are stable, and iterations in the loading
steps converge well, a check for path stability is an important ingredient
of a finite element program for strain-softening.

The nonlocal approach, which prevents the localization of strain-
softening, makes 1t possible to model shear bands propagating through
finite element meshes in arbitrary inclined direction, apparently without
any mesh bias. The condition is that the element size must not be larger
than approximately 301 of the characteristic length £ of the material.

Further studies, however, need to be made to investigate the effect
of mesh size and inclination in greater depth,
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! Figure 1. Unloading character-
7 istics of a plasticity model
/ with degrading yield limit.
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