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Basic Notations

length of crack or crack band

initial (pre-existing) notch or crack length
elastically equivalent (effective) crack length
thickness of two-dimensional specimen

elastically equivalent crack extension
characteristic dimension (or size) of structure (or specimen)
tensile strength

crack spacing

displacement

width of crack band

Young’s modulus of elasticity

E for plane stress, E' = E(1 — v?) for plane strain
energy release rate

critical energy release rate for Mode I

fracture energy

fracture energy obtained by the RILEM Method
stress-intensity factors for Modes I, II, III, respectively
critical stress-intensity factor for Mode I, fracture toughness
load

maximum (ultimate load)

relative crack length, a/d

brittleness number

crack-opening displacement

critical effective crack-tip opening displacement
crack-mouth opening displacement

load-point displacement

strain

stress

nominal stress at ultimate load

Poisson’s ratio -

extension of crack or crack band

potential energy
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SYNOPSIS

In the first of its series of four state-of-the-art reports under preparation, the Committee describes
the basic concepts of fracture mechanics of concrete, the existing theoretical models, and the methods
for determining the material fracture parameters. Chapter 1 offers five reasons for introducing fracture
mechanics into certain aspects of design of concrete structures, including some code provisions: (1) a
theoretical energy argument; (2) the need to achieve objectivity of finite element solutions, i.e., eliminate
spurious mesh sensitivity; (3) the progressive (propagating) nature of failure, implied whenever the load-
deflection diagram lacks a yield plateau; (4) the need to rationally predict ductility and energy absorption
capability; and most importantly, (5) the effect of structure size on the nominal strength (i.e., nominal
stress at maximum or ultimate load) as well as on ductility and energy absorption capability. The
size effect is due to stored energy release into the fracture front, and is not governed by Weibull-type
statistical theory. Experimental evidence on the existence of the size effect, hitherto ignored in design
practice and code provisions, is documented.

Chapter 2 gives a brief review of the necessary basic results of linear elastic fracture mechanics
(LEFM). In concrete, departures from this classical theory are caused by the existence of distributed
cracking (or damage) in a progressively softening fracture process zone which surrounds the tip of a con-
tinuous crack. In Chapter 3 nonlinear fracture models characterizing the softening stress-displacement
or stress-strain relations (such as those of Hillerborg's fictitious crack model, crack band model, nonlocal
strain-softening models, etc.) are described and random particle simulation of aggregate microstruc-
ture is discussed. The principles of implementation of these models in finite element programs are also
outlined. Chapter 4 presents simpler nonlinear fracture models which represent adaptations of linear
elastic fracture mechanics, such as Jenq and Shah's madel and the R-curve, along with determination
of geometry-dependent R-curves from the size effect law proposed by BaZant. This law, describing
the approximate dependence of the nominal stress at maximum load on structure size, is discussed in
Chapter 5, and structural response is characterized by the brittleness number.

Chapter 6 presents in considerable detail the current methods for experimental and analytical deter-
mination of material fracture parameters, including the quasi-LEFM methods, RILEM (work-of-fracture)
method, the Jenq-Shah and Karihaloo-Nallathambi methods, and the size-effect method. Experimen-
tal determination of the characteristic length for nonlocal continuum models and the strain-softening
properties is then examined, and material parameters for modes |l and 11I, shear fractures and mixed
mode fracture are also discussed. Chapter 7 then proceeds to describe various influencing factors, such
as the loading rate, humidity and temperature, as well as the effect of cyclic loading. Chapter 8 is
devoted to the effect of reinforcing bars and their bond slip on fracture propagation, and to fracture
of fiber-reinforced concrete. Chapter 9 deals with more theoretical problems of modeling systems of
interacting cracks. Attention is focused on systems of parallel growing cracks. Their stability decides
the spacing and width of the cracks from the mechanics viewpoint.

It is concluded that, after a decade of rapid progress in research, the time appears ripe for introducing
fracture mechanics into design practice. This should not only bring about more uniform safety margins,
thus improving safety and economy of design, but also pave the way for safer and more efficient use of
high-performance concretes and permit design extrapolations beyond the range of previous experiments
and design.

KEYWORDS: Brittleness, concrete, concrete structures, crack spacing and width, cracking, damage
mechanics, design codes, ductility, failure, fiber-reinforced concrete, nonlocal continuum models,
reinforced concrete, size effect, strain softening, structural design, testing methods, ultimate loads.
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Introduction

Concrete structures are full of cracks. Failure of concrete structures typically inYolves
stable growth of large cracking zones and the formation of large fractures before the maximum
load is reached. Yet design is not based on fracture mechanics, even though the basic fracture
mechanics theory has been available since the middle of this century. So.why has not fracture
mechanics been introduced into concrete design? Have concrete engineers been guilty of
ignorance? Not at all. The forms of fracture mechanics which were available until recently
were applicable only to homogeneous brittle matérials such as glass, or to homogeneous
brittle-ductile metals. The question of applicability of these classical theories to concrete
was explored long ago - the idea of using the stress intensity factor appeared al.ready in th,e
early 1950’s (e.g., Bresler and Wollack, 1952) and serious investigations star‘ted in the 1960’s
(e.g., Kaplan, 1961, and others). But the answer was, at that time, negative (e.g., Kesler,
Naus and Lott, 1971). As is now understood, the reason was that in concrete structures one
must take into account strain-softening due to distributed cracking, localization of cracking
into larger fractures prior to failure, and bridging stresses at the fracture front. A form‘ of
fracture mechanics that can be applied to such structures has been developed only during
the last decade.’

Concrete design has already seen two revolutions. The first, which made the technology
of concrete structures possible, was the development of the elastic no-tension analysis during
1900-1930. The second revolution, based on a theory conceived chiefly during the 1930’s, was
the introduction of plastic limit analysis, which occurred during 1940-1970. There are good
reasons to believe that the introduction of fracture mechanics into the design of concrete
structures, both reinforced and unreinforced, might be the third major revolution. The
theory, formulated mostly during the last dozen years, finally appears to be ripe.

Fracture researchers have at the present no doubt that the introduction of fracture me-
chanics into the design criteria for all brittle failures of reinforced concrete structures (such
as diagonal shear, punching shear, torsion or pull out, or for concrete dams), can bx:ing
about significant benefits. It will make it possible to achieve more uniform safety margins,
especially for structures of different sizes. This, in turn, will improve economy as well as
structural reliability. It will make it possible to introduce new designs and utilize new con-
crete materials. Fracture mechanics will be particularly important for high strength concrete
structures, fiber-reinforced concrete structures, concrete structures of unusually large sizes,
and for prestressed structures. The application of fracture mechanics is most urgent for
structures such as concrete dams and nuclear reactor vessels or containments, for which the
safety concerns are particularly high and the consequences of a potential disaster enormous.

Surveys of concrete fracture mechanics have recently been prepared by various commit-
tees (Wittmann, 1983, and Elfgren, 1989). However, due to the rapidly advancing resea.rcl‘l,
the contents of the present state-of-the-art report are quite different. A unified, systematic
presentation, rather than a compilation of all the contributions by various authors, is at-
tempted in the present state-of-art report. The report is aimed primarily at researchers, r}ot
necessarily specialists in fracture mechanics. However, it should also be of interest to design
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engineers because it describes a theory that is likely to profoundly influence the design prac-
tice in the near future. Subsequent reports dealing with applications in design, finite element
analysis of fracture, and dynamic fracture analysis, are in preparation by ACI Committee
446.

Chapter 1. WHY FRACTURE MECHANICS?

Fracture mechanics, in a broad sense, is a failure theory which (1) uses energy crite-
ria, possibly in conjunction with strength criteria, and (2) which takes into account failure
propagation through the structure.

1.1 Five Reasons for Fracture Mechanics Approach

Since concrete structures have been designed and successfully built according to codes
which totally ignore fracture mechanics theory, it might seem unnecessary to change the
current practice. Nevertheless, there are five compelling reasons for doing so.

Reason 1: Energy Required for Crack Formation

From the strictly physical viewpoint, it must be recognized that while crack initiation
may depend on stress, the actual formation of cracks requires a certain energy — the fracture
energy — which represents the surface energy of a solid. Hence, energy criteria should be
used. This argument might suffice to a physicist but not a designer. But there are other
reasons.

Reason 2: Objectivity of Calculations

Any physical theory must be objective in the sense that the result of calculations made
with it must not depend on subjective aspects such as the choice of coordinates, the choice
of mesh, etc. If a theory is found to be unobjective, it must be rejected. There is no need
to even compare it to experiments. Objectivity comes ahead of experimental verification.

A powerful approach to finite element analysis of concrete cracking is the concept of
smeared cracking, introduced by Rashid (1968). According to this approach, the stress in a
finite element is limited by the tensile strength of the material, f/, and after reaching this
strength limit, the stress in the finite element must decrease. As initially practiced, the stress
was assumed to decrease suddenly to zero, in a vertical drop; but soon it was realized that
better and more realistic results are usually obtained if the stress is reduced gradually, ie.,
the material is assumed to exhibit strain-softening (Scanlon, 1971; Lin and Scordelis, 1975);
see Fig. 1.1a. The concept of strain-softening, though, proved to be a mixed blessing. After
strain-softening had been implemented in large finite element programs and widely applied,
it was discovered that the convergence properties are incorrect and the calculation results
are not objective with regard to the analyst’s choice of the mesh, i.e., the results significantly
change if the mesh is refined (Bazant, 1976, 1982; Bazant and Cedolin, 1979, 1980, 1983;
Bazant and Oh, 1983a; Darwin, 1985; Rots, Nauta, Kusters and Blaauwendraad, 1985).
Similar problems are encountered when cracking is modeled as discrete interelement cracks,
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based on the strength concept (this approach was introduced into finite element analysis by
Clough, 1962, and by Ngo and Scordelis, 1967).

The problem of spurious mesh sensitivity can be illustrated, for example, by the rectan-
gular panel in Fig. 1.1b and ¢, which is subjected to a uniform vertical displacement at the
top boundary. A small region near the center of the left side is assumed to have a slightly
smaller strength than the rest of the panel, and consequently a smeared crack band starts
growing from left to right. The solution is obtained by incremental loading with two finite
element meshes of very different mesh sizes as shown. By stability checks it is found that
the cracking must always localize into a band of single element width at the cracking front
(Fig. 1.1b,c). The typical numerical results for this, as well as various other problems are
illustrated in Fig. 1.1d,e,f. In the load-deflection diagram (Fig. 1.1d), it is seen that the peak
load as well as the post-peak softening is strongly dependent on the mesh size, being roughly
proportional to h=*/? where h is the element size. Plotting the load (reaction) versus the
length of the crack band, large differences are again found (Fig. 1.1e).

The energy which is dissipated due to cracking decreases with the refinement of the finite
element mesh (Fig. 1.1f) and converges to 0 as A — 0.

The foregoing unobjectivity is physically unacceptable. The only way to avoid it is some
form of fracture mechanics. By specifying the energy dissipated by cracking per unit length
of the crack or the crack band, the overall energy dissipation is forced to be independent
of the element subdivision (the horizontal dashed line in Fig. 1.1f), and so is the maximum
load.

Reason 3: Lack of Yield Plateau

Based on load-deflection diagrams, one may distinguish two basic types of structural
failure: plastic and brittle. The typical characteristic of plastic failure is that the struc-
ture develops a single-degree-of-freedom mechanism such that failure in various parts of
the structure proceeds simultaneously, in proportion to a single parameter. Such failures are
manifested by the existence of a long yield plateau on the load-deflection diagram (Fig. 1.2a).
If the load-deflection diagram does not have such a plateau, the failure is not plastic but
brittle (or brittle-ductile) (Fig. 1.2b). If there are no significant geometric effects such as
the P-A effect in buckling, the absence of a plateau implies the existence of softening in the
material due to fracture, cracking or other damage; it implies that the failure process cannot
develop a single degree-of-freedom mechanism but consists of propagation of the failure zone
throughout the structure. So the failure is non-simultaneous and propagating.

To illustrate this behavior, consider the punching shear failure of a slab (Fig. 1.3). The
typical (approximate) distributions of tensile stress o along the failure surface are drawn in
the figure. If the material is plastic, the cross section gradually plasticizes until all its points
are at the yield limit. However, if the material exhibits softening, then the stress peak moves
across the failure zone, leaving a reduced stress (softening) in its wake. The stress reduction
is mild only if the structure is small, in which case the plastic limit analysis is not so far off.
If the structure is large, however, the stress profile develops a steep stress drop behind the
peak-stress point, and therefore the limit analysis solutions grossly over-estimate the failure

(a) P
piateau .-
- \\
'Y
(b) . p , softening
defl.

Fig.1.2 Load Deflection Diagram of Ductile and Brittle Structures

(a)

Fig.1.3 Progressive Nature of Failure lustrated for Punching Shear of
a Slab
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load. .
Reason 4: Energy Absorption Capability and Ductility

The area under the entire load deflection diagram represents the energy which the struc-
ture will absorb during failure and must therefore be supplied by the loads. Consideration
of this energy is important especially for dynamic loading, and determines the ductility of
the structure. Plastic limit analysis can give no information on the post-peak decline of the
load and the energy dissipated in this process. Some form of fracture mechanics is necessary.

Reason 5: Size Effect

The size effect is, for design engineers, probably the most compelling reason for using
fracture mechanics, and so a thorough discussion is in order.

The size effect is defined through a comparison of geometrically similar structures of dif-
ferent sizes, and is conveniently characterized in terms of the nominal stress o) at maximum
(ultimate) load, P,. When the ox -values for geometrically similar structures of different
sizes are the same, we say that there is no size effect. A dependence of on on the structure
size (dimension) is called the size effect.

The nominal stress need not represent any actual stress in the structure but may be
defined simply as oy = P,/bd when the similarity is two-dimensional, or as P,/d? when
the similarity is three-dimensional; b - thickness of the two-dimensional structure, and d
characteristic dimension of the structure, which may be chosen as any dimension, e.g., the
depth of the beam, or its span, since only the relative values of on matter.

According to the classical theories, such as elastic analysis with allowable stress, plastic
limit analysis, as well as any other theories which use some type of strength limit or failure
criterion in terms of stresses (e.g., viscoelasticity, viscoplasticity), on is constant, that is,
independent of the structure size. This may be illustrated, e.g., by considering the elastic
and plastic formulas for the strength of beams in bending, shear and torsion (regarding the
definition o = P,/bd for torsion, note that one may set P, = T,/r where T,= ultimate
torque, P, = force acting on an arm, r, such that r/H or r/a is constant for similar structures
of different sizes; H = cross section depth, a = crack length). It is seen that these formulas
are of the same form except for a factor. Thus, if we plot log on vs. logd, the failure states
according to a strength or yield criterion are always given by a horizontal line (dashed line
in Fig. 1.4). So failures according to strength or yield criteria exhibit no size effect.

By contrast, failures governed by linear elastic fracture mechanics exhibit a rather strong
size effect which in Fig. 1.4 is described by the inclined dashed line of slope —1/2. The reality
for concrete structures is a transitional behavior illustrated by the solid curvein Fig. 1.4. This
curve approaches the horizontal line for the strength criterion if the structure is very small,
and the inclined straight line for linear elastic fracture mechanics if the structure is very large
(the precise meaning of “very small” and “very large” will be clarified by Eq. 5.11). This
size effect, which is generally ignored by current codes (with a few exceptions), is obviously
important in design.

Another size effect which calls for the use of fracture mechanics is effect of size on ductility.
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Ductility of a structure may be characterized by the deformation at which the structure fails
under a given type of loading. For loading in which the load is controlled, structures fail
(become unstable) at their maximum load, while structural elements that are loaded under
displacement control (i.e. imposed displacement) or through displacement-controlled elastic
devices fail in their post-peak, strain-softening range. In a plot of on versus deflection, the
failure point is characterized by a tangent {dashed line in Fig. 1.5) of a certain constant
slope —C, , where C, is the stiffness of the loading device (e.g. Bazant and Cedolin, 1990,
Sec. 13.2). Geometrically similar structures of different sizes typically yield curves of the
type shown in Fig. 1.5. As illustrated, failure occurs closer to the peak as size increases.
This effect is again generally predicted by fracture mechanics, due to the fact that in a
larger structure more strain energy is available to drive the propagation of the failure zone.
A decrease of ductility of a structure represents an increase in its brittleness.

The well-known effect of structure size or member size on crack spacing and crack width
is also explicable by fracture mechanics. The spurious effect of mesh size (Reason 2) can
be regarded as a consequence of the structural size effect (this can be shown by considering
structures of different size but with the same mesh size, and then scaling all structures to
the same size along with the meshes).

1.2 Is Weibull’s Statistical Theory of Size Effect Applicable?

Traditionally, the size effect has been explained statistically, by randomness of the strength
value. The failure load of a chain is determined by the minimum value of the strength of
the links in the chain, and the statistical size effect is due to the fact that the longer the
chain, the smaller is the strength value that is likely to be encountered in the chain. This
explanation, which is certainly correct for the size effect observed in the failure of a long
uniformly stressed concrete bar in tension (Fig. 1a), is described by Weibull's weakest link
statistics. However, applications of this theory to concrete structures have been overdone
and are questionable for the following reason.

According to Weibull-type theory of failure (Weibull, 1939; Zaitsev and Wittmann, 1973;
Mihashi and Zaitsev, 1981; and Carpinteri, 1986), the probability of failure of a structure
under load P and the mean nominal stress at failure are:

Prob(P) =1 — exp {—/V [Z%x—)]m %x_)_} (1.1
Gy = b% - é / [1 = Prob(P)|dP (1.2)

where P = mean load, x = coordinate vectors, V = volume of structure, V, = representative
volume of material (the smallest volume for which a material with discrete microstructure
can be treated as a continuum), m = Weibull modulus of the material, go = scale parameter.

The key to applications of the Weibull theory is function o(P, x}, representing the stress
caused by load P at point x (for three-dimensional stresses, o may be regarded as the max-
imum principal stress). For some structures, such as aircraft wings and metal structures
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in general, failure occurs right at the initiation of the macroscopic crack growth. For those
gtructures, function o(P,x) is known; (P, x) = Ps,(€) where £ = x/d = relative coordinate
vectors, d = characteristic dimension of the structute, and s,(£) is the elastic stress distri-
bution due to unit load (P = 1). The same assumptions have often been implied in various
Weibull-type studies of concrete structures. - - -

Concrete structures, however, behave differently. Due to reinforcement as well as the
existence of strain-softening in a large zone of microcracking ahead of the tip of a continuous
crack, concrete structures do not fail at crack initiation. In fact, design codes require the
failure load to be significantly higher than the crack initiation load; for bending, at least 1.25
times higher for unprestressed beams and 1.2 times higher for prestressed beams (according
to ACI 318), but in practice this ratio is usually much higher. Consequently, a concrete
structure undergoes pronounced inelastic deformation and macroscopic crack growth prior to
reaching the failure load. This causes stress redistributions, such that the stress distribution
o(P,x) at failure is very different from the elastic stress distribution s.(£).

This distribution is difficult to determine, but the near-tip asymptotic elastic stress field,
Ps,(£), may be used as an approximation at distances not too far from and not too close
to the tip of the macrocrack at the moment of failure. Now, due to singularity of this field,
the stress values farther away from the tip of the macrocrack are relatively small and make
a negligible contribution to &y (Eq. 1.2) compared to the stresses in the volume V; of the
fracture process zone around the tip. This of course reflects the fact that the volume in which
the macrocrack tip at failure might be located (as dictated by the laws of mechanics) is very
small (e.g. the diagonal shear crack in Fig. 1.6b cannot grow toward the lower midspan
region or toward the upper left corner of the beam, regardless of the strength values there).

Consequently, the statistical size effect must be smaller than in a uniformly stressed
tensile bar, where failure is precipitated by a macrocrack anywhere within the volume of the
bar. Thus, as pointed out by Bazant (1986, 1987a), if one calibrates Weibull parameters
m and op on the basis of uniaxial strength tests and then uses the same parameters to
predict Py and &y for diagonal shear failure, one must find the statistical size effect. to be
rather small. Thus, even though limited test results for diagonal shear failures have, been
successfully fitted by formulas based on the Weibull distribution, the size effect data for both
the diagonal shear failures and the uniaxial failures cannot be successfully fitted using the
same material parameters (unless an incorrect elastic stress field Ps.(£) is used).

Thus, the principal fault of the Weibull-type statistical explanations of the size effect in
concrete structures is that they ignore the size effect caused by the redistribution of stress
o( P, x) prior to failure. This size effect, which is of the fracture mechanics type, is associated
with the energy release into the front of a large crack and would exist even if the material
behavior were deterministic.

Therefore, the proper approach is to fit the size effect data for a concrete structure first
by a fracture mechanics theory, and only if some part of the observed size effect remains
unaccounted for it may be attributed to Weibull-type statistical phenomena (Bazant, 1986,
1987a).

Weibull theory then describes a size effect of the volume of the structure, expressing the
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fact that the larger the volume, the greater is the chance of encountering a critical microscopic
flaw that triggers failure. Thus, as far as the load at initiation of cracking (or damage) is
concerned, Weibull-type theory is, of course, applicable. Saouridis {1989) demonstrated that
by analysis of L’Hermite’s tests of size effect in unnotched beams. Indeed, as long as there
are no stress redistributions, i.e., all stresses are fixed in their proportion to the load, the
interaction of the elements of the structure is mathematically equivalent to a series coupling
of elements, the same as in a uniaxially stressed bar of variable cross section. When there are
stress redistributions, however, the structure behaves as a combination of series and parallel
couplings. But Weibull’s theory is valid only for series coupling, as in a chain of elements
(hence the term “weakest-link statistics”).

1.3 Simple Energy Explanation of Size Effect

The fracture mechanics type size effect, which is due to energy release, can be simply
explained by considering the uniformly stressed planel with a crack or crack band of initial
length a = g, shown in Fig. 1.7. It may be imagined that the formation of a crack band
of thickness h reduces the strain energy density o%/2E in the cross-hatched area to zero (E
= elastic modulus of concrete). When the crack band extends by a, the additional strain
energy that is released comes from the densely cross-hatched strip of horizontal dimension
Aa (Fig. 1.7a). If the failure modes are geometrically similar, as is usually the case, then
the larger the panel, the longer is the crack band at failure. Consequently, the area of the
densely cross-hatched strip is also larger, being given by hAa + 2kaAa where k = empirical
constant depending on the shape of the structure. This illustrates that, in a larger structure,
more energy is released by the same extension of the crack band. The energy released from

the strip is —611/6a = Gyb, i.e.,

2
‘Aia(hAa +2kaba)s¥ = Gyb (13)

where II = potential energy stored in the structure, b = thickness and Gy = fracture energy
(dimension J/m?) = energy needed to create a fracture or crack band of unit length and (in
the third direction) unit width. The value of Gy is approximately constant and represents
a material property. Solving from Egq. 1.2 for the nominal stress, one obtains the size effect
law proposed by Bazant (1984a): )

on = Bfj(1+ )%, B=d[d (1.4)

where B = (2G;Eb/h)"/?/ f!, dy = (h/2k)(d/a) = reference size which depends on the shape
of the structure but is independent of structure size if the structures are geometrically similar
(because d/a = constant); f; = tensile strength, introduced for convenience; and & = width
of the crack band front, which may be treated approximately as constant, independent
of structure size. Empirically, dy ~ nd, where d, = maximum aggregate size and n is
approximately-constant when d or d, is varied, but depends on structure geometry. Eq. 1.4
will be discussed more in Chapter 5 and derived in Appendix 1.
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Lest one might get the impression that this explanation of the size effect works only for
a crack band but not for a sharp line crack, consider the same panel with a line crack of
length ag shown in Fig. 1.7b for similar panels of different sizes. In concrete, there is always
a sizeable fracture process zone ahead of the tip of a continuous crack, of some finite length
which may, in the crudest approximation, be considered constant. Over the length of this
zone, the transverse normal stress gradually drops from f} to 0. Because of this zone, the
elastically equivalent crack length which causes the release of strain energy from the adjacent
material is longer than the continuous crack length, a, by a distance ¢ which is approximately
a material constant. (Strictly speaking, c varies, but much less than in proportion to the
size. Anyway, a more involved derivation in which ¢ is variable yields the same result, and
will be indicated just before Eq. 5.5.)

When the crack extends by length Aa, the fracture process zone travels with the crack-tip,
and the area from which additional strain energy is released consists of the strips of borizontal
dimension Aa which are densely cross-hatched in Fig. 1.7b. Their area is k{ao + ¢} where
% is approximately a constant. The energy released per unit crack advance, —6I1/6a, must
equal to Gyb where G; = the fracture energy of the material, and so

1 o}
-A—a2k(ao + C)Aaﬁ = Gjb (15)

Solving this equation for o, one again obtains the size effect law in Eq. 1.4 in which now
B = (EGyb/kc)'/?/ fi, dy = c(d/a) = constant.

Eq. 1.4, which describes the transitional size effect given by the solid curve in Fig. 1.4,
is also obtained for various other structural geometries. For large sizes, the curve of Eq. 1.4
in Fig. 1.4 approaches a straight line of slope —1/2, which represents the size effect of linear
elastic fracture mechanics (see Sec. 1.2).

Eq. 1.4 can also be derived, in a completely general way, by dimensional analysis and
simjlitude arguments (Bazant, 1984a). This general derivation rests on two basic hypotheses:
(1) the propagation of a fracture or crack band requires an approximately constant energy
supply (the fracture energy, Gy) per unit area of fracture plane, and (2) the potential energy
released by the structure due to the propagation of the fracture or crack band is a function
of both the fracture length and the size of the fracture process zone at the fracture front.

It must be kept in mind that Eq. 1.4 is approximate, valid only within a size range of
about 1:20 (i.e., the largest structure for which Eq. 1.4 can be applied is about 20 times
larger than the smallest structure). For a broader size range, a more complicated formula
would be required. Nevertheless, the aforementioned size range is sufficient for most practical
purposes.

The main problem with the Weibull-type statistical theory for the size effect is that
the existing works ignore stress redistributions and the consequent energy release from the
structure (as illustrated in Fig. 1.7 and manifested by the size effect law). The statistical
size effect should properly appear only as an addition to the fracture mechanics type size
effect (which is deterministic), and would have to describe only that part of the size effect
which is not explained by the fracture mechanics size effect. So far, such comparisons have
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not indicated any large systematic deviations which would require some other explanation,
such as statistical. - :

Applications of Eq. 1.4 to brittle failures of concrete structures rest on two additional
hypotheses: (3) the failure modes of geometrically similar structures of different sizes are
also geometrically similar (e.g., a diagonal shear crack has at failure about the same slope
and the same relative length), and (4) the structure does not fail at crack initiation (which
is a requirement of good design). These hypotheses are usually applicable, but not always
over the entire size range of interest. A sufficiently large change of size may alter the failure
mode and thus render Eq. 1.4 inapplicable beyond that size. (This apparently is the case
for the brazillian split cylinder tests.) .

1.4 Experimental Evidence for Size Effect in Structures

Extensive tests have been carried out to verify Eq. 1.4 for various types of failure of
concrete structures {using microcondrete specimens). Good agreement of Eq. 1.4 with test
results has been demonstrated for:

1. Diagonal shear failure of beams (Bazant and Cao, 1986b; Bazant and Kazemi, 1989a).
2. Punching shear failure of slabs (Bazant and Cao, 1987):

3. Torsional failure of beams (BaZant, Sener and'Prat, 1987).

4. Pullout failure of reinforcing bars (Bazant and Sener, 1988).

5. Double-punch tests of cylinders (Marti, 1989).

Typical experimental results, which can be regarded as a verification of the applicability
of fracture mechanics to the brittle failures of concrete structures, are shown in Fig. 1.8-
1.11 (tests made at Northwestern University on microconcrete specimens with aggregate
of maximum diameter 3/8 in. or 1/4 in.). As further evidence of applicability of fracture
mechanics, Fig. 1.12 shows, for the punching shear failure, that the post- peak load drop
becomes steeper and larger as the size increases. This is because in a larger specimen there
is (for the same o) more energy to be released into a unit crack extension, but since the
fracture extension dissipates the same amount of energy, the value of §y (and thus the load)
must be reduced as the structure size increases.

Note also that the shape of the measured size effect curves (Fig. 1.8- 1.11) does not really
agree with the Weibull-type statistical model, for which the slope of the curve would have
to diminish rather than increase with increasing size and approach a horizontal asymptote.

The existing test data on concrete specimens with regular-size aggregate reported in
the literature also offer evidence of size effect, and the need of a fracture mechanics based
explanation has been pointed out by various researchers, e.g., Reinhardt {19812,1981b) or
Bazant and Kim (1984). The data from the literature are generally found to agree with
Fig. 1.4, but this evidence is not very strong because the data exhibit very large statistical
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Fig.1.8 Test Results (Bazant and Kazemi, 1989a) on Size Effect in Di-
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Fig.1.9 Test Results (BaZant and Sener, 1988) on Size Effect in Pull-
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scatter. Due to scatter, about equa]_ly good fits can be obtained with other theories of
size effect, e.g., Weibull’s statistical theory. Although part of the scatter is inevitable and
random, most of the huge scatter observed in brittled failures such as diagonal shear probably
stems from the fact that the test specimens of various sizes were not geometrically similar,
and so theoretical adjustments must be made for the factors of shape before a comparison
with Eq. 1.4 can be made. Since the exact theory is not known, such adjustments introduce
additional errors. In addition to the structures listed above, available comparisons with test
data also include the beam and ring failures of unreinforced pipes (Gustafson and Hillerborg,
1984; Bazant and Cao, 1986a). Comparisons with the bulk of test data available in the
literature were made for diagonal shear failures of both unprestressed and prestressed beams,
and beams without and with stirrups (BaZant and Kim, 1984; Bazant and Sun, 1987; Bazant
and Cao, 1986b), as well as torsional failures (Bazant and Sener 1987). Statistical analysis
was included in these studies.

1.5 Explanation of Size Effect on Ductility

Structural action is normally a combination of series and parallel couplings of the cracking
zones and the uncracked (elastic) zones. The size effect on ductility is explained by the series
coupling aspect. Consider a cracking element coupled with an elastic element as shown in
Fig. 1.13. The load-displacement diagrams of these elements are also shown. Since the force
in both elements is the same and the deformations are superimposed, the response of both
elements combined is obtained by passing a horizontal line at each level P and summing the
corresponding deformations a and b, as shown in Fig. 1.13. If the elastic element is sufficiently
soft, this can obviously produce a load-displacement diagram which exhibits the so-called
snapback, in which the displacement diagram turns back at a positive slope. The snapback
behavior is unstable even under displacement control, and the structure fails at the maximum
displacement, labeled as u.,. This displacement represents a ductility limit for the system.
Since the addition of an elastic element is equivalent to increasing the size of the structure,
it is clear that an increase of size tends to decrease ductility. Ductility is not a material
property but a structure property which is governed by fracture mechanics and depends
on structure size (as well as the type of concrete). It is worth noting that Hawkins (1984)
identified twenty-nine provisions in the ACI Code which seem to be empirical but could
probably be explained by fracture mechanics. They include various ductility limitations,
conditions for minimum reinforcement, crack spacing and crack width, etc.

To sum up, the experimentally observed structural size effect, as well as the related
spurious effect of the mesh size, presents the most potent argument for the application of
fracture mechanics to concrete structures.
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Chapter 2.ESSENTIAL RESULTS FROM LINEAR
ELASTIC FRACTURE MECHANICS

In linear elastic fracture mechanics (LEFM) it is assumed that all of the fracture process
happens at the crack tip and that the entire volume of the body remains elastic. Under
this assumption, the questions of crack propagation and structural failure can be solved by
methods of linear elasticity.

1t is convenient to distinguish three elementary fracture modes, Modes 1, II and III, also
called the opening mode, the planar shear mode and the antiplane shear mode; see Fig. 2.1.
Modes I and II are planar symmetric and antisymmetric, while Mode II1 is three-dimensional.
General fracture is a linear combination of these three modes.

2.1 Stress Singularity

Introduction of a crack into a linear elastic body produces stress concentrations near the
crack tips. This may be illustrated by the perturbation of the trajectories of the maximum
principal stress shown in Fig. 2.2. The stress field is singular at the crack tip, with all the
nonzero stress components approaching infinity as the radial distance r from the crack tip
tends to zero (Fig. 2.3). In a sufficiently close neighborhood of the sharp crack tip, the stress
components o;; are the same regardless of the shape of the body and the manner of loading,
and may be expressed as:

of; = Kifl(0)@rr) ™2, olf = Ku fH(8)2ar) 2, ol = KinflINO)2nr) ™2 (2.1)

Here the subscripts and superscripts I, II and III refer to the elementary modes,  is the polar
angle, K1, K17 and Ky are parameters called the stress intensity factors, and functions f;;
are the same regardless of the body geometry and the manner of loading. For example, ff,(8)
= cos (1 — sin aesin 3a), f1(8) = cosa(l + sinasin3a), f1(8) = cos asin 2a cos 3a, where
a = §/2; see e.g., Knott (1973), Broek (1974), Owen and Fawkes (1983), Hellan (1984), and
Kanninen and Popelar (1985).

2.2 Energy Criterion

The fact that, according to the theory of elasticity, the stress near the crack tip approaches
infinity, no matter how small the load, was noted by Griffith (1921, 1924) on the basis of the
previous solution for elliptical holes by Inglis (1913). He concluded that, if linear elasticity
is used, one cannot introduce a strength criterion as a condition of failure, but must instead
decide failure on the basis of an energy criterion. As the crack tip propagates, energy
flows into the crack tip where it is dissipated by the fracture process. The energy flow is
characterized by the energy release rate which is expressed as:

Gh = _a%ga_) o —Aia [H(a + %) = (e - %g)] (2.2)
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in which I = U — W = potential energy of the structure, W = work of loads, and U =
strain energy of the structure as a function of the crack length a. Eq. 2.2 also gives a finite
difference approximation which may be used to calculate G by the finite element method.
For that purpose one may model the crack as a line gap between adjacent elements and
calculate the strain energy stored in the mesh for the crack tip displaced by either —Aa/2
or Aa/2. Instead of using an interelement line crack, one may, for the sake of convenience,
model the crack by considering a band of elements to have zero stiffness (if one uses a mesh
of square elements whose size is not more than about 0.1 of the cross section dimension, the
error of considering a crack band instead of a line crack is usually less than 1%; see BaZant
and Cedolin, 1979).
According to Griffith, the condition of crack propagation (critical state) is

G =Gy (2.3)

G is the fracture energy, which has the dimension of J/m? (or N/m) and represents a basic
material property. For G < Gy , the crack cannot propagate, and for the case G > Gy
equilibrium is impossible. If G = Gy and 8G/8e > 0, which is normally the case, the crack
is unstable under load control (i.e., the structure fails). There exist, however, some cases in
which G = Gy and 0G/0a < 0, and then the crack can grow under load control in a stable
manner.

The energy release rate for modes I, II and ITI may be expressed on the basis of the stress
intensity factors as follows:

Gr=K}|E', Gu=K}/E, Gui=Ki,/p (2.4)

in which g4 = elastic shear modulus, for the case of plane stress £’ = E = Young's elastic
modulus, for the case of plane strain E' = E/(1 — »?), and v = Poisson’s ratio. For general
loading, the total energy release rate is:

G=Gr+Gu+Gur (2.5)

The stress intensity factors are proportional to the applied load, and may generally be
expressed in the form:

Ki = v/7af(e) = Lvdp(a), @=a/d (26)

in which f is a certain nondimensional function of the relative crack length a (d = character-
istic structure dimension), and ¢(a) = f(a)y/ma = another non- dimensional function. For
various simple geometries of notched fracture specimens, accurate expressions for function
[ are available in textbooks and handbooks (e.g., Tada et al., 1985, and Murakami, 1987).
For other geometries, the function f can always be calculated by linear elastic analysis; e.g.,
through a finite element program. For the special case of a single line crack of length @ in an
infinite solid subjected at infinity to nominal stress oy in the direction normal to the crack
plane, one has f(a) = 1. Eq. 2.6 shows that, for geometrically similar structures of different
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sizes, the stress intensity factor is proportional to the square root of the size, and the energy
release rate is proportional to the size of the structure.

Instead of Eq. 2.3, the condition of mode I crick propagation (critical state) can be
expressed in terms of the stress intensity factor as:

Ki=Ki, 2.7

in which K. = critical value of K , which is also called fracture toughness and represents
a material property; K. = G;E'. If Eq. 2.7is substituted into Eq. 2.6, the nominal stress
at failure (crack propagation) is obtained as:

oN = =
N Vraf(a)  Vdp(a)
It may be noted that, according to Eq. 2.8,

'I(Ic ch (28)

logan = —% log d + const. (2.9)

This relation shows that the size effect plot according to linear elastic fracture mechanics is
an inclined straight line of slope —1/2 (Fig. 1.4).

2.3 Limits of Applicability

In reality, the fracture process cannot take place at a point. The fracture process zone
must have some finite size. According to Irwin (1958), a crude estimate of the length r; of
the fracture process zone may be obtained by setting the transverse normal stress in Eq. 2.1
to be equal to the tensile strength f!. This yields

1 KL & K} FE'Gy
T fi 27 t t

Note that this length is expressed only in terms of material properties, and therefore is
a material property, too. An alternative estimate of the size of the fracture process zone of
concrete can be based on the maximum aggregate size d,. BaZant and Oh (1983a) concluded
that the length and effective width of the fracture process zone of concrete in three-point
bend specimens are roughly 12d, and 3d,, respectively.

Linear elastic fracture mechanics is applicable when ry is much smaller than the cross sec-
tion dimension of the structure. This condition is not satisfied for most concrete structures,
with the possible exception of some very large structures such as concrete dams. However,
a more precise criterion for the applicability of linear elastic fracture mechanics, which also
takes into account the structure shape and the manner of loading, can be given in terms of
the so-called brittleness number, 8, which will be explained in Sec. 5.2.

The inapplicability of linear elastic fracture mechanics to brittle failures of typical ‘con-
crete structures is clearly apparent from the test results shown in Fig. 1.8-1.11. The data
points indicate a milder size effect than the straight line of slope —1/2.

(2.10)
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Chapter 3. NONLINEAR FRACTURE MODELS
WITH SOFTENING ZONE

The reason for deviations of concrete behavior from linear elastic fracture mechanics
is the development of a relatively large fracture process zone which undergoes progressive
softening damage due to microcracking. The effect of this microcracking is: (1) to reduce the
flux of energy that can be released into the crack tip; and (2) at the same time to increase
the combined surface area of cracking, and thus enhance the energy absorption capability of
the fracture process zone.

Therefore, a relation describing the softening damage needs to be included in the fracture
model. This can be done basically in two ways: (1) in the form of a stress-displacement
relation for the frontal zone of a line crack, or (2) a stress-strain relation for the strain-
softening (microcracking) region in front of the main crack. We will first describe these
approaches and then discuss their relative merits (For further discussions, see e.g. Planas
and Elices, 1988a; Rots, 1988).

In general, one may distinguish two types of nonlinear fracture mechanics: (1) ductile
(metals), and (2) nonductile (concrete, as well as ceramics); see Fig. 3.1. In contrast to linear
elastic fracture mechanics, the nonlinear zone is large for both types of nonlinear fracture
mechanics. For ductile fracture mechanics, most of the nonlinear zone undergoes plastic
hardening or perfect plasticity, and the fracture process zone is still a very small part of
the nonlinear zone. By contrast, for nonductile fracture mechanics, which is the case for
concrete, the fracture process zone is large and occupies nearly the entire nonlinear zone.
Thus, although many results of the fracture theory of metals which evolved earlier are useful,
most of them cannot be directly transplanted.

Remarks: The fracture process zone is defined as the zone in which the material under-
goes strain-softening, i.e., the stress normal to the crack- plane decreases with increasing
strain. The stress can be understood as the macrostress or average stress oy; that is calcu-
lated as (1/§%)-times the force resultant transmitted across area (4 on which the heteroge-
neous material with aggregates and microcracks can be approximated as a continuum (on
the macroscale). Alternatively, (and customarily), a; = [y, 0f7dV/V, where o]} are the mi-
crostresses (actual stresses in the aggregates, matrix and interfaces, which show high random
local scatter), and V; is for the representative volume of the material, defined below Eq. 1.2
(its size is the characteristic length £). These concepts are developed more precisely in the
statistical theory of heterogeneous materials (e.g. Kréner, 1967; Krumhansl, 1968).

3.1 Softening Stress-Displacement Relations

This approach developed as a modification of a similar approach previously formulated
for metals. Dugdale (1960) and Barenblatt (1959, 1962) proposed that a plastic (yielding
cohesive) zone of a certain finite length must exist at the front of a crack (Fig. 3.2a). The
length of this zone must be such that the stresses from the fracture process zone cancel
the stress singularity caused at the tip of the equivalent elastic crack by the applied load
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(a) Linear Fracture

{c) Concrete

Fig.3.1 Linear Zone (L), Non-Linear Zone (N) and Fracture Process
Zone (8) in Fracture of Different Materials
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(i-er K; = 0). The crack opening at the beginning of the plastic zone, where the stress
suddenly drops to zero, may be regarded as a material property which controls propagation
(Fig. 3.2b). '

For some metals and other materials it was later noted that the cohesive zone should
exhibit a gradual rather than sudden stress drop, characterized by a softening relation of
the normal stress o across the crack vs. the crack-opening displacemexit 8, (Fig. 3.2d); see
e.g. Knauss (1974), Kfouri and Miller (1974), and Wnuk (1974). For concrete, this type of
model was proposed by Hillerborg, Modeer and Petersson (1976) under the name of fictitious
crack model; see also Petersson (1980a, 1981), Hillerborg (1983, 1985a, 1985b). (The term
“fictitious” refers to the fact that the portion of a crack which transmits tensile stress cannot
be a continuous crack with full separation of thé surfaces; the real crack ends at the point
where the stress is reduced to zero; Fig. 3.2d.) In this model, which has been widely applied
in finite element analysis of concrete fracture, the material fracture properties are defined
by the softening stress- displacement relation:

oy = f(é) (3.1)

(see Fig. 3.2d), where o, is the stress in the direction normal to the crack. The area under
the curve represents the fracture energy of the material, i.e.:

Gy = /0 o, ds, (3.2)

The crack begins to open when the stress at the tip reaches the tensile strength limit f!.
If the shape of the softening curve is fixed, then the fracture properties are completely
characterized by two parameters: f; and G;. The precise shape of the softening stress-
displacement diagram has a considerable influence on the calculation results. In various
works this shape is considered triangular or bilinear, in which case the stress is reduced
to zero at a finite displacement . An exponential shape has also been used. When the
softening zone is unloaded and reloaded (Fig. 3.2d), the behavior is as sketched in Fig. 3.2d.

Hillerborg’s fictitious crack model was verified and calibrated by various comparisors with
test data. However, it seems that an exhaustive comparison with all the important concrete
fracture data from the literature has not yet been presented. But due to equivalence with
the crack band model, the extensive comparisons of the latter with test data (Bazant and
Oh, 1983a) indirectly validate the fictitious crack model.

The shape of the stress-displacement curve was studied on the basis of micromechanics of
microcracks by Horii (1988), Horii et al. (1987, 1988), and BaZant (1987b), and on ceramics
with similar behavior by Ortiz (1988). From these models it transpired that the microcrack
coalescence generally tends to produce snapback instability of the stress-displacement curve.
However, the existing measurements, albeit limited in scope, do not show any snapback. It
may well be that some other mechanism, such as frictional pullout of aggregate and fragments
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from the crack faces, eliminates the snapback.
3.2 Softening Stress-Strain Relations

Since the cracks in concrete are not straight but tortuous, and the microcracking zone in
front of the continuous fracture is not likely to develop along a straight line, the behavior
of the fracture process zone can equally well be described by stress-strain relations with
strain-softening, i.e., declining stress at increasing strain. This approach is quite convenient
for computer programming since no separation of the nodes of two adjacent elements needs
to be introduced and fracture is handled by adjustments of the incremental stiffness of finite
elements, basically in the same way as any inelastic behavior.

Strain-softening in the form of a sudden vertical drop was introduced in finite element
analysis by Rashid (1968). The need to consider progressive strain-softening in tension was
recognized by Scanlan (1971), who introduced a sequence of small stress drops. The fact
that concrete exhibits strain-softening in tension was experimentally observed by L’Hermite
(1959), Rusch and Hilsdorf (1963), Hughes and Chapman (1966), and Evans and Marathe
(1968). Extensive and carefully controlled measurements were recently reported by Petersson
(1981), Reinhardt and Cornellisen (1984), Gopalaratnam and Shah (1985), and others.

From the continuum mechanics viewpoint, the concept of strain-softening involves certain
severe mathematical difficulties, such as imaginary wave speed (or change of type of the
partial differential equation of motion from hyperbolic to elliptic) and ill-posedness of the
boundary value problem, which were pointed out and analyzed by Hadamard (1903}, Thomas
(1961), Bazant (1976), Sandler (1984), Read and Hegemier (1984), Wu and Freund (1984),
Bazant, Belytschko and Chang (1984), and others. The chief problem is that the zone of
energy dissipation tends to localize to a zone of zero volume (a surface) so that the total
energy dissipation at failure is incorrectly indicated to be zero (cf. review by BaZant, 1986).
These difficulties are circumvented if strain-softening in finite element models is introduced
through fracture concepts in one of two forms: (1) the crack band model and (2) the nonlocal
model. The latter requires a finer mesh but allows better resolution of localized strain fields.

3.2.1 Crack Band Madel

The basic idea of the crack band model, which was proposed by Bazant (1976), is:

(1) to characterize the material behavior in the fracture process zone in a smeared manner
through a strain-softening constitutive relation, and

(2) to impose a fixed width w, of the front of the strain-softening zone (crack band),
representing a material property.

The imposition of constant w, is required in order to avoid spurious mesh sensitivity
and achieve objectivity, assuring that the energy dissipation due to fracture per unit length
(and unit width) is a constant, equal to the fracture energy of the material, G5 . In keeping
with the classical approach to smeared cracking, the detailed formulation of the crack band
model (BaZant and Cedolin, 1979, 1980, 1983) first employed a sudden stress drop instead

33

of a gradual softening. Later comparisons with numerous test results, however, indicated
that the reduction of stress to zero must be gradual, thus creating a relatively long fracture
process zone ahead of the front of the fracture (Fig. 3.2¢}. This formulation, which was
given in detail by Bazant (1982), and Bazant and Oh (1983a) has been shown to agree with
essentially all the basic fracture test data available in the literature, particularly those on the
effect of specimen size on the maximum load, the R-curve (see Chapter 4), and the differences
between various specimen geometries. At the same time it was shown that the crack band
model and Hillerborg’s fictitious crack model give essentially the same results, except when
closely spaced parallel cracks occur. (Thus, the extensive experimental justification of the
crack band model also indirectly provided justification for the fictitious crack model.)

Softening is caused by fracturing strain, ¢/ , which is superimposed on the elastic strain.
Assuming all the cracks to be parallel and smeared (continuously distributed), and choosing
axis 2 to be normal to the cracks, we have in two dimensions (z; — z; plane):

| en Cin Cun 0 on 0
€ ¢ = Cun’ Cinz 0 on }+9 € (3.3)

N2 0 0 Cinz/B T2 0
The column matrices on the left hand and right hand sidés consist of the strain and stress
Components ( = 2512 = shea.r angle), C“u,C”zg = 02211,0.2222 and Cu]g are the elastic

compliances, and J is an empirical factor, (0 < 8 < 1), called the shear retention factor
(introduced by Suidan and Schnobrich, 1972, and Yuzugullu and Schnobrich, 1973, Phillips,
1973, and Phillips and Zienkiewiez, 1976). H the material is isotropic, Ciy = Cageg =
1/E',Cuz = Caany = V[ E',Cyny = 20+)/E  in which E' = E,v' = v for plane stress, and
E'= E[(1 - ),V = v/(1 — ) for plane strain. The fracturing strain can be incorporated
into the compliance, in which the expression ¢ = [WCh32/(1 — w)]oz; has been introduced:
w can be regarded as damage and can be considered to be a function of the strain norm.
to the crack, €32, or the maximum principal strain; w/ (1 — w) = &(ez,). Initially we have
w = 0 (no damage), and complete damage (continuous fracture) occurs for w = 1. Always
0 < w < 1. The fracture energy is obtained as

Gy = w,,./o ogade’ (3.4)

The fully cracked state is obtained for w — 1. It was shown (BaZant and Oh, 1983a)
that if Eq. 3.4 is inverted and the limit of the ensuing stiffness matrix for w — 0 is calcu-
lated, the result coincides with the well-known stiffness matrix for a material that is cracked
unidirectionally and continuously, as introduced by Rashid (1968).

Eq. 3.4 reflects only a very special form of damage. In general, damage needs to be
introduced through the formulation of the internal variable theory (for concrete, see e.g.
Pjjaudier-Cabot and Mazars, 1989, and Pijaudier-Cabot and Bazant, 1988).

The uniaxial softening stress-strain relation underlying the crack band model is charac-
terized by function ¢(ez;), which defines damage w. The results are as sensitive to the shape
of the softening stress-strain relation as are those for the fictitious crack model. It appears
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that the simple formula ¢(€) = (E/f!)exp a{e — ¢,), with empirical constants ¢ and &, , is
generally adequate. A straight line softening, i.e., a triangular stress-strain diagram, has
also been used successfully.

Thete are two simple variants to the crack band model. The original one (BaZant and Oh,
* 1983a) presumes that the smeared parallel cracks start to form in the direction normal to
the maximum principal stress but subsequently the crack orientation is fixed in the material
even if the principal stress direction rotates. More recent research (e.g., Gupta and Akbar,
1984; Cope, 1984) seems to indicate that it is better to assume that the crack orientation
rotates with the direction of the maximum principal stress, which means that shear stresses
on the crack plane can never arise. For this variant, the general triaxial stress-strain relation
for the microcracked material can be written in the form (BaZant and Lin, 1988b):

€ij = (C,'jkm + zﬁ%ﬁﬁ.‘ﬂjnknm) Okm (3.5)
in which n; = direction cosines of the current maximum principal stress di- rection (repeated
tensorial subscripts imply summation) and Cijkm is the elastic (undamaged) compliance
tensor.

When the principal stress directions rotate significantly, the nonrotating crack method
must be generalized to allow for the formation of secondary and tertiary cracking of different
orientations. Such multidirectional smeared cracking models were especially perfected by de
Borst (1984).

In reality, the microcracks prior to the final continuous fracture are distributed over all
orientations, with different frequencies for various orientations. This feature is captured by
the microplane model (BaZant and Oh, 1985) which seems to be physically the most realistic
as well as conceptually simplest model of damage due to cracking but is very demanding
for computer time. In this model (which will be considered further in Section 3.2.5), the
hypothesis that the cracking strain tensor is additive to the elastic strain tensor is abandoned
and cracking is modelled as strain-softening separately on planes of all orientations (called
microplanes), subject to the hypothesis that the strain components on each microplane are
the resolved components of the (macroscopic) strain. The stresses after cracking on the planes
of various orientations are not exactly in equilibrium, but overall equilibrium is enforced by
using the principle of virtual work.

It may be pointed out that linear elastic stability analysis in which the microcracks are
assumed to grow in a homogeneous elastic continuum indicates that the softening stress-
displacement or stress-strain relation should exhibit a maximum displacement or strain
(snapback), after which the stress suddenly drops to zero (Bazant, 1987b). But it is not
yet known whether the prediction of snapback also results from models taking into account
inhomogeneities, inelastic behavior, and friction.

The width of the crack band front can be assumed to be approximately w, ~ 3d.(do
= maximum aggregate size). This conclusion was drawn on the basis of optimum fitting
of numerous test data (BaZant and Oh, 1983a). However, the optimum was not sharp; w.

values ranging=from d, to 6d, gave almost equally good results, provided, of course, the
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post-peak function ¢{ez;) was adjusted for each different value of w,

Once the shape of the softening stress-strain relation is fixed, the crack band model is
fully characterized by three material parameters: f!, G and w, {although the influence of
the w, - value is rather weak for situa- tions with isolated cracks). By contrast, the fictitious
crack model has only two basic parameters, f and.Gy . Why the extra parameter in the
crack band model? The extra parameter, w, , is important only in situations when there are
parallel cracks (e.g., in the presence of tension reinforcemient); then w basically determines
the minimum possible crack spacing, as a material property. It should be pointed out that
the fictitious crack model, because of its lack of the extra parameter w, , can give results
that are not objective in situations with parallel closely spaced cracks. (A certain length has
also been defined as an additional material parameter in the fictitious crack model; however,
in contrast to w, , it is not an independent parameter.)

The finite element size h = w, , required by the crack band model, may be too small in
the case of very large structures. In that case, it is possible to enlarge the element size (ie.
use h > w,) provided that the softening stress-strain relation is adjusted so as to assure the
same energy dissipation, Gy. This is illustrated in Fig. 3.3. In view of the series coupling
model, already discussed in connection with Fig. 1.8, the given stress-strain diagram OPA
for the strain-softening crack band needs to be replaced, at increasing element size h, by
diagrams OPB, OPC, OPD, etc., such that when the areas under any of these diagrams
is multiplied by h the same fracture energy value Gy is obtained (Fig. 3.3c). In terms of
the stress-displacement diagrams for length & of finite element, a change in A requires that
the actual stress-displacement diagram 012 in Fig. 3.3b be replaced by diagrams 032, 042,
052, etc. These stress-displacement diagrams have the property that the area under them is
constant, thus assuring constant fracture energy Gy.

One can, of course, also use elements with k < w, (say 0.1w), provided the post-peak
slope is decreased as shown by the o — ¢ diagram OPF in Fig. 3.3c s0 that the o — 6 diagram
082 (Fig. 3.3b) would again have the same area as 012. In this case, the row of cracked
elements can be narrower than the adjacent elements and the mesh may look as shown in
Fig. 3.4a but with w, replaced by k. Obviously, when h — 0, the crack band model iz the
limit becomes identical to Hillerborg’s model (which in this sense is a special case of the
crack band model).

As the element size is increased, the softening slope gets steeper, until for a certain
element size ho a vertical stress drop OPC or 42 is obtained. For a still larger element size,
the diagram OPD or 052 would exhibit snapback, which would cause numerical difficulties.
In that case, one may replace the snapback segment 52 of the element stress-displacement
diagram by a vertical stress drop, 67 in Fig. 3.3b. The point of vertical drop is determined
again from the condition that the area under the diagram 067 must be the same as the
area under the diagram 012 or 042. This consideration indicates that the equivalent tensile
strength f., of the large finite element of size k > w; is given by

, B 2E K%,
feq = fl\/zv hO = '_TzG_j = ,{3 (fOI‘h 2 ho) (3’6)
h i K
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(e.g., Bazant and Cedolin, 1979, 1980) in which ke is the element size for which a vertical
stress drop {diagram 042) is obtained. Note that the ex pression for kg is similar to Irwin’s
Eq. 2.10 for the size of the yielding zone.

The foregoing adjustments are ideally defined for square finite elements subjected to
tension or shear {normal or parallel to the sides). However, extensions to non-square elements
are possible. In this case, if the dimension of the element in each direction is about the same,
one may again use Eq. 3.7 in which h = \/A, where A = element area (in 2D).

Eq. 3.7 follows from the relation h f2 /2E = hof*/2E = G; where h represents either
the actual width of the cracking element in the direction normal to the cracks, provided the
element is square or rectangular, or the effective width of the element defined as b = w.Aa/As
where A., Ay are the areas of the element and of the crack band within the element. For
element width A < kg , for which the post-peak slope is reduced but the strength limit is kept
as f!, the stress-strain diagram may be expressed, according to the series model (Fig. 1.8),
as follows:

e= 2t (1= %emes h=wlE (for h < ho) (3.7)
h h Ay

€softs Eune = the strains corresponding to the same stress according to the strain-softening

stress-strain diagram and an unloading stress-strain diagram starting from the peak stress

point.

If larger elements need to be used, another possibility is to keep the size of the elements
on the line of crack band constant, equal to size w,, and enlarge all the remaining elements
as shown in Fig. 3.4a. If the crack band is much thinner than the adjacent finite elements,
the model, of course, becomes practically identical to the fictitious crack model.

In the case of crack propagation in an arbitrary direction, the crack band model as well
as the fictitious crack model requires remeshing so that the boundary lines of the crack
band or the crack line would conform to the interelement boundaries (for the fictitious
crack model, these techniques were to perfected by Ingraffea (1985), Ingraffea and Gerstle
(1985), and Ingraffea and Saouma (1985). If the remeshing is not done, it is still possible
to approximately represent fracture running in an arbitrary direction by allowing the crack
band to have a zig-zag form as shown in Fig. 3.4b. Some adjustments of the fracture energy
are then necessary to take into account the average width of such a zig-zag band (Bazant,
1985a).

Even with such adjustments, however, there is a certain bias imposed by the mesh ori-
entation. Moreover, if shear stresses parallel to the overall crack band direction arise, the
zig-zag band can introduce spurious shear locking of the opposite faces. These problems can
be overcome either by introducing a nonlocal version of the model, described later, or by
enriching the finite element either with a strain field that is discontinuous along the bound-
aries of an arbitrarily oriented band, as proposed by Droz (1987) for tension, (similar to the
models reported by Ortiz et al., 1987; Leroy and Ortiz, 1989, and Belytschko et al., 1988 for
shear bands) or with displacement field discontinuous along a line, as proposed by Dvorkin
et al. (1989).

The crack band model offers the possibility of introducing the influence of nonsingular

{a) [
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Fig.3.3 Effect of Size on the Steepness of Post-Peak Softening
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Fig.3.4 Meshes to Represent a Very Narrow Crack Band and a Zig-Zag
Band
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three-dimensional stresses on fracture. For example, it is known that a compressive stress o,
parallel to the crack plane promotes cracking. Based on the known shape of the biaxial failure
envelope of concrete, this influence (for o, < 0) may be taken into account by replacing f!
with
fi=Ff(l+0./f) (3.8)

(Bazant, 1985a) where f = compression strength. For o = — f (compression failure), one
must have f7 = 0, which agrees with Fig. 3.9. Note also that, in contrast, ;- has no effect
if linear elastic fracture mechanics is used; nor when line crack models with softening zones
are used.

The crack band model has been implemented in some large general purpose finite element
codes (e.g. DIANA, TEMP-STRESS, NONSAP).

3.2.2 Crack Layer Model

A variant of the crack band model is represented by Chudnovsky’s crack layer model
(Bessendorff and Chudnovsky, 1984; Chudnovsky, 1986). This model is more general than the
crack band model in that the width of the crack band front is not considered to be a constant.
Rather it is allowed to expand or shrink based on a material property. This property links a
certain path-independent integral that characterizes the energy change due to the expansion
to another path-independent integral around the crack front which characterizes the energy
flow into the crack front due to crack propagation (Rice’s J-integral).

This model, however, has not beén developed for application in concrete and has not been
compared to typical test data for concrete. The properties governing the band expansion
might be unidentifiable from the experimental data at the current degree of sophistication
of testing methods.

3.2.3 Composite Fracture Model

The composite fracture model is essentially an adaptation of the crack band model to
finite elements of a larger size than the crack band width w, , thus permitting large structures
to be analyzed with a cruder mesh. The model assumes that a crack band of width w,,
which is a material property (or an equivalent line crack) is embedded within a larger finite
element, approximately as illustrated in Fig. 3.3d. This idea, which is similar to Eq. 3.8, was
proposed first for plastic shear bands by Pietruszczak and Mroz (1979) and later developed
for tensile cracking of concrete by Willam et al. (1985, 1986). If the element size shrinks
to we, this model becomes essentially identical to the crack band model. The crack band
within the finite element is introduced by enriching the smooth distribution function with a
discontinuous strain field function which characterizes cracking. The approach is similar to
those by Droz (1987), Ortiz et al. (1987), Belytschko et al. (1988), Leroy and Ortiz (1989)
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and Dvorkin et al. (1989) already mentioned at the end of Sec. 3.2.1.
3.2.4 Nonlocal Continuum with Local Strain (Nonlocal Damage)

A nonlocal continuum is a continuum in which some state variable depends not only on
the stresses or strains at the same point but also on the stress or strain field in the neighbor-
hood of the point. As shown by Kréner (1967), Krumhansl (1968), Kunin (1968), Eringen
and Edelen (1972), and others (cf. Bazant, 1986), the nonlocal concept is appropriate for
statistically heterogeneous materials and follows logically from statistical micromechanical
considerations. Recently, the nonlocal approach has been shown to be very effective for
fracture mechanics of distributed cracking. '

The nonlocal concept represents a general approach which makes it possible to use stress-
strain relations with strain-softening. As mentioned before, if the strain-softening concept
is introduced in the local continuum, softening zones localize to a vanishing volume, causing
improper convergence on mesh refinement, spurious mesh sensitivity and physically incorrect
predictions such as failure with vanishing energy dissipation as the mesh size is refined to
zero. ‘To avoid such behavior, the computational model must include some mathematical
device that limits the localization (Bazant, Belytschko and Chang, 1984). The simplest,
albeit crudest, way to limit localization is to impose a fixed, size, w,, on the frontal finite
element, as done in the crack band model (unless the post-peak stress-strain relation is
artificially modified). However, this approach makes it impossible to resolve the field in the
fracture process zone itself, or determine how the fracture process zone width could vary
during the fracture growth (no modification of stress-strain relations could be permitted for
those purposes).

A more general way to limit localization, in order to cope with such problems, is the
nonlocal continuum. The concept may be introduced in various forms, such as averaging of
strains or strain-related quantities over a neighborhood of a point (Bazant, 1984b; BaZant,
Belytschko and Chang, 1984), or introduction of first and second spatial derivatives of strains
or other quantities into the constitutive relation (e.g., Schreyer and Chen, 1986; and for
the Cosserat medium formulation for rocks by Sulem and Vardoulakis, 1988). The §patial
derivative formulation can be obtained by expanding the spatial averaging integral in Taylor
series. Only the spatial averaging approach has so far been worked out in detail for the
multidimensional analysis of fracture of materials such as concrete.

In the early formulation, spatial averaging was applied through the total strains used in
the strain-softening constitutive relation. However, that approach, which resulted in a so-
called imbricate continuum model (BaZant 1984b), proved to be relatively cumbersome and
have some computationally inconvenient properties. Recently (Bazant and Pijaudier- Cabot,
1987, 1988a; Pijaudier-Cabot and Bazant, 1987; BaZant and Lin, 1988a, 1988b), it was
found that a more effective approach is to consider the elastic strains as local (no averaging),
and apply the nonlocal averaging only to the softening part of the strains which represent
distributed microcracking. This new approach has the advantage that the continuum field
equations of equilibrium as well as the boundary conditions remain the same as for the
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classical local continuum, and that there is no possibility of zero-energy instability modes
(previously shown to exist for fully nonlocal models). It has also been mathematically proven
that the averaging of the fracturing part of the strains is sufficient to prevent localization
of strain-softening damage into a zone of zero volume. The unloading-reloading behavior is
always local in this approach.

The spatial averaging operator, denoted by an overbar, may be defined in terms of strain
€11 as follows:

fu(x) = ‘—/t—x) [, als = enleNav = [ o(x— )en(s))av (39)
in which ( )
7 ats — X

Vi(x) = /V (s =)dV, alx—s)= P (3.10)

(611) =€n if €11 > 0, (Cu> =0 if e < 0 (311)

Here V = volume of the structure, x = coordinate vector, 8 = coordinate vectors of adjacent
points, o = given weighting function of the distance |[s — x|, considered to be a material
property (Fig. 3.5). V;, has approximately, but not exactly, the same meaning as the repre-
sentative volume in the statistical theory of heterogeneous materials.

The weighting function could be defined as uniform (a = 1) over volume V; representing
a circle in two dimensions, a bar segment in one dimension, or a sphere in three dimensions,
with a zero value outside V; . However, it has been experienced that the calculations converge
better if the weighting function is smooth. One possible choice (BaZant and Pijaudier-Cabot,
1987, 1988a; Bazant and Lin, 1988b) is a Gaussian distribution function, which, however, has
nonzero values over the entire structure. It seems preferable to use a polynomial bell-shaped
function which is exactly zero beyond a certain distance, e.g. (Fig. 3.5)

2
a(s —x) = (1 _bk ;exl) if |s — x| < k£, otherwise a{s —x) =0 (3.12)

Here k is a normalizing constant determined so that the integral of « over a line segment,
or a circle, or a sphere of size k£ would be the same as the integral of @ = 1 over the same
region; k = 15/16 = 0.9375 for 1D, (3/4)1/? = 0.9086 for 2D, k = (105/192)'/3 = 0.8178
for 3D. The parameter £ is the so-called characteristic length of the nonlocal continuum,
which is a material property that defines the size of the averaging volume and is determined
by the size of the inhomogeneities in the microstructure. For one quite typical concrete,
‘measurements (BaZant and Pijaudier-Cabot, 1988b) have shown that £ = 2.7d, where d, =
maximum aggregate size (Sec. 6.9).

If point x is too close to the surface of the body, part of the averaging zone protrudes
beyond the surface. This is handled by deleting the protruding part from the integration
region. This deletion causes V;(x) to depend on location x.

In finite element calculations, the integrals in Eq. 3.10 and 3.11a are approximately
evaluated as finite sums over all the integration points of all the elements in the structure.
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Fig.3.5 Weighting Function for Non-Local Continuum Theory and Rep-
resentative Volume of the Material
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Fig.3.6 Size Effect Calculated by Non-Local Continuum Theory (BaZant
and Lin, 1988b) for Exponential (dashed curve) and Linear (dash-dot
curve) Tensile Strain Softening Curves, Compared with Size Effect Law
of Bazant (Eq. 1.4, solid curve) and with test results of BaZant and
Pfeiffer (1987) (data points)
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However, the integration points whose distances from point x exceed k¢ may be omitteq
from the sum since for them a = 0.

Ideally, the form of function a(s—x) should be derivable from micromechanical modeling
of the microstructure with aggregates and microcracks, same as the form of function ¢(e) in
Eq. 3.4 and 3.6. However, this goal is too difficult at present, while at the same time the
precise form of function a(s — x) has only little influence on computation results (this fact
makes identification of function « from test data problematic). What is important is the
value of £ (provided the body is not too lazrge compared to £).

The simplest nonlocal constitutive model, appropriate for unidirectional cracking, is ob-
tained by generalizing the crack band model (BaZant and Lin, 1988b). One alternative is to
assume the crack direction to be fixed at the time the cracks start to form. In this case, the
nonlocal generalization is obtained by replacing w in Eq. 3.4 with nonlocal damage @, such
that »

(1-@)" = (&) (3.13)
where €7 is the maximum nonlocal principal strain calculated from the nonlocal (averaged)
strain tensor €;.

The second alternative of the crack band model, in which the cracking direction is as-
sumed to rotate with the maximum principal stress, is obtained by replacing w with @ in
Eq. 3.6.

It has been verified (BaZant and Lin, 1988b) that this nonlocal generalization of the
crack band model permits the use of finite elements of any size less than £, without causing
spurious mesh sensitivity and improper convergence. For element sizes no smaller than ¢,
the nonlocal model becomes identical to the crack band model, and the stress-strain relation
for the finite element which undergoes cracking must be adjusted according to the element
size, as already explained.

It has also been shown that the nonlocal smeared cracking model provides an excellent
fit of various fracture test data. See e.g., Fig. 3.6, in which the test results from BaZant
and Pfeiffer (1987) are compared with nonlocal finite element results of Bazant and Lin
(1988b) (dashed and dash-dot curves) and with the size effect law (Eq. 1.4, solid curve) (the
dashed curve corresponds to a softening tensile stress-strain relation in an exponential form,
which fits the data better than the dash-dot curve which corresponds to a linear stress-strain
relation; still better fits could probably be obtained with other shapes of this relation). From
Fig. 3.6 it should be especially noted that a nonlocal finite element code exhibits the correct
transitional size effect of nonlinear fracture mechanics, as approximately described by the
size effect Jaw proposed by BaZant. By contrast, the local finite element analysis exhibits
no size effect, as observed on geometrically similar specimens of different sizes, with similar
meshes.

One practical advantage of the nonlocal formulation is that if the finite element sizes are
less than about 1/3 of the characteristic length ¢, then there is no directional bias of the
mesh with regard to crack propagation. This has been verified (BaZant and Lin, 1988b) by
analyzing the fracture of the same rectangular specimen with an aligned square mesh and a
slanted square mesh. Thus, the nonlocal model can be used in general fracture situations.
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An interesting, and potentially useful property of the nonlocal formulation is that the
vidth of the cracking zone is not fixed but varies during the course of loading. The
_onsequence is that the nonlocal fracture model does not correspond to a unique stress-
displacement diagram for the line crack model (fictitious crack). This fact might explain
why it has proved rather difficult to obtain unigue values of the fracture energy on the basis
of the fictitious crack model. . .

It should also be noted that a large finite elément program for the nonlocal fracture model
usually runs faster than the corresponding local program, despite the fact that additional
computer time is needed to calculate the spatial averages. The reason apparently is that the
ronlocal averaging stabilizes the response, thus causing the iterations in the loading steps
to converge faster. :

3.2.5 Multidirectional Cracking and Nontensile Fracture

For concrete structures subjected to complicated loading histories, it may be necessary
to analyze fracture taking into account the existence of multidirectional cracking (Bazant
1983; de Borst, 1984, 1987a, 1987b; de Borst and Nauta, 1985; Ottosen and Dahlblom, 1986;
Willam et al., 1987; Rots, 1988; Rots and Blaauwendraad, 1989; Crisfield and Wills, 1989).
An effective approach to such behavior appears to be the microplane model, which was
already mentioned below Eq. 3.6 in connection with the damage law. Instead of a macro-
scopic stress-strain relation, the material behavior in the microplane model is characterized
independently on planes of various orientations, called the microplanes. In practice, only a
certain number of discrete microplanes is considered, according to a numerical integration
formula for spatial directions. The macroscopic response is determined as a certain aver-
age of the responses from the individual microplanes, obtained according to the principle
of virtual work. This model, whose basic concept is similar to the slip theory of plasticity
(Taylor, 1938; Batdorf and Budianski, 1949), was first developed in a local form (Bazant
and Oh, 1985). It was also shown that this model can represent well not only the existing
test data on tensile fracture but also those on crack shear, including the effects of thé trans-
verse normal stress and shear-induced expansion across the crack (Bazant and GamBamva,
1984). Recently (Bazant and Ozbolt, 1989), the microplane model has been generalized to
a nonlocal form.

There are other types of fracture which need to be modeled for concrete structures. A
new theory will have to be developed for Brazilian tensile splitting fracture of very large
cylinders, which cannot be adequately analyzed with the existing tensile fracture models.
On the other hand, shear fracture seems, at least partially, amenable to analysis by the

 existing tensile cracking models. In those models, the shear fracture is described as a band

of inclined microcracks, governed by a softening stress-strain relation.
3.3 Stress-Displacement vs. Stress-Strain Softening Relations

There has been an incessant debate on the relative merits and deficiencies of the line
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crack and crack band representations of fracture. There are three viewpoints to mention:
3.3.1 Isolated Cracks: Moot Point Computationally

First, one must realize that the line crack model (i.e. the fictitious crack model of
Hillerborg) and the crack band model yield about the same results (with differences of about
1%} if the stress displacement relation in the first model and the stress-strain relation in the
second model are calibrated in such a way that

8 = weel (3.14)

i.e., the crack opening displacement is taken as the fracture strain, e/, accumulated over the
width w, of the crack band. This equivalence is already suggested by the fact that, in linear
elastic fracture mechanics, an interelement line crack and a single-element wide crack band
with a symmetry line that coincides with the line crack give essentially the same results in
the calculation of the energy release rate, with differences of only about 1%, provided the
element sizes near the fracture front do not exceed about 1/10 of the cross section dimension
(Bazant and Cedolin, 1979). In fact, the difference between these two methods of calculation
of the energy release rate for linear elastic fracture mechanics is not larger than the error of
approximating the continuum by finite elements in the first place.

Therefore, the question “line crack or a crack band?” is moot from the viewpoint of
approximating reality by computational modeling. The only point worthy of debate is com-
putational effectiveness and convenience. But even in that regard, the two models appear
to be equal.

Various numerical modeling aspects, however, deserve attention. Leibengood, Darwin
and Dodds (1986) showed that the results for stress- displacement and stress-strain relations
match closely if the cracking directions at the integration points within the finite elements
are forced to be parallel to each other (and to the actual crack). If the cracking direction
is not known a priori, as in the general case, it is difficult to achieve this parallelness. But
then, if cracks are allowed to form at different orientations at each integration point, the
response of the finite element model with smeared cracking is somewhat stiffer than that
with discrete interelement cracking, even if the element sides are parallel to the true crack.

3.3.2 Parallel Cracks: Third Parameter

As already mentioned, if the shape of the tensile softening curve is fixed, then the line
crack (fictitious crack) model is defined by two para- meters, Gy and f], while the crack
band model is defined by three parameters Gy, f! and w, . For the fictitious crack model,
too, a length parameter (called the “characteristic length”) has been defined; ¢, = EG ¢/ P
(which is similar to Eq. 3.7 as well as Irwin's Eq. 2.10). However, this parameter is a
derived parameter, not an independent one, while w, is an independent parameter. Why
this difference?

For isolated cracks, it turns out that the effect of w, on the results is almost negligible,
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provided that the softening part of the stress-strain diagram is adjusted so as to always yield
the same fracture energy G for any w,. However, the parametér w, does make a difference in
the case of densely spaced parallel cracks, since it prevents adjacent cracks to be closer than
the distance w, (otherwise the adjacent crack bands would overlap; which is inadmissible).
So the physical significance of w, is not really the width of the actual cracking zone at the
fracture front, but the minimum admissible spacing of parallel cracks. Is it necessary that
this spacing be a material fracture parameter?

For an answer, consider that elastic longitudinal fibers are bonded to a long, thin concrete
bar subjected to tension. The cross section of the fibers is so large that the composite
specimen exhibits no softening under tension, although the concrete part does. Then the
state of uniform strain is always stable. According to the line crack model, cracks can
form at arbitrarily close spacing in such a system, and depending on the spacing, the load-
elongation diagram P(u) may follow any of the diagrams shown as 0129, 0139, 0149, or 0159
in Fig. 3.7. Thus, there is an ambiguity, or inobjectivity of response. The problem can of
course be eliminated by enriching Hillerborg’s line crack model with a third independent
material parameter, the minimum crack spacing, s (independent of £). This is, of course,
equivalent to parameter w,.

3.3.3 Relation to Micromechanisms of Fracture

The normal microstrains across the fracture process zone may be distributed roughly as
shown in Fig. 3.8a. The line crack model simplifies this strain distribution taking it as a
constant plus the Dirac delta function, Fig. 3.8b. The crack band model simplifies it, too,
taking it as a constant plus another constant within the crack band (rectangular distribution),
Fig. 3.8c. The nonlocal continuum model gives a smooth bell- shaped distribution across the
band, as shown in Fig. 3.8d (BaZant and Pijaudier-Cabot, 1988a), and in the finite element
form as Fig. 3.8e.

Measurements of the locations of acoustic emissions during the fracture process (Labuz,
Shah, Dowding, 1985; Maji and Shah, 1988) indicate, despite their inevitable scattér, that
the emission sources are located over a relatively wide band in the frontal region of fracture
(Fig- 3.8f), as in the crack band model. On the other hand, various measurements of strains
on the surface, e.g., interferometry (Cedolin, Dei Poli and Iori, 1987), and laser holography
(Miller, Shah and Bjelkhagen, 1988), indicate the very high strains to OCCupy a Very narrow
zone at the front fracture, which might be better modeled by a line crack model. It may be
noted that the fracture strains might be more localized at the surface of a specimen than in
the interior, due to the wall effect and other effects.

As for the visible continuous fracture behind the fracture process zone, it must be noted
that it is frequently highly tortuous, meandering to each side of the symmetry line by a
distance of up to about the maximum aggregate size. Even if all microcracking were concen-
trated on a line, in view of the tortuosity of this line, the fracture is represented no better by
a straight line crack than by a crack band of width of one or two aggregate sizes (however,
for computational results this width really does not matter in most situations, as mentioned
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above)- . L :
Along a profile across the fracture process zone, microcracking is manifested by an in-

crease in the average magnitude of the transverse strains. This increase is probably gradual,
as shown in Fig. 3.8a, or in a finite element form in Fig. 3.8e. Obviously the width of
the fracture process zone obtained by measurements depends on the choice of the cut-off
value of the strain. This might explain the differences in interpretation of various types of
observations. Ll )

To sum up, there seems to be no compelling reasons for rejecting either the crack band
model, characterized by softening stress-strain rélations, or the line crack model, charac-
terized by softening stress-displacement relations. The choice is essentially a matter of
convenience of analysis. ’

3.4 Nonlinear Triaxial Constitutive Models for Strain-Softening

The stress-strain or stress-displacement relations for the fracture process zone which
have been described so far take into account only tensile cracking in one direction. However,
the fracture process zone may undergo multiple cracking.in many directions and may be
subjected to high compressive stresses parallel to the crack plane, as well as shear stresses.
To handle such situations, finite element analysis needs to be based on a general nonlinear
triaxial model. In the fracture process zone, the material undergoes degradation of its
mechanical properties, which is basically of two kinds:

(1) degradation of material stiffness due to damage such as cracking, which is described
by continuum damage mechanics (or the fracturing material theory of Dougill, 1976), and is
characterized by unloading according to the secant modulus; and

(2) degradation of the strength or yield limit, which is described by modern adaptations
of plasticity.

The real behavior is a combination of both. Such combined behavior has been described
for concrete, e.g., by the endochronic theory, plastic-fracturing theory or the damage theory
of Ortiz. For a review, see BaZant (1986). |

General nonlinear, triaxial constitutive models cannot be accommodated in the stress-
displacement relations for sharp line cracks, which are basically counterparts of uniaxial
stress-strain relations. The crack band model can be extended to accommodate such models,
but for a proper treatment, the nonlocal approach seems to be necessary.

A very general constitutive model, which can handle both the process zone of tensile
fracture, as well as compression and shear damage, and describes well the nonlinear triaxial
behavior in general, is the microplane model. That this model gives the correct response for
fractures is evidenced by the fact that it yields a correct transitional size effect; see Fig. 3.9
taken from BaZant and Ozbolt (1989).

When there is a larger compressive stress o, parallel to the crack, at least simple adjust-
ment of the softening stress-displacement curve of o, vs. . or stress-displacement curve of
0y vs. ¢, needs to be made. Biaxial failure envelope data indicate that the tensile strength
limit should be scaled down from f! approximately to the value f; given already in Eq. 3.9.



48

s “

acoustic
emmissions

Fig.3.8 Fracture Process Zone, and Strgs: Profiles Across It: (a) Ac-
tual, (b)-(c) Various Representations

-044 g ‘___]:

b -

~
o
N -05-
)
- .
g R
=  -0.6- <

Size Effect Law
———— FEM, Nonl. Microplane Modeli

—0.7 1 0 Test results

-0.8 ¥ T T T T
0.4 0.6 0.8 1.0 1.2 1.4

log(d/d)

Fig.3.9 Maximum Loads of Notched Beam Specimens Calculated by
Nonlocal Microplane Model, Compared to Size Effect Law and to Test
Data (BaZant and Ozbolt, 1989)

49

Whether the o,(d;) curve or o,(¢,) curve should be scaled down proportionally, or shifted
down, or subjected to some more complex tra.nsformatlon to reflect the effect of o, is not
known at present. When o, < 0 and Fig. 3.9 is observed then, of course, the area under
the o,(8:) curve does not represent the fracture energy Gy, but is less than Gy, i.e. Eq. 3.2

is invalid.
3.5 Random Particle Simulation.of Microstructure

The most realistic, yet computationally extremely. demanding, model for nonlinear frac-
ture behavior of concrete is provided by'the random particle simulation. Extensive investi-
ations of this type have been carried out by Wittmann et al., (1984); see also Roelfstra et
al., (1985), and Roelfstra (1987). Crack formation and propagation in computer generated
composite structures was studied numerically. These investigators used standard finite ele-
ment techniques, subdividing each aggregate piece and the mortar regions into many finite
elements, and also considering weaker aggregate-mortar interfaces. The calculations pro-
vided valuable insights but are extremely demanding on computer time and storage which
made it impossible to model very large structures. .

In the simplest version of random particle simulation, also called the interface element
model (Zubelewicz and Bazant, 1987; Bazant, Tabbara, Kazemi and Pijaudier-Cabot, 1989),
the aggregate pieces are considered as rigid discs or spheres. An important aspect is that their
configuration is generated randomly by the computer. A method to do this so as to satisfy
the prescribed mix ratios of aggregates of various sizes has been successfully formulated
(Bazant, Tabbara, Kazemi and Pijaudier-Cabot, 1989).

These models represent an adaptation of an earlier model of Cundall (1971), Serrano and
Rodriguez-Ortiz (1973), Cundall and Strack (1979), Kawai (1980), and Plesha and Aifantis
(1983) for granular materials such as rock, sand or gravel. In contrast to Cundall’s model,
the simple frictional tension-resisting connection between particles must be replaced by an
inelastic interaction with fracture. This has been done by assuming all the interparticle
deformations to be concentrated at a point at the middle of the interparticle contast layer
of the matrix (mortar). In the original version of this model, both the normal and shear
interactions (but not moments) were taken into account, the shear interaction being elastic,
and the normal interaction exhibiting a sudden loss of strength after achieving the prescribed
strength limit for the interparticle force. A simpler version, in which the shear interaction
between particles is neglected and the normal (axial) interaction is characterized by a force-
displacement curve with post-peak gradual softening in tension, has been developed by
Bazant, Tabbara, Kazemi and Pijaudier-Cabot (1989) and shown to be sufficient for most
purposes, except that it tends to give a fracture process zone that is narrower and shorter
than that obtained when interparticle shear stiffness is taken into account (and also than
that expected from size effect data from concrete fracture tests). This version of the model
is equivalent to a random truss with softening members and represents a generalization of
the model of Burt and Dougill (1977). The programming is quite similar to nonlinear finite
element programs.



50

The random particle model has been shown to exhibit the size effect on the maximum
load which agrees with fracture mechanics; see the results of Bazant, Tabbara, Kazemi and
Pijaudier-Cabot (1989) in Fig. 3.10a, obtained with the random particle system for the
fracture specimens in Fig. 3.10b. The random particle model seems to represent realistically
the pattern of cracking in front of a notch or continuous fracture; see the results of Zubelewicz
and Bazant (1987) in Fig. 3.10c, from which it appears that the width of the band of
microcracks ahead of the continuous fracture tends to be about three maximum aggregate
sizes.

So far the random particle simulations have been done only in two dimensions. Prop-
erly, of course, the simulation should be three-dimensional, but this would at present be
preposterously demanding for computer time.
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Chapter 4. SPECIAL NONLINEAR FRACTURE
MODELS BASED ON ADAPTATIONS OF LEFM

Special nonlinear fracture models do not attempt to model the behavior of the fracture
process zone through stress-displacementvbr stress-strain relations. Instead, they introduce
some adaptations of linear elastic fracture mechanics (LEFM) which approximately reflect
the nonlinearity of fracture behavior. .

4.1 Effective Crack Models

The effect of a large-size fracture process zone at the tip of the notch or continuous
crack is to reduce the stresses near the crack tip and push-the peak stress farther ahead.
Consequently, the specimen behaves roughly as an elastic specimen with a longer, effective
crack length, a.. This length can be defined in various ways, giving somewhat different
results. In Dugdale-Barenblatt-type models for ductile metals, the effective crack length is
calculated usually from the condition that the sum of the stress intensity factors at the tip
of the effective crack due to the far field stresses and to the yield stresses in the fracture
process zone be zero (Dugdale, 1960; Barenblatt, 1959).

But this definition seems neither quite appropriate nor too convenient for brittle mate-
rials. For these materials, an elastically equivalent (Griffith-type) effective crack has been
defined as the crack for which the elastically calculated compliance of the specimen is the
same as the measured unloading compliance C,, for unloading of the specimen from the peak-
load point (critical state). Effective crack models for concrete using this definition have been
proposed by Nallathambi and Karihaloo (1986a) and Swartz and Refai (1989). The effactive
crack length, a., depends on the microstructure, as well as the geometry of the specimen.
When K. is calculated using the effective crack, the results seem to be approximately size
independent. Thus it appears that a. and K. might be used as two fracture parameters.
To this end, empirical relations for relating the effective crack length to the notch length in
a fracture specimen have been developed on the basis of experimental data by Nallathambi
and Karihaloo (1986a).

The need for empirical equations relating the effective crack length to the notch length
reduces the scope of applicability of this method. In addition, one needs empirical equations
for each specimen geometry. These limitations are overcome in the two-parameter model
proposed by Jenq and Shah. This model is described next.

4.2 Two-Parameter Model of Jenq and Shah

This model (Jenq and Shah, 1985a,1985b; Shah, 1988), which appears to give a rather
realistic prediction of concrete fracture behavior, involves two fracture parameters: (1) the
i ) ) critical stress intensity factor K. at the tip of an effective crack of length a. at P,, and the
Fig. 3.10 continuation critical value 6crop of the crack tip opening displacement, which is calculated at the tip of
the pre-existing crack or notch, whose length is denoted as aq, and at P,.. The effective crack
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3th, as mentioned before, can be calculated from the compliance C, recorded at unloading
an the specimen is loaded to the critical state (Fig. 4.1). Jenq and Shah experimentally
erved that when a. was calculated from the compliance measurements for notched beam
cimens, the calculated values of écrop were more or less independent of the size as well as
metry of the specimens. This indicated that écrop and K, may be fundamental materia]
ameters. Using these two parameters, Jenq and Shah also predicted the uniaxial tensile
mngth, the split cylinder strength, the size effect on conventional K., and the size effec
the modulus of rupture.

The effective crack length, a., calculated on the basis of these two fracture parameters g
nd to depend on the size of the specimen, on the compressive strength of concrete, and
the strain rate. The value of a. decreases with increasing strength and with increasing
iin rate. For the case of an elastic perfectly brittle material, §crop approaches zero and
approaches ag.

The value of K}, from this model has been shown to be essentially independent of the
metry of the specimens. Results obtained using compact tension tests, wedge splitting
e tests and large, tapered, double cantilever beams conducted under the auspices of
-EM Committee FMT 89 showed that the two fracture parameters (K. and bcrop)
tht be considered as geometry-independent material parameters (Jenq and Shah, 1988a),
10ugh a later study (Jenq and Shah, 1988b) indicated a significant influence of geometry.
hould be noted that this model can be applied to specimens and structures with or without
ches. The model has been extended to mixed-mode loading and to impact loading (John
| Shah, 1985, 1986, 1989).

3 Geometry-Dependent R-Curve Determined from Size Effect
w

A quasi-elastic analysis of nonlinear fracture can be accomplished by considering the
1gy required for crack growth, R, to be variable rather than constant. The curve of R
the crack extension ¢ is called the R-curve (or resistance curve). The crack propagation
dition is G' = R(c) rather than G = Gy, and if the value of R(c) is known, the response
:alculated according to linear elastic fracture mechanics, replacing G; with R(c). Alter-
ively, but equivalently, one can define the R-curve in terms of the critical stress intensity
tor K. with Kir = (E'G;)Y/?, and use the crack propagation condition K; = Kr instead
Kr = Ky.. The physical reason that the energy release rate, R, required for crack growth
reases with ¢ is that it is determined by the size of the fracture process zone, which grows.
arger process zone dissipates more energy. How the zone grows, of course, depends also
interaction with the boundaries.

The concept of R-curves was suggested by Irwin {(1958) and formulated for metals in detail
Krafft et al. (1961). For certain types of concrete specimens, R-curves were measured
Wecharatana and Shah (1980, 1982) and Jenq and Shah (1985a). For a long time it was
ught that the R-curve measured experimentally on a specimen of one geometry can be
d universally, as a material property applicable approximately to other geometries. But
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this has not turned out to be the case. Today we know (e.g. Wecharatana and Shah, 1983a;
Bazant, Kim and Pfeiffer, 1986) that for concrete, R-curves depend strongly on the shape of
the structure or specimen. Therefore,to enable the use of R-curves which certainly represent
a very simple approach, one needs some method to obtain the R-curve for a given specimen
geometry from some basic fracture characteristics.

As proposed by Bazant and Cedolin (1984), and BaZant, Kim and Pfeiffer (1986), the R-
curve for any given geometry may be determined on the basis of the size effect law (Sec. 5.1).
This law (Eq. 1.4) appears adequate for that purpose since (unlike the R-curve) it is appli-
cable, in the same form, to most geometries within a size range up to about 1:20, which
suffices for most applications. The R-curve is then obtained as the envelope of the fracture
equilibrium curves for geometrically similar specimens of various sizes. An easy calculation
of the R-curve is possible once the parameters of the size effect law have been determined.
In particular, the R-curve, giving the fracture energy required per unit crack growth, can be
obtained (according to BaZant and Kazemi, 1988) as follows (for derivation, see Appendix

I):

_ o) . N
R(c)_Gfg(ag)c_f (a_‘—i,ao—d, =a - ag) (4.1)
in whic £=i'£fl :M_ ag
hich & = glao) (g’(a) a+ ) (4.2)

where Gy = fracture energy (obtained from the size effect law), ¢ = a — a, = crack extension
from the notch or initial crack tip, g(a) = nondimensional energy release rate defined by the
total energy release rate G in the form G = g(@)P?/(Ebd) (using G = K}/F’, g(a) can be
found from the K - values which are available in handbooks such as Tada et al., 1985, and
Murakami, 1987, for the basic specimen geometries, and can always be obtained by elastic
analysis); ap = aofd, and c; = dog{ap)/g’(cw) where dp is a constant from the size effect
law; ¢y is the effective length of the fracture process zone in an infinitely large specimen (see
Eq. 5.5), defined as the distance from the notch tip to the tip of the equivalent elastic crack.
The actual process zone length (defined as the distance from the notch tip to the point of
maximum tensile stress) is about 2¢y, as indicated by comparisons with various models of
the process zone (e.g., Horii, 1988; Horii, et al., 1987, 1988; Planas and Elices, 1988a; BaZant
and Kazemi, 1988).

Eqgs. 4.1 and 4.2 define the R-curve parametrically. Knowing G and dp, one may choose
a series of a-values, and for each of them calculate first ¢ from Eq. 4.2 and then R(c) from
Eq. 4.1. The R-curves which are obtained from Egs. 4.1-4.2 for very different specimen
geometries are very different from each other, as illustrated in Fig. 4.2a.

Recently it was found (BaZant, Gettu and Kazemi, 1989) that if the post-peak softening
load-deflection curve is to be correctly predicted, the increase of R must be arrested at the
peak-load point (point p in Fig. 4.2), as indicated by the horizontal line 13 in Fig. 4.2.
The reason the critical energy release rate R cannot exceed that for the peak load state is
that: (1) the increase of R is due to an increase of the fracture process zone size (a large
zone dissipates more energy), and (2) in the post-peak response, the fracture process zone
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detaches itself from the tip of the notch or initial crack and travels forward without growing
in size. This behavior has previously been experimentally identified, e.g., from measurements
on aluminum (Bazant, Lee and Pfeiffer, 1987) and was verified especially by tests of rock
(Bazant, Gettu and Kazemi, 1989) and high- strength concrete (Gettu, BaZant and Karr,
198g‘)he study of the R-curves indicates that the concept of elastically equivalent effective
crack length cannot give very good results if 2 constant fracture energy value is associated
with the effective crack. Calculation according to Egs. 4.1-4.2 implies that not only must
the crack length, a = aq + ¢, differ from ao, but also the energy release rate required for
crack growth must be considered to increase with the crack length if a so]ution' tl.xa.t is
approximately equivalent to nonlinear fracture mechanics should be obtained. This is not
done in some recently proposed models (e.g. Karihaloo’s model, Sec. 4.1 and 6.6).
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Chapter 5. SIZE EFFECT AND BRITTLENESS OF
STRUCTURES

The size effect is the most important consequence of fracture mechanics theory. Therefore,
it is logical to determine fracture properties from it. Knowledge of the size effect is needed
for the design of structures, which generally involves extrapolation from laboratory-size to
real-size structures. We have already explained the size effect in Chapter 1, and now we
review its formulation and consequences in further detail.

5.1 Size Effect Law for Maximum Nominal Stress

We consider geometrically similar structures or specimens with geometrically similar
notches or cracks. We will now illustrate the analysis for similarity in two dimensions,
although the results are the same for similarity in three-dimensions (Bazant, 1987a). The
nominal stress at failure (maximum load) may be defined as

P,
bd
in which P, = ultimate load, b = thickness of the structure, d = certain chosen characteristic
dimension of the structure, and ¢, = coefficient introduced for convenience. (For example, in
the case of bending of a simply supported beam of span £ and depth, d, with concentrated load
at midspan, we may introduce oy as the maximum bending stress, i.e. oy = 3P.£/2bd? =
¢, P./bd, where ¢, = 1.5¢/d = constant; but we can equally well take the characteristic
dimension as d = £ = span, and denoting h = beam depth we then have oy = ¢, P,/bf
where ¢, = 3¢2/2h? = constant, provided the beams are similar).

Noting that 0% /2E represents the nominal strain energy density, the strain energy is
U = V(o}/2E)p(a), where V = cybd?> = volume of the structure (co = constant) and
a = a/d. The energy release rate is given by bG = —0U/8a = —(0U/8a)/d. Now with the
notation —¢'(a)c2co/2 = g(a), the energy release rate of the structure is found to have the
form

ON = €n (5.1)

o Pala) _ ohd
T E¥d  QE
in which g(a) is a known function of the relative crack length a = a/d. Because G =
K}/E, function g(a) may be obtained from the expressions for the stress intensity factors,
which are always of the form K; = Pk(a)/+/d where k(a) = non-dimensional function. For
typical specimen geometries, function k(a) can be determined from the K values available
in handbooks and textbooks, and for other geometries it can be obtained by linear elastic
analysis. )
Nonlinear fracture with a softening cohesive (fracture process) zone is approximately
equivalent to linear elastic fracture of an increased crack length

9(@) (5.2)

a=gy+c or a=ay+(c/d) (5.3)
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where a0 = the actual length of the continuous crack or notch, and ¢ = distance of the tip
of the equivalent elastic crack from the tip of the initial crack or notch (Fig. 4.2).

Assuming that ¢’(a) > 0, which applies to the majority of specimen geometries, the
fracture process zone first grows in size while remaining attached to the tip of notch or
jnitial crack. Since the value of G must depend on the length of the fracture process zone, it
must depend on c. The fracture energy Gy may be considered to be the value of G reached
for crack lengths ¢ > ¢; where ¢; is a material constant. The value of ¢ at maximum load
is equal to ¢; only for an infinitely large specimen (d — o), but is smaller than c; in finite
size specimens. Based on Taylor series expansion, we have

gas) = g(ao) + ¢'(c0)(cs/d) (54)

where a5 = ¢s/d and g'(ap) = dg(ag)/da. It is reasonable to assume that the G-value at
the peak-load is not constant but is proportional to the g(a)- value at the peak load, i.e.
G = Gyg(a)/g(ay). Substituting this and Eq. 5.4 into 5.2, setting P, = (onbd/c,)?, and
solving for on, one obtains

owee [ EG )
N %<9’(ﬂo)cx+g(ao)d) (5.5)

This represents the size effect law expressed in terms of material parameters (Bazant and
Kazemi, 1988). Eq. 5.5 is equivalent to the size effect law oy = Bf/(1 4+ 5)"12,8 = d/dy
(Eq. 1.4) if one makes the notations:

e [ EGy )”2 g'{c0)
= ——4 s = ¢y—= R
fi (g’(ao)0f & ) (&)
It may be noted that a more general size effect law has been derived;

on = Bfi(L+ 87V,

but r depends on geometry, and for all geometries combined the value r ~ 1 was found to
be approximately optimum (BaZant and Pfeiffer, 1987).
It is further useful to rewrite the size effect law in the form

(G 1/2
N = G +D (5.7)

in which
Py 9(a0)
n = ’ . D=
" ¢'(e) bd g'(ao)d

Here 7y ar.xd D may be interpreted as the shape-independent nominal stress at failure and
the shape-independent characteristic dimension of the structure (Bazant and Kazemi, 1988;
Bazant, Gettu and Kazemi, 1989).

(5.8)
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In the case of three-dimensional similarity, we have U = V(0% /2E)¢(a), V = cod® ang
¢1dG = —8U/8a = —(8U/da)/d in which ¢y and ¢; are some constants. Denoting
—1p'(a)co/2¢16% = g(a) we obtain again Eq. 5.2, and all the remaining derivation is the same,
Therefore, the results are again the same as Eq. 5.5 - 5.8.

The size effect law (Eq. 1.4, 5.5, 5.7) can also be derived very generally by means of d;.
mensional analysis and sumhtude arguments (see Bazant, 1984a, 1985b, for two dlmensxons
and BaZant, 1987a, for three dimensions) if the following hypothesis is adopted:

The total energy release from the structure of any size d into the fracture process zope
depends on both: (1) the length, ag, of the continuous crack or notch, and (2) a length
constant of the material £;. Here ¢, may represent the material constant combination
{o = E'G/f* (Irwin’s characteristic size of nonlinear near-tip zone), or the effective length
¢y of the fracture process zone in an infinitely large specimen, or the effective width w, of
this zone. If only part (1) of this hypothesis is adopted, one obtains the size effect of linear
elastic fracture mechanics (on « d=/2), and if only part (2) is adopted, one obtains that of
plastic limit analysis (i.e. no size effect).

From this hypothesis it appears that the size effect law is restncted neither to the crack
band model nor to the line crack model but is valid for any nonlinear fracture model with
a large process zone. Since the length or width of the fracture process zone is related to
the characteristic length £ of a nonlocal continuum, the size effect law also applies for the
nonlocal continuum approach to fracture. This has been demonstrated by finite elements
for a simple nonlocal smeared cracking model in BaZant and Lin (1988b) (see Fig. 3.6) and
for the nonlocal microplane model (which also describes well nonlinear triaxial behavior in
compressive states) by BaZant and Ozbolt (1989) (Fig. 3.9). Particle simulation of ran-
dom microstructure (BazZant, Tabbara, Kazemi and Pijaudier-Cabot, 1989) also shows good
agreement with the size effect law.

A basic criterion for acceptability of nonlinear finite element codes for concrete structures
is that they must describe the transitional size effect (Eq. 1.4).

An extensive comparison of the size effect law with fracture test data for different spec-
imen geometries for concrete as well as mortar is found in Bazant and Pfeiffer ((1987); see
Fig. 5.1 (where Ao = do/d,). These tests have shown that very different types of specimens
(bending, centric tension, eccentric compression) yield about the same fracture energy (even
though the other parameter values in Fig. 5.1 differ considerably).

5.2 Brittleness Number

Eq. 5.6 expresses the size effect law in terms of material fracture parameters, G; and ¢;
(conversely, their definition and measurement may be based on the size effect law, Eq. 1.4).
This fact was exploited by Bazant (1987a) to define the so-called brittleness number, 8, which
approximately describes the brittleness of the structural response regardless of the structure
shape. Based on Eq. 5.7, the brittleness number is expressed as (Bazant and Kazemi, 1988):
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while on the basis of the size eflect 1aw expression in E it i :
q. 1.4 it is eq
(Bazant, 1987a; Bazant and Pfeiffer, 1987): uivalently expressed ag

ﬂ = % = B2g(ao)d

Eq. 5‘.9 makes it.possible to calculate /3 solely on the basis of a linear elastic fracture mechanj,
solution, for Vfrhxch the shape and the length of the continuous crack at ultimate load (or tl;:s
notch length in a fracture specimen) must be known. ‘

‘f‘ﬂ
G

—_ 2 g2
G, = ABI (5.10)

Eq. 5.10 yields the brittleness number which exactly agrees with the transition of the size |

effect law to the plastic analysis solution when the structure size is very smal i
can be detel:mined as B = ¢, P, /bdf] where P, = ultimate load stress iccordli.n;J ‘:213‘3“;:;.3
lx}mt analysis formula for the structural failure, such as employed in the current cotll)es f lC
diagonal shear failure, punching shear failure, torsional failure, etc. Eq. 5.10 is more accu -
for small B, while Eq. 5.9 is more accurate for large f. rete
As a third method for determining b, if the maximum loads for a given structural geo
etr}.' are knf)wn for significantly different sizes, e.g., on the basis of laboratory tests or on txll;,
basis of finite element analysis based on some method of nonlinear fracture mechanics, then
;?}%ir:ﬁs;o: 25 ;Ohle test results by means of the size effect law yields the parameter d , from
A.ltex:na:tively, it also suffices to obtain the failure load P, for a very small size (8 — 0) b
plastfc limit analysis, which yields B = ¢, P, /bdf!, and then determine o from the LEFLZ
solution, which yields dy/d = (on /B f!)2.

.The value 8 =1 (or d = dp) corresponds in the size effect plot of log oy vs. logd to the
point wl}ere the horizontal asymptote for the strength criterion and the inclined asymptote
for the I'mefxr falastic fracture mechanics intersect; Fig. 1.4. For 8 < 1, the behavior is closer
to plastic limit analysis, and for § > 1 it is closer to linear elastic fracture mechanics. If
B < 1or 8> 1, nonlinear fracture mechanics is not necessary. The method of analysis r;la
be chosen as follows (Bazant, 1987; Bazant and Pfeiffer, 1987): ¢

B <0.1 plastic limit analysis
0.1 <4 <10 nonlinear fracture mechanics
B > 10 linear elastic fracture mechanics (5.11)

For B < 0.1, the error of the plastic limit analysis is less than 4.7% of on , and for
8> .10 the error of linear elastic fracture mechanics is also less than 4.7% compar:ad to the
nonlinear fracture mechanics solution. If an error under 2% is desired tilen the nonlinear
range must be expanded to 1/25 < 8 < 25. ,

(l)th'er de.ﬁnitions of the brittleness number of a structure have been proposed before
Beginning with Irwin (1958), researchers in metals knew that structural brittleness is basi-'
cally characte.rized by the ratio of the structure size to Irwin’s size of the nonlinear zone
Eq. 2.10. Thls definition was co-opted for concrete structures by Hillerborg (1985b) (cf’
also Elfgren, 1989) who proposed to characterize the structural brittleness by the ratio d/Zo
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dhere lo = EG;/f? (he called £y the “characteristic length”; but this conflicts with previ-
. terminology in nonlocal continuum theory). Therefore we will call £, the characteristic
- ocess zone size. Carpinteri (1982) proposed the brittleness number s = Gy /fid. Similar
‘definitions were carlier proposed for ceramics by Gogotsi et al. (1978) and Homeny et al.
'(’1980)_ The brittleness numbers of Hillerborg, Carpinteri, Gogotsi and Homeny, however,
ave 0Ot independent of the structure geometry and thus cannot be used as universal, abso-
Jute characteristics (e-g-, B = 3 could then mean a very brittle behavior for one structure
sometry and a very ductile behavior for anather geometry).
Although Egs. 5.9 and 5.10 define the brittleness number in relation to the size effect
o the ultimate load, the brittleness number also determines the nature of the post-peak
sesponse, particularly the steepness of the post-peak softening (load decrease at increasing
displacement). That was already illustrated by the series model in Fig. 1.13.
In view of the universality of the brittleness number proposed by BaZant, it appears that
a simple adjustment of the current limit-analysis- based code formulas, taking into account
sonlinear fracture mechanics, can be made by replacing the nominal stress at ultimate load,
vy, as given without consideration of size effect, by the expression

v, .
= L] > pmin 5.12
ov=ore (2w ) (5.12)
However, the method to calculate do, on which g depends, still needs to be researched.
Eq. 5.12 indicates that there might be a Jower limit v™" on the nominal strength, due to a
possible transition to some non-brittle frictional failure mechanism. An example of such a
limit is seen in Brazilian split- cylinder tests (see e.g. BaZant, 1987a).

5.3 Other Size Effects and Limitations

5.3.1 Effect‘ of Residual Ductile or Frictional Limit

In Brazilian tests of split cylinder strength, Hasegawa et al.(1985) observed that'the
nominal stress at failure (i.e., the split cylinder strength) decreased with increasing diameter
of the cylinder, however, beyond a certain large size of cylinder, no further decrease of the
strength was observed (this behavior has now been confirmed by tests of Bazant, Kazemi,
et al (1990)). This suggests that for a certain sufficiently large size, there is a transition
to some non-brittle failure mechanism at the maximum load. The reason might be that for
large sizes the maximum load is decided by friction on a small wedge-shaped region under
the load application points. For small specimen diameters, the load to cause the splitting
crack is much higher than the load to cause frictional slip of the wedge-shaped region, and
therefore the brittle mechanism of cracking decides. However, if the size is very large about
100 d,, the nominal stress at which the splitting fracture occurs becomes very small, smaller
than the nominal stress ¥ which causes the frictional slip of the wedge; see Fig. 5.2. Thus,
at least for this type of failure, it seems appropriate to put a lower limit on the size effect
law, o}, beyond which oy cannot be decreased. This might also be true for some other



64

TESTS BY BAZANT & KAZEMI!, 1989

Ty=2P/mbd  (ksi)

o

2 4 6 8
1 f %0
d (in)

Fig.5.3 Deviation from the Size Effect Law (Eq. 4.1) Observed in Brazil-
jan Compression Splitting Tests

65

failure mechanisms, especially those involving splitting cracks in comp{&ssion.
5.3.2 Statistical Size Effect Due to Random Strength

Statistical heterogeneity of the material no doubt plays an important role in the mi-
cromechanisms determining the material strength. It describes the effect of the size distri-
bution of the flaws in the microstructure on the material strength. However, for reasons
already explained in Chapter 1, the randomness of strength due to the heterogeneity of the
material, as described by Weibull-type probabilistic models, does not seem to have a major
influence on the size effect observed in brittle failures of most concrete structures, except
those where the maximum stress is uniform over'a large part of the structure (e.g., a long
uniformly stressed specimen in tension), or where the structure fails at first macrocrack
initiation.

5.3.3 Diffusion-Type Size Effects

It must be kept in mind that significant structural size effects can be obtained due to
the diffusion process of drying of concrete in structures, the conduction of heat produced
by hydration, and the non-uniformities of creep produced by djfferences in temperature and
moisture content throughout the structure.

5.3.4 Wall Effect as a Source of Size Effect

Still another type of size effect is caused by the fact that a boundary layer near the
surface of concrete inevitably has a different composition and strength than the interior
of concrete structure. This layer, whose thickness is about one aggregate size, contains a
lower percentage of large aggregates and a higher percentage of mortar. This phenomenon
is known as “wall effect”. In a small structure, the effect of this layer is larger than in a
large structure because the boundary layer thickness is independent of structure sizé\ For
very thick cross sections, this effect becomes negligible. .

5.3.5 Size Effect Due to 3D Singularity at the Ends of the Crack-
Edge

According to three dimensional linear elastic solutions, the stress intensity factor of a
crack in a plate with a straight orthogonal front edge is not constant along the edge (i.e.
across the thickness of the plate) but drops to zero at the intersections with the surfaces of
the plate (BaZant and Estenssoro, 1979) (except if the Poisson’s ratio were zero). The con-
sequence is that the front edge of a propagating crack must be curved, such that the surface
end points of the crack edge must be trailing behind the interior of a propagating crack.
This engenders an effect of plate thickness on the average value of the stress intensity factor
over the entire plate thickness. This size effect might not be large but can be completely
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eliminated if the thicknesses of specimens of all sizes are the same.

5.3.6 Effect of Aggregate Size

The fracture parameters as well as the size effect law are valid only for structures made
for one and the same concrete, which implies the same aggregate size. If the aggregate size is
changed, the fracture parameters and the size effect law parameters change. As proposed by
Bagant, the size effect law needs to be adjusted as follows (see also Bazant and Kim, 1984):

Bf
,1—‘7-}_ k)

in which f? is the direct tensile strength for a chosen reference concrete, f{ is the direct
tensile strength for maximum aggregate size d,, and ¢y = empirical constant. This formula
is analogous to the Petch formula for the effect of grain size on the yield strength of poly-
crystalline metals, which is derived by the dislocation theory. Eq. 5.13 has been shown to
agree reasonably well with the fracture test data of Chana (1981), Taylor (1972) and Iguro
et al. (1985), and coefficient co has been calibrated.

Fig. 5.2 (Bazant, 1986) compares the size effect plots according to Eq. 5.13 for specimens
with different maximum aggregate sizes d,. The comparison is made under the assumption
that dp = nd, where n = constant, which is only approximate (and might be invalid if very
different aggregate types, e.g. Tound and very elongated aggregates, or crushed and river
aggregates are used. According to Eq. 5.13, the size effect curves in the plot of log o vs logd
have the same shape for any d, i.e., one transforms to another by translation. An increase
of d, not only shifts the size effect curve vertically downward (due to the term co/d; ) but
also to the right (because do = nd, is contained in the brittleness number B).

Consequently, the size effect curves for different d, may intersect, as shown in Fig. 5.2
(this must happen unless the material constant co is large enough). Thus,for a sufficiently
small specimen size, a higher nominal strength is obtained with smaller aggregate sizes d,,
while for a sufficiently large specimen size, a higher nominal strength is obtained with larger
aggregate sizes. For intermediate structure sizes, the aggregate size makes little difference.

Since the intersection point of the two curves in Fig. 5.2 is not known very accurately,
there may be a large range of structure sizes in which the effect of the maximum aggregate
size is uncertain. For small beams and slabs, this fracture analysis would suggest using 2
small aggregate. Concrete dams are so large that the larger the aggregate the better, as fa:
as the dam strength is concerned. However, recent fracture tests of dam concretes of Saoums
et al. (1989) indicate a surprisinglysmall effect of aggregate size as compared to the effecl
of aggregate shape.

Aggregate size and gradation effects have also been studied for polymer concretes (Vipu
lanandan and Dharmarajan, 1987, 1988, 1989a,b,c,; Dharmarajan and Vipulanandan, 1988)
For example, they found that a polymer concrete with well graded sand has 20% higher K1,

f{=ff’(1+ ) ﬂ=% (5.13)

oN =
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pan that with a uniform sand.
5.3.7 Effect of Matrix Strength and High Strength Concretes

The recent spectacular advances in the strength of concrete have been achieved mainly
by‘_inaeasing th.e strength of the matrix and the aggregate- matrix bond. In high strength
concretes, the differences between the strength and elastic modulus of the aggregate and the
matrix (mortar) are much smaller than they are for normal strength concrete. Consequently,
high strength concrete behaves as a more homogeneous. material, and the result is that the
fracture process zone becomes smaller (John and Shah, 1989b; Gettu, Bazant and Karr,
1989). In view of the discussion of the size effect (especially the fact that coefficient do
m the size effect law is related to the size of the fracture process zone), it is clear that,
for the same structural size, the behavior of high strength concrete is closer to linear elastic
fracture mechanics, i.e., more brittle, than the behavior of the same structure made of normal
concrete. Therefore, fracture mechanics analysis and size effects are much more important
for high strength concretes than for normal strength concretes (e.g., Shah, 1988).

5.3.8 Suppression of Size Effect by Yield of Reinforcement

~ Aside from providing an additional ductile mechanism which carries part of the load,
the effect of reinforcement is to spread the fracture process zone. Therefore, reinforced
concrete is generally less susceptible to fracture effects and the accompanying size effects
than unreinforced concrete. Further studies are needed in this regard.

It must be kept in mind though, that despite reinforcement, many failures of concrete
structures are brittle. According to the current philosophy, the ultimate load is a sum of
that due to yield mechanisms (e.g., the yielding of stirrups in diagonal shear) and that due
to concrete alone, without reinforcing bars. . This might often be a conservative approach,
which in fact implies that the concrete contribution to the ultimate load should be analyzed
according to fracture mechanics. It is likely, however, that the presence of steel and. its
yielding alters the fracture behavior of concrete, increasing the contribution to failure load
due to concrete alone (BaZant and Sun, 1987). These problems need to be studied further.
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Chapter 6. EXPERIMENTAL OR ANALYTICAL DE.
TERMINATION OF MATERIAL FRACTURE PA-
RAMETERS

After a slow start, made as early as 1961 (Kaplan, 1961}, fracture testing of concrete hag
developed tremendously during the 1980’s. A number of experimental testing techniques
and specimen types have been tried, and the developments crystalized into some effective
methods.

6.1 Notched Beam Tests
6.1.1 Notched Beam Tests Using LEFM

Beam tests have been most popular; probably because of similarities with the standard
modulus of rupture test and because the first LEFM test standard for metals used this
(ASTM, 1983). In addition, testing procedures are simpler than for other geometries and
alignment errors are minimal. A typical beam geometry and three-point loading are pre-
sented if Fig. 6.1a. The span to depth ratio frequently is 4:1 which conforms with the
requirements of the ASTM standard E399 (1983). This is because formulas for opening
mode stress-intensity factors for beams are given for S/d = 4 or 8 - Tada et al., (1984) and
Murakami (1987) are typical sources - although formulas can also be obtained for other S/d
ratios (e.g., Go, Swartz and Hu, 1986).

The test usually consists of the following steps.

1. Notch the beam to depth aq at midspan. This could be done by a sawcut or by an
insert cast into the beam and later removed.

2. Using a constant rate, about 1 to 10 min. to failure, increase the load, deflection or
crack opening until failure. Record the load- deflection (6zpp) or load-crack mouth
opening displacement (§cmop) response continuously.

3. The peak load P, or the load Py at the intersection with a secant of slope 95% of
initial slope, see Fig. 6.1b, is then used to calculate the fracture toughness from the
relationship (ASTM, 1983; Tada et al., 1985; Go, Swartz and Hu, 1986; Murakami,
1987)

K. = F(8,d,b, a0, P.orPg) (6.1)

The value of K. so determined is presumed to be the critical, opening mode stress intensity
factor associated with unstable crack growth and is a material property.

T K. is, in fact, a material property obtainable from the unmodified use of LEFM, the
following should be true: (1) K;. should be invariant with respect to beam size and notck
depth or crack depth. (2) Any zone of “plasticity” or “micro-cracking,” i.e., the fracture
process zone, should be very small compared to the notch depth. ASTM E399 (1983) give:
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a formula to determine if this requirement is satisfied. This has been adapted to concrete
(Sec. 6.8). (3) The critical energy release rate is related to K. by

_ Kk
~E

In which the (slight) influence of Poisson’s ratio is neglected and E is the modulus of elasticity.

The early researchers found that Ky, or Gy., was constant with respect to neither beam
size (Walsh, 1972, 1976) nor notch depth (Swartz, Hu, Fartash and Huang, 1982) for concrete
beams. One possible explanation for this was provided by Shah and McGarry (1971) who
noted that cracks are arrested by the aggregate particles. Additional energy is required to
propagate the cracks through and/or around these particles. Another possible reason for
the variation in K7, measured by LEFM was suggested by Swartz and co-workers (Swartz,
Hu, Fartash and Huang, 1982; Swartz, Hu and Jones, 1978; Swartz and Go, 1984). They
noted that the data evaluations in the early tests (Naus and Lott, 1969; Walsh, 1972, 1976)
were referenced to the original notch depth, ao. This violates one of the requirements of the
ASTM method for metals, namely that a true crack - not a notch ~ is to be used. Of course,
measuring the actual crack length in concrete is quite difficult and, in fact, a precise result
is impossible, since the crack front is strongly non-uniform through the specimen thickness.

Glc (62)

6.1.2 Compliance Calibration Method

In an attempt to estimate the crack length in plain concrete beams subjected to three-
point bending, an indirect method based on the compliance of notched beams was proposed
by Swartz, Hu and Jones (1978). This test procedure is as follows:

1. Notch a beamn at midspan.

2. Mount a displacement gage to measure the crack-mouth-opening displacement écpop
(see Fig. 6.1a) and cycle the load on the beam three times while plotting load P versus
Scmop. The maximum load is selected to be less than 1/3 the expected failure load
for that notch depth.

3. Measure the inverse slope of the P versus §cpop plot. This is the compliance C for the
notch depth. (This is, of course, only an apparent indirect measure of compliance. The
true compliance would be obtained by measuring the vertical load-point displacement
§.pD, or by loading the specimen at the crack mouth.)

4. Repeat steps a-c for different notch depths using the same beam.

5. Plot C versus ap/d. A typical plot is shown in Fig. 6.2.

Subsequently, the experimentally determined compliance plot is used to estimate the
initia} crack length of precracked beams loaded to failure (Swartz, Hu and Jones, 1978).
The use of precracked beams was felt to be necessary in order to obtain valid fracture

Compliance, C in./lb. x 1 0%

€0

»
o

[
o
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Fig.6.2 Compliance Calibration Curve for Notched Beam
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data because the phenomenon of-crack closing stresses makes it impossible to model a
real crack with a notch.

The procedure to precrack a (different) beam for a subsequent load test was as follows:
6. Cut a small, starter notch at midspan. This was typically ao/d < 0.10.

7. Load the beam to a load beyond P, to grow a crack from the notch until the P —écamop
unloading or re-loading slope matches that associated with the desired crack length.

After the beam is precracked, then

8. Load the beam to failure and measure P, or Py. Calculate K. from

Ki. = F(S,d,b,a;, P,,orPy) (6.3)

Notice that the only difference between this and the earlier LEFM procedure is the use
of a; instead of ag.

Using the relation of compliance to crack length calculated from LEFM, one can deter-
mine the initial crack length a; from the slope of the P — écpop curve (Fig. 6.3) after the
initial crack closure stresses are overcome.

This method of testing requires the use of a closed-loop electro- hydrodynamic system in
which the controlled, feedback variable is the output of the transducer used to measure the
Scmop. This has traditionally been called “strain control.” This term may approximately
apply if the controlled variable is the écpop or some other beam displacement, but not the
stroke displacement of the testing system.

A test was made to show a direct comparison between notched beams and precracked
beams following the procedures described above and using Eq. 6.1 for the notched beams and
Eq. 6.3 for the precracked beams. It was found that the computed Kj. for the precracked
beams was always higher than for the notched beams (Swartz, Hu, Fartash and Huang,
1982). However, this approach was criticized because notched — not precracked - beams
were used to construct the compliance calibration curves (see steps a-e). A further criticism
was that, due to slow crack growth, the initial crack length a; might not be appropriate for
determining K. Therefore this method was modified.

6.1.3 Modified Compliance Calibration Method

The modification was to use precracked beams which are impregnated by a dye to reveal
the shape of the crack front, and then use the extended crack length a. to determine Kj..
The method was first proposed by Go (Swartz and Go, 1984; Go and Swartz, 1986) and
subsequently refined by Refai (Swartz and Refai, 1989). Precracked beams are used both
for the creation of a compliance calibration curve and for failure tests. The method has the
disadvantage that it is quite time-consuming and a number of beams are required to obtain
a calibration curve instead of just one beam. The procedure for each beam is as follows:

Py = 284 Ib.

95% of initial slope
Crack,a= 3.15 in. (80.0 mm.)

73

at 14,200 cycles.

320

240 |

‘q *pooq

160 -

160 240 ke 400 480 560

80

Scmop in. x 1078

Fig.6.3 Load versus écmop



74

1. Cut a small starter notch at midspan.

2. Using a ramping function and strain control, load the beam beyond P, , grow a cpp i,
and then remove the load. Subsequently, plot P versus caop using a maximum load
< 1/3 the maximum load associated with the crack.

3. Introduce the dye and cycle the load to work the dye into the cracked surface. Thq

beam must be loaded with the crack proceeding from the top surface downward. The:

load must be greater than that needed to overcome crack closure stresses and must be
less than about 1/3 of P,.

4. Dry the dyed surface and load the beam to failure. Plot P and Agmop. The initig
slope after crack closure is overcome gives the initial compliance C;.

5. After failure, measure the dyed surface area. The initial crack length is

a; = (area of dyed surface)/b (6.4)
Typical dyed surfaces are shown in Fig. 6.4.

6. Repeat steps 1-5 for different crack depths and establish calibration curves relating C;
and a;, P, and a;. The latter relationship allows one to obtain an estimate of the crack
length associated with any load on the softening part of the load-displacement plot.

7. At the point on the unloading plot corresponding to the onset of unstable crack growth
~ taken to be at 0.95 P, determine the extended crack length a. from the P, — a; plot
{step 6). The extended length must not be greater than a./d = 0.65. Using 0.95 P,
and a. compute K, from

Ki. = F(S,d,b,a.,0.95P,) (6.5)

The validity of the procedure to estimate the extended crack length a, may be argued by
referring to a load-unload-reload diagram (Fig. 6.5). The objective is to determine the crack
length at some point on the softening branch - say point C' (which may be any point). If the
actual unloading trace is available, the unloading compliance C, can readily be measured
and used with a compliance calibration curve to determine the extended crack length a..
Alternatively, the P, — a; relationship may be used where the load at point C is used for P..
In constructing the P, — a; curve, it is noted from Fig. 6.5 that an approximation exists in
that P, and a; imply the use of the slope of line OB instead of the actual line OA. The error
in determining the crack length from this approximation was determined to be less than 6%
with a coefficient of variation of 8.5% (62 samples) (Swartz and Refai, 1989).

The results obtained by using this method on 8 in. and 12 in. deep beams with a./d <
0.65 show K, to be invariant with respect to the crack length and beam size, with a coefficient
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Fig.6.6 (a) Wedge-Splitting Specimen Shape, (b-c) Alternative Shapes,

(e-f) Loading Devices, (g) Forces Acting on the Wedge.
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of variation of 5.5% (N = 19, 8 in. beams) and 3.5% (N = 19, 12 in. beams) (Refai and
Swartz, 1988; Swartz and Refai, 1989).

6.1.4 Effect of Friction

An advantage of notched beam tests is that friction effect is small. To explain this
effect, let 7d be the distance from the bottom face (Fig. 6.1) to the point on the crack plane
such that an axial force passing through this point would cause no deflection of the beam;
obviously ag/d < 7 < 1 (typically 7 = 0.75). If the horizontal friction forces acting at the
beam supports are denoted as F, the bending moment at midspan needed to cause crack
propagation is M = (P/2)(5/2) — Fnd where S = span, P = applied load, F = kP/2 and
k is the coefficient of friction. Denoting Py = 4M/S, which represents the force needed to
cause the crack to propagate if there were no friction (k = 0) one gets Py = P — AP; where
P = measured applied force and (according to BaZant):

2nd
AP, = ;Z,—kp

This represents the portion of the applied force needed to overcome the friction. The
larger the S/d ratio, the smaller is AP;. For 7 = 0.75 and 'k = 0.005 for roller bearings
(manufacturers give an upper value of k¥ = 0.01) and for S/d = 2.5 (used by Bazant and
Pfeiffer, 1987), AP; = 0.003P. Thus, we see that the notched beam tests are relatively
insensitive to friction, which is their advantage compared to some other tests (as pointed out
by Planas and Elices, 1988b).

6.2 Wedge-Splitting Test

Another useful test for fracture of concrete is the wedge-splitting test (Fig. 6.6). It is
similar to the compact tension test used for metals. Wedge splitting tests were studied
for concrete by Hillemier and Hilsdorf (1977) and the present shape of the test spe&,men,
characterized by a starter notch and a guiding groove which can be either moulded or sawn,
was proposed by Linsbauer and Tschegg (1986). The test was subsequently refined by
Bruhwiler (1988), and Bruhwiler and Wittmann (1989) who conducted (at the Swiss Federal
Institute of Technology) over 300 such tests on normal concrete, dam concrete and other
cementitious materials. Very large wedge splitting specimens, of sizes up to 1.5 m (5 ft.),
have recently been tested by Saouma, Broz, Bruhwiler and Boggs (1989) at the University
of Colorado, to study the size effect in dam concrete.

Fig. 6.6 (a-d) shows various possible wedge-splitting specimen shapes. Specimen (Fig.
6.6¢) requires either a deep notch or a longitudinal groove on both sides, in order to prevent
shear failure of one of the cantilevers. Fig. 6.6 (e,f) illustrates the method of testing. The
assembly of two wedges is pressed between two low-friction roller or needle bearings (on
each side) which develop a pair of forces N that tend to split the specimen (Fig. 6.6g). The
wedge assembly is loaded in a statically determinate manner so that each wedge receives the
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same load. The dimensions of the notch and the groove must be chosen so that the crack
propagates symmetrically. .

During the test, the splitting force N (Fig. 6.6g) must be measured with sufficient ac-
curacy. The crack mouth opening displacement écmop is measured by a transducer or a
clip gage (Fig. 6.6f) which should be attached at the level of the splitting forces, in which
case § — CMOD represents the load-point displacement §pp associated with the horizontal
component of the splitting force N. The test is controlled by éomop in 2 closed-loop servo-
hydraulic testing machine. However, a stable test can also be performed under actuator
stroke control or under crosshead displacement control using conventional testing machines.
In that case, the appropriate notch length necessary to ensure stability must be identified by
considering the interaction between testing machine stiffness, specimen stiffness and material
properties (Bruhwiler, 1988; Bruhwiler and Wittmann, 1989).

The advantages of the wedge splitting test are as follows:

1) The specimens are compact and light, since the ratio of fracture area to the specimen
volume is larger than for other tests (e.g., 5.2-times larger than that for the three-point-bend
test according to RILEM, 1985). This is especially useful for the study of size effect, since
larger fracture areas can be obtained with smaller specimen weight. Due to lesser weight,
larger specimens are easier to handle, and there is a lesser risk of breaking them during
handling.

2) The cubical or cylindrical specimens (Fig. 6.6 a-c) can be easily cast at the construction
site using the same molds as for strength tests, and the cylindrical shapes (Fig. 6.6 b-d) can
also be obtained from drilled cores from existing structures.

3) The use of wedges for inducing the load increases the stiffness of the test set-up and
thus enhances stability of the test, making it possible to conduct the test even in a machine
that is not very stiff.

4) the effect of selfweight is negligible in contrast to notched beam tests (where the
bending moment due to own weight can be over 50% of the total bending moment).

On the other hand, it must be noted that the wedge loading has also a disadvantage
as it intensifies frictional effects. Let P = applied vertical load, N = specimen reactions
needed to propagate the cracks which are normal to the wedge surface inclined by angle a
(Fig. 6.6g), and k = friction coefficient of the bearings. Then, the equilibrium condition of
vertical forces acting on the wedge yields P = 2(N sin o+ kN cos @) = Po(1+4 k cot @), where
P, = 2N sina is the force needed to propagate the crack if there were no friction (k = 0).
Since kcot o < 1, we have Py = P/(1+4 kcota) = P(1—kcota) or P+o0= P — AP where
(according to Bazant):

AP;=PK cota (6.6)

P is the measured load and AP; represents the portion of the load needed to overcome the
friction. If & < 45°, APy is larger than kP, which means that frictional effects are enhanced
by the wedge loading.

For the typical wedge angle @ = 15°, AP; = 3.73kP. The manufacturers of roller bearings
give k-values ranging from 0.001 to 0.005 (and guarantee 0.01 as the limit). Assuming
k = 0.005, AP; = 0.019P. This frictional effect is significant and is about 6-times larger
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than for the short notched beams of Bazant and Pieiffer (1987), and about 20-times larger
than for the longer notched beams recommended by RILEM, for the same value of & (see
Sec. 6.1.4.). This disadvantage of the wedge splitting test is surmountable, and frictional
effects can be reduced by (1) attaching hardened steel inserts along the inclined wedge
surface, (2) using needle bearings, and (3) carefully polishing the wedge surface as shown
by Hillemeier and Hilsdorf (1977) who experimentally determined a K-value = 0.00031 for
their wedge loading set-up with needle bearings. ’

If the value of k is nearly constant and well reproducible, one may introduce the correction
APy in the analysis. However, since the value of friction coefficient is often quite uncertain,
it is better to measure the splitting force N directly by instrumenting the wedges and the
shafts that carry the bearings with strain gages.

The foregoing analysis shows that a very small wedge angle o is unfavorable from the
viewpoint of friction. On the other hand, the smaller the angle, the stiffer is the specimen-
machine assembly. The angle o = 15° is a reasonable compromise.

Also, a large wedge angle (a > 30°) is undesirable because it leads to a significant normal
stress parallel to the crack plane in the fracture process zone. The presence of such stresses
may affect the softening curve for the fracture process zone, as described by Eq. 3.9. The
area under the softening curve is then not longer equal to the fracture energy, G; nor is the
area under the load-displacement curve. '

The apparent fracture toughness, K. is obtained by the same method as described in
Section 6.1 for notched beam tests. The effective crack length, which accounts for the fracture
process zone, is determined by the compliance method, based on finite element calibration.
For that purpose, unload-reload cycles are performed during the test. Other methods such
as the evaluation of fracture energy from the area under the load-displacement diagram and
the size effect method are applicable, as described in the sequel.

6.3. Work-of-Fracture Method (RILEM, Hillerborg)

This method, which was originally developed for ceramics (Nakayama, 1965; Tatt\grsall
and Tappin, 1966), is the first method of testing for fracture properties of concrete to be
proposed as a standard (RILEM, 1985). The basis for applying this method to concrete
was developed by Hillerborg and his co-workers (Hillerborg, 1985b). Their method uses
the “fictitious crack” concept (Hillerborg et al., 1976; Hillerborg, 1980; Petersson, 1981)
(Fig. 6.7) implicitly and thus is not an LEFM method.

In order to contrast this with LEFM on the basis of energy parameters, recall that the
critical energy release rate G|, is the energy required per unit crack extension in a material
in which there is no process zone, that is, all the energy is surface energy and no energy
is dissipated away from the crack tip. In fact, a process zone does exist and therefore the
total energy of fracture includes all the energy dissipated per unit propagation distance of
the fracture process zone as a whole. This is called the fracture energy Gy (Fig. 6.7).

Conceptually, the method can be applied to a variety of test specimen geometries but
the proposed standard uses a beam specimen loaded in three point bending with a central
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edge notch (Fig. 6.1a). Complete details of the proposed standard are given in the RILEM
Recommendation (1985) and are not repeated here. ‘Briefly, the test procedure consists of
the following steps.

1. The beam proportions are selected in relation to maximum aggregate size. The mini-
mum depth d is approximately six times the size of the aggregate. The ratios of §/d
vary from 8 t0 4. See Table 6.1. The beam specimen is notched to a depth agfd = 0.5.

2. The vertical load-point deflection of the beam (called d.pp in Fig. 6.1a} is to be mea-
sured and plotted continuously along with the applied load P. The resulting trace is
shown in Fig. 6.8.

3. The test is to be conducted in a manner to produce stable crack growth. If closed-loop
testing is used then strain control should be selected. If a closed-loop system is not
available, then a stiff testing machine is required (stiffness recommendations are given
in RILEM, 1985.)

4. The fracture energy is calculated as

Wo + mgbo
Avll'g
in which W, = area under P ~ épp curve up to &; & = displacement when P returns to
0; mg = (m; + 2m3)g and m;g = beam weight between supports, mzg = weight of fixtures
which is carried by the beam; and Aj;, = original, uncracked ligament area = b(d — ag).
This formula is valid if the movement of load and §.pp are downward. If the beam is
tested “on its side” so that the applied load P is normal to the beam’s self weight vector,
then the term mgé, is neglected. Also, if the dead weight is otherwise compensated, this
term is neglected.
Further, if the movements of load and §zpp are upward ~ thus opposing the self wéight
vector — then it is shown that (Swartz and Yap, 1988)

Gl = (6.7)

Wo — 3mgéo

GP =
Atig

(6.8)
in which &, = displacement at the point on the unload portion of the plot when P =
(ml/ 2 + mg)g.

Egs. 6.6 and 6.7 were derived by Swartz and Yap (1988). The self weight term may be
quite significant, especially if young concrete is being tested or the specimen is large.

Extensive round-robin tests from 14 laboratories incorporating about 700 beams were
reported by Hillerborg (1985c). With regard to variation of results within a given tests
series, the coefficient of variation ranged from about 2.5% to 25% with most results around
10 t0 15%. It was noted that “...the sensitivity of the strength of a structure with regard to
changes in G¥ is normally less than 1/3 of the sensitivity with regard to changes in normal
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L P(load)
_ TABLE 6.1. Specimen Sizes Recommended for
\ Hillerborg's Method (RILEM. 1985)
\\ . — -
W, Maximum Depth Width Length Span
[ - Aggr. Size d ‘b L S
mm mm mm mim mm
1-16 100 5 100 £5 840 10 80015
] _ 16.1-32 200 5 100 5 1190 10 1130 £5
S, LPD 32.1-48 300 5 150 £5 1450 £ 10 1385 15
48.1-64 400 £5 200 £5 1640 £ 10 1600 5

1 i= TABLE 6.2. Regression Coefficients A;, Cy, By, Dy
(b) small i.L e for Karihaloo and Nallathambi's Method
i=0,..., 4: j=0,..., 5)

) G
C'm
0 3.6460 1.5640 0.4607 1.9560
1 -6.7890 -8.3200 0.0484 0.3982
2 39.2400 52.9500 -0.0063 -0.0553
3 -76.8200 -124.9000 -0.0003 0.0027
4 74.3300 122.9000 -0.0059 0.0202
5 0.0003 -0.0055

4
B=

Fig.6.9 Theoretical Size Dependence of RILEM Fracture Energy GJ
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strength values, and that therefore the acceptable error and standard deviation of a G‘} test
are about 3 times as high as in most strength tests (Hillerborg, 1985c).” It was concluded
on this basis and by examining the changes in G¥ values associated with changes in beam
depth that the spurious influence of specimen size on measured values of G% is acceptable.
(However, the size effect method discussed later eliminates this influence.)

Thus, even though there was an undesirable size dependency in the test results for G¥
it was considered to be of no greater importance on the calculated strength of the structure
than the similar size dependency in ordinary strength tests.

Results from another series of tests (Swartz and Refai, 1989; Refai and Swartz, 1988)
show a similar size effect and also a variation of G} with notch depth.

In summary, the RILEM work-of-fracture method is a practical approach, which is suit-
able for use in laboratories which do not have very elaborate equipment and incorporates
a number of compromises in order to simplify testing while still obtaining useful results
(Hillerborg, 1985b). The method is based on a theory which has had wide acceptance, the
fictitious crack model (Hillerborg et al., 1976). The fracture energy concept also has a very
simple meaning, without using LEFM.

There are, however, certain aspects in which the RILEM work-of-fracture method needs
to be further improved. This method does not give results independent of the size of the
cracked area for a given beam depth even if precracked beams are used, and thus the value
of G'f must be considered to be only an approximation of the true energy parameter which
characterizes the surface energy and the energy of process zone formation. It is simplified but
not unreasonable to consider this sum also to be constant with respect to the crack length.
This implies that the shape and size of the process zone do not change. Furthermore,
refinement of the RILEM method is needed as a result of the size effect, which will be
discussed next.

6.4 Size Effect in Work-of-Fracture Method

The size dependence of fracture energy G? obtained according to the existing RILEM
recommendation on the work of fracture method has been investigated by Planas and Elices
(1988b) on the basis of solution of an integral equation and by Bazant and Kazemi (1989b)
on the basis of the size effect law. The premise of the latter analysis was that the law
is applicable to size ranges up to about 1:20 and has the same form (for this size range)
for all specimen geometries (with only negligible errors). The analysis utilizes the method
for calculating the R-curve from size effect and load-deflection curve from the R-curve as
already explained (Sec. 5.1). The R-curve obtained in this manner is strongly dependent on
the geometry of the specimen. The basic relation (Fig. 6.9b,c)

Wi+ W,

R:
¢ b

Wi=bh /0 ™ R(c)de, Wa = bR(em)(1 - ) (6.9)

where b = specimen thickness, { = d — ¢, = ligament length (d = beam depth), and ¢,, =
crack length ¢ at peak load. Wy and W, represent the works of fracture before and after the
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peak load. Note from Fig 6.9b,c that W, depends strongly on specirpen size, because the
value of ¢, depends on the size. :

The results of this investigation show that G% is not size-independent, as one might
desire, but depends strongly on the specimen size as shown in Fig 6.9a. This dependence is
seen to be even stronger than that of the R- curve. When the specimen size is extrapolated
to infinity, G} coincides exactly with BaZant’s definition of fracture energy Gy obtained by
the size effect method. , :

This investigation also showed that the pre-peak contribution of the work of the load to
the fracture energy Gy is relatively small (generally .under 6%). This conclusion basically
agrees with that obtained by Planas and Elices (1988b) in a different manner.

6.5 Two-Parameter Fracture Model of Jenq and Shah

Unlike the fictitious crack model, the two-parameter model of Jenq and Shah (1985a,
1985b), already explained in Sec. 4.2, does not require a post-peak (strain softening) con-
stitutive law, yet it can describe the nonlinear slow crack growth prior to peak load. The
two parameters are the critical stress intensity factor K § and the critical crack tip opening
displace ment Scpop relationship shown in Fig. 6.10. This relationship is essentially linear
on the ascending portion of the curve from P = 0 up to about the load corresponding to half
the maximum load P,. At this stage, the crack tip opening displacement is negligible and K7
is less than 0.5K3 (Fig. 6.10a). As the load P exceed the value of 0.5P,, inelastic displace-
ment and slow crack growth occur during the nonlinear range (Fig. 6.10b). At the critical
point (Fig. 6.10c), the crack tip opening displacement reaches a critical value and K = K| .
For standard plain concrete beams tested in three-point bending, the critical point can be
approximated between the point of P, and the point of 0.95P, on the descending branch of
the P — écmop plot. The concept is also shown for a beam in bending in Fig. 6.11.

Depending upon the geometry of the specimen, the rate of loading, and the method of
loading, further crack growth may occur at a steady-state value of K7.. Denoting the crack
length a, the load P will have a value equal to P, when K reaches K7, if dK;/dé > 0.
If dK;/da at this loading stage is negative, then beyond the critical point the crack will
propagate at a constant value of K§, and the applied load will increase until dX. 1/da = 0.

In the majority of practical cases, the value of dK/da is positive, i.e., K is a monotonically-
increasing function of @. Three- and four-point bent, and single-edge notched and double-
edge notched specimens subjected to tensile loading are found to satisfy this condition (Jenq
and Shah, 1985b). For this case, the values of K ¢ and écrop can be obtained from the
measured peak load and from the knowledge of an associated effective crack length a..

The method has been proposed to RILEM (Karihaloo and Nallathambi, 1987) as a stan-
dard test method for determination of Kf, and dcrop in plain concrete using beam speci-
mens. The following dimensions are suggested if a maximum aggregate size not exceeding
one inch (25.4mm) is used; see Fig. 6.1, in which b x d x L = 3in. x 6in. x 28in. (76.2 mm
x 152.4 mm x 711.2 mm); § = 24 in. (609.6 mm); ao/d = 1/3; S/d = 4.

For jarger maximum aggregate sizes the dimensions should increase proportionately.

A closed-loop testing system with strain control using the écmop gage or else a stiff
machine (a machine that is at least 10-times stiffer than' the test specimen} is recommended
to achieve stable failure. The rate of loading should be such that peak load is reached in
about 5 min. ’
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To determine the two fracture parameters K7, and écrop for plain concrete, the mayj,
mum P, and the corresponding elastic component of the dcpmop, denoted 8&pop are rnea,?.'
sured. These values are then used to estimate the effective elastic crack length a. such that
the calculated 6%y p (based on LEFM equations) is equal to the measured value. For a given
initial notch length ao and depending upon the type of test, the two fracture parameters age
determined as follows (see Fig. 6.2 and 6.11):

The modulus of elasticity E is determined using initial compliance C; from

6 S agVi{a)
E=—000-—— 6.
Cbd? (6.10)
0.66

Vi(eo) = 0.76 — 2.28a + 3.87a2 — 2.0403 + e

(6.11)
and ap + (ao = ho)/(d + ho), ho = clip gage holder thickness.

The effective crack length is determined from Eq. 6.8 by replacing ao with a., oo with a,
and C; with C, where a. = (a. + ko)/(W + ho) and C, is the unloading compliance at 0.95

P,. Thus,
C., Vi(ao)

a. = aoa ‘/l(ae) (6.12)
which may be solved fairly easily by iteration.
Then the critical stress intensity factor is
3PS
S _ u
K; = 7 Vra F(a) (6.13)
and 1 1.9 a(l - @)(2.15 - 3.93a + 2.7a%)
99 a(l - a)(2.15 - 3.93a + 2.7«
-1 1
Fle)=—%= T+ 2a)(1 = a)l3 (6.14)
with @ = a,/d. The critical crack-tip opening displacement is
6P, Sa. ~ -
bcrop = WZT“W(Q)[Q = B)? + (~1.149 + 1.081)(53%)]/? (6.15)

where 8 = ag/a..

In using this method for precracked - instead of notched — beams, replace aq by ai.

In Jenq and Shah (1985b) it is shown that this method gives Ki.(= K§.) results which
are independent of specimen size when notched beams are used. As shown in Swartz and
Refai (1989) the same invariance is obtained when precracked beams are used and also
K3, is independent of crack length for a./d < 0.65. It is also shown that the modified
compliance method (section 6.1.3) gives virtually the same result for K. for precracked
beams as the Jenq-Shah method. for example, for d = 12 in., and a./d < 0.65, the average
K§ = 1206kNm=3/2 (C.V. = 9.2%, N = 11) and the compliance method average K. =
1151kNm=3/2 (C.V. = 3.5%, N = 19).

It is further shown by Jenq and Shah (1985b) that the results for dcrop are relatively
constant with respect to beam size. This result was also obtained for beams tested by Refai
and Swartz (1987) but a variation with a; was found.
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56 Effective Crack Model of Karihaloo and Nallathambi

This method (Nallathambi and Karihaloo, 19862, 1986b) has also been proposed to
RILEM as a standard (Karihaloo and Nallathambi, 1987). In this approach a simple tech-
pique is used where the critical stress intensity factor Kz.(= K}.) and critical energy release
sate Grc(= Gi.) are found for beam specimens by LEFM methods after the crack has grown
from 2 notch ag to an effective length a..

The formulas which follow later were developed for certain ranges of specimen dimensions.
fﬂ,esc ranges, which are to be used for maximum aggre gate sizes d, ranging from 5 to 25
mm, with no critical dimension being less than five times d, , are: b= 40- 80 mm (> 3d,); d
=50 - 300 mm (> 3d,); § = 200 - 1800 mm (> 3d,); with4 < S/d < 8. Also ap/d = 0.2—0.6
(0.3 0r 0.4 is preferred).

The loading setup which is idealized in Fig. 6.1 is shown in Fig. 6.12 where the ppp is
measured by an LVDT. In addition, the §cmop could be measured by adding a clip gage
across the notch. Preferably a closed-loop testing system should be used with strain control
feedback from either the érpp of dormop gage. Otherwise, a stiff testing machine should be
used. In any event, a continuous record of P and éppp is made up to peak load which should
be reached in 1-10 minutes. the softening response is not required with this method.

If it is not possible to obtain a continuous load-displacement record, the method can still
be used but the modulus of elasticity, E, must be determined from uniaxial tests on other
specimens.

If a continuous record of P vs. §ppp is available, determine E from

_ B, S*(1+38)

= S TAI_uF (6.1)

where P, , §; are measured at any intermediate location on the initial ascending portion of
the curve and w is the self-weight of the beam. The term A is a correction factor relating de-
flections of a notched to an unnotched beam and is obtained from finite element calculatipns
as

X =y exp{m(ao/d)’ + na(S/d)* + na(ac/d)(S/d) +ns(S/d)’} (6.2)
and 7y = 1.379, = —1.463, g3 = —0.036, n, = —0.201, and 95 = 0.004 (Karihaloo
and Nallathambi, 1987). Then the effective crack length a. is obtained from P, and the
corresponding displacement 6, as

P.S%(1+ %)
ae/d =1- [W/\ (63)
If S/d is “small,” the effect of shear deformation can be considered by using
T S3(1 4
E=%[ (1+3%) (1+v)8 ] (6.4)
i

(1 - 2y " 2xbd(1 - F)
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ere & = shear constant = 10(1 + »)/(12 + 11v) for a rectangular section and v is Pois-

Nallathambi (1987) contains regression formulas to determine a. instead of using Eq. 6.16.
The critical stress intensity factor is then given as
Kj, = ou/a.F(o) (6.5)

where F(a) is given by Eq. 6.16, a = a./d and o, = 6M/bd?. The midspan moment M,
including self-weight effects is

M = (P, +w/2) S/4 (6.6)

The critical energy release rate is : ,
, _ UGh)? 61

Ic E

Improved (but more complicated expressions for Kf.(= K3,) and G5,(= G§,) are obtained
by use of finite element methods which consider the tensile stress normal to the crack faces,
the tensile stress in the plane of the crack and the shearing stress. The formulas of K§, and

G5¢ are

R§, = oa(a)/?i(a)Ye(e, B) (6.8)
_ 2
R = (s}.aae> Zy(@) Za(e, B) (6.9)
In these equations again .
a=aqa/d,fB=S5/d

]ll(a) = A0+ A]Q+A202 + A3Q’3 + A4a4, }’2(0, ﬂ) = Bo+ B1,3+ Bgﬁz + B3ﬂ3+B4aﬂ+B50ﬂ2,
Zi(a) =Co+ Cra + Coa? + Caad® 4 Cya?,
and
Zs(e,8) = Do+ D1+ Dy + D3f® + Dyop + Dsaf’.
Regression coefficients A;, B;, Ci, Dj(i = 0,1,...,4;5 =0,1,..., 5) are given in Table 6.2.

A very extensive testing program was carried out by Karihaloo and Nallathambi (Nal-
lathambi and Karihaloo, 1986a; Karihaloo and Nallathambi, 1987) using this method to
evaluate data from more than 950 beams in which maximum aggregate size, beam size, and
relative notch crack depth were varied. The test results were generally very consistent with
the calculated values; the coefficient of variation generally ranged between 6% and 10%. Test
data from other investigators were also used, with generally excellent agreement between the
results of this method and Jenq and Shah’s method for K. For example, the data from
Refai and Swartz (1987) for d = 304 mm gave K§, = 1074kNm=3/2, K§ = 1206kNm=>/?
{Jenq and Shah) and K. = 1151kNm~%? (compliance method).

6.7 Determination of Material Parameters by Size Effect Method
6.7.1 Asymptotic Definition for Infinite Size

Since the size effect is the most important practical consequence of fracture mechanics, it
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is not illogical to exploit it for determining the material fracture properties, as proposed by,
Bazant. In principle, the size effect provides the only means for an unambiguous deﬁnitio,i;
of material fracture properties. The fracture energy as well as other nonlinear fracturg:
parameters may be uniquely defined by their values extrapolated to a specimen of infinite

size. The reason is that, in an infinitely large specimen, the fracture process zone occupies
an infinitely small fraction of the specimen volume (Fig. 6.13). Hence, nearly all of the
specimen is in an elastic state. Now, from linear elastic fracture mechanics it is known thag
the near-tip asymptotic field of displacements and stresses (Fig. 6.13) is the same regardless
of the specimen or structure geometry (Eq. 2.1). Therefore, the fracture process zone in
an infinitely large specimen is exposed on its boundary to the same stress field regardless
of structure geometry, and so it must behave in the same manner. In particular, it must
dissipate the same energy and have the same length and width. Therefore, as proposed by
Bazant (1987a), an unambiguous definition is as follows:

The fracture energy Gy and the effective fracture process zone length c; are the energy
release rate required for crack growth and the distance from the notch tip to the tip of the
equivalent LEFM crack in an infinitely large specimen of any shape.

With this asymptotic definition, determination of the fracture properties is reduced to
the calibration of the size effect law. If we knew the size effect law exactly, we would get
exact results. Unfortunately, the exact size effect law, applicable up to infinite size, is not
known. Therefore, this method, like others, yields in practice only approximate results,
Nevertheless, the validity of the size effect law proposed by Bazant (Fig. 6.14, Eq. 1.4) is
rather broad, covering a range of sizes of perhaps 1:20, which is sufficient for most practical
purposes; see Planas and Elices (1988a).

6.7.2 Basic Relations

In Eq. 5.2 we gave the expression for the energy release rate in terms of the applied load
or nominal stress. Setting P = P,, we have G = R = specific energy required for crack
growth, and by extrapolation to infinite size we have

2 2 fr2
Gy = lim R = Jim File) Bf;

. d
i Fwd = GE lim lim g(a) (6.10)

1+d/dy

in which we have expressed P, according to Eq. 1.2. Taking the limit d — oo, for which
a — ap = ag/d, we obtain the expression

BZ
ek

fidagon) = £20) (6.11)

Gy = A

proposed by Bazant (1985b) in which A is the slope of a linear regression plot of test data
(Fig. 6.14) obtained by algebraically rearranging the size effect law (Eq. 1.4) in the form
Y = AX + C, in which

X = d, B= C—1/2’

Y = (ca/02), do=C/A (6.12)

Y= (‘l/O'N)?" (psi™® x10™%)
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The second nonlinear fracture pararneter, namely the effective length ¢y of the fracture
process zone, defined for an infinitely large specimen, is obtained from Eq. 5.6 as follows:

= g(eo) — g(ao)_C_ (6.13)
g{a) ~  g'(a) A

Again, we see that ¢; can be determined from the linear regression parameters A and C

(Bazant and Kazemi, 1988). Animportant point is that the test data must cover a sufficiently

broad range of sizes, so that the statistical scatter and other influences would not overshadow

the size effect.

Egs. 6.24 and 6.26 form the basis for the determination of the fracture energy and effective
process zone length from the size effect. BaZant and Pfeiffer (1987) verified that very different
types of specimens (Fig. 5.1), including three-point bend specimens, edge-notched tension
specimens and eccentric compression specimens, yield approximately the same values of the
fracture energy for the same concrete. Studies of Karihaloo and Nallathambi (1987), Swartz
and Refai (1987) and Planas and Elices (1988b) further established that this method yields
approximately the same results for the fracture energy as Jenq and Shah’s two-parameter
method. On the other hand, the value of fracture energy obtained by these methods is
generally quite different from that obtained from the RILEM work-of-fracture method (i.e.
Hillerborg’s method). Planas and Elices (1988b) and Planas et al. (1989) analyzed these
differences exhaustively and concluded that the reason why Hillerborg’s method yields dif-
ferent values is mainly the assumed shape of the softening stress-displacement curve. By
modifying the shape of this curve (steeper initial decline, extended tail), a better agreement
in the values of Gy could apparently be obtained.

It must be noted that Eq. 6.26 fails if ¢’( ) approaches 0. This happens, e.g., for a certain
crack length in a center-cracked specimen loaded on the crack. In that case according to
Eq. 6.26, C would have to vanish if ¢; is constant, and then also do — 0. Due to statistical
scatter, the ratio C/g¢'(ao) in Eq. 6.26 becomes meaningless when ¢'(ap) is too small. For
still shorter cracks in this kind of specimen, one obtains g'(ag) < 0, and in that case again
Eq. 6.26 cannot be used. However, for typical fracture specimens such situations do not
arise.

In contrast to Eq. 1.4, the size effect law in the form of Eq. 5.6 involves only material
parameters, Gy and c¢;. Therefore, these parameters can be obtained directly by optimum
fitting of Eq. 5.6 to the measured values of 7y for various values of D. Such fitting can be
accomplished easily by nonlinear regression or any optimization subroutine.

The specimen shapes do not need to be geometrically similar if Eq. 5.6 (rather than
Eq. 1.4) is used. However, the parameter that takes into account the specimen shape,
namely the ratio ¢'(ao)/¢(aw), is only approximate and involves some error. To avoid this
error, it is preferable to use specimens which are geometrically similar.

The size effect method has also been proposed by RILEM Committee TC 89 for a RILEM
Recommendation.

As for the specimen shape, in principle any suitable fracture specimen can be used. In
view of the popularity and certain practical advantages of the three-point bend specimens,
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the proposal has been worked out in detail for this type of specimen. (See.Fig. 6.1, which
also explains the notations.)

All the prescribed details for specimen preparation, testing and data evaluation are given
in Karihaloo and Nallathambi (1987) and will not be repeated here. Briefly, the testing
program uses specimens of at least three - but preferably more - sizes characterized by beam
depths dy , dy, etc. and spans 51, S;,.... The smallest depth dy must not be larger than 5
d, and the largest depth d, must not be smaller than 15 d,. The ratio dn/d; must be at
least 4. The beam width b should be kept constant as should the span/depth ratio S;/d;. A
minimum of three samples per given size should be tested.

One of the advantages of the method is that an ordinary uniaxial testing machine without
servo-control or high stiffness may be used. The only measured responses needed are the
peak loads P; for all specimens, j = 1,2,...n. The loading rate should be selected so that
the maximum load would be reached in one to ten minutes.

6.7.3 Calculation Procedure of Size Effect Method:

If the length L; of specimen j is almost the same as S; its span, then compute

1
PP =P+ 5myg (6.14)

in which m;g is the weight of the specimen and the specimen is loaded downward. If L;is
much larger than S; then

28; — L;
P =P+ #"ﬁy (6.15)
If the specimens are geometrically similar set Py = P). If not
. d, S;
P = P’pdj S,,: (6.16)

i

where m refers to the mid-size specimen. Next, plot ¥; (ordinate) versus X; (abscissa)iWhere

bd;\?
n=(3), x=4 (6.17)
2

and determine the slope of the line A as shown in Fig. 6.15 as well as the Y-intercept C. The
fracture energy Gy is calculated from Eq. 6.24 and the effective length of the fracture process
zone from Eq. 6.26. The value of E for Eq. 6.26 needs to be determined from companion
tests or estimated from f; using established empirical formulas. The expression for g(ayp)
may be obtained by using standard references for LEFM formulas. The following are from
Tada et al. (1985): For S/d = 4:

1 1.99 — ol — a)(2.15 — 3.93a + 2.7a?)

Fle) = -\/—7? (142a)(1 — )32

(6.18)
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For Sfd = 8
F(a) = 1.106 — 1.552a + 7.71a° — 13.530° + 14.230* {6.19)
Linear interpolation is acceptable provided 3 < S/d < 10. Finally,
Sem
g{an) = E:sr,ao{l.sF(ao)]’ (6.20)

In Bagant and Pfeiffer (1987) and Karihaloo and Nallathambi (1987) there are discussions
of calculations needed to verify the result for Gy and to obtain the standard deviation. It
is also pointed out that scattered results caa arise from other size effects (Sec. 5.3). Th.is
may be of particular concern for very large and thick specimens, since hydration heat_ will
produce different temperatures in thin and thick specimens and thus lead to an additional
size effect that is superimposed on that described by the size effect law. In that case this
method could fail. Similarly, it could fail due to difference in moisture content, since thin
specimens dry faster than thick ones. These effects, as well as the wall effect, are minimized
by using the same specimen thickness for all the sizes.

6.7.4 Comparison with Other Methods

Karihaloo and Nallathambi (1987) list most of the known fracture test results, in which
Bazant’s size effect method is also compared with Karihaloo and Nallathambi’s method.
For this purpose the values of G; were converted to K, by use of the LEFM relationship
Kio = (GE)V/3. For the beam results reported, the Kj. values were 0.847 — 0.892kN;;3/2
and the values from the Karihaloo and Nallathambi’s method were K§, = 0.867 and K;F =
1.005kN;¥2, Similar agreement was found from the data of BaZant and Pfeiffer (1987).

The size effect method was used by Bruhwiller (1988) and Saouma et al. (1989) to
measure the fracture energy of dam concrete.

6.8 Size Required for Applicability of LEFM

An early attempt to specify the minimum size of test specimen such that LEFM may be
used was that of Walsh (1972, 1976)." He argued that, by comparing the nominal stress at
the notch tip for a beam specimen (calculated by using an LEFM formula for K.) with the
modulus of rupture of the material, a transition dimension may be found. He stated that the
characteristic bearn dimension should be at least double this in order for LEFM to be valid.
Based on his test data he suggested the notched beam to be tested should have a depth not
less than 230 mm (9 in.}.

In the light of recent experimental studies on the size effect in fracture, the recommenda-
tion for the specimen size analyzable by LEFM now appears to be grossly underestimated.
According to the size effect law of BaZant, the brittleness number 8 must be at least 25 if
the deviation from the straight line asymptote for LEFM should be less than 2%. Bazant
and Pfeiffer’s (1987) tests of various types of specimens shown in Fig. 5.1 indicate that : (1)
for eccentric compression fracture specimens dy = 1.85d,, (2) for three-point bend specimens
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do = 5.4d,, and (3) for centric tension specimens do = 16.8d,. Consequgntly, the minimum
cross section depths of these specimens which are needed for applicability of LEFM (with
the theoretical error of 2%) are as follows:

For eccentric compression specimens: d > 46d,
For three-point bend specimens: d > 135d,
For concentric tension specimens: d > 420d, (6.21)

These dimensions are impracticably large for la.bo;-atory tests, and their use would be
financially wasteful since knowledge of the size effect can provide adequate information on
material fracture parameters using much smaller specimens.

6.9 Identification of Nonlocal Characteristic Length

For the nonlocal continuum model with local strain (or nonlocal damage continuum),
the fracture energy Gy is proportional to the area W, under the complete tensile stress-
strain curve (with softening) times the characteristic length, £, and ¢; is proportional to the
characteristic length. This fact is exploited by a simple method, conceived by BaZant and
Pijaudier- Cabot (1988b, 1989). It uses the relation:

_ Gy J/m?
t= 5 il (6.22)

More precisely, there is a multiplicative empirical coefficient on the right hand side, which
is, however, very close to 1 (it slightly depends on the type of the nonlocal model adopted,
and for one particular model used it was 1.02). So the only problem is how to measure the
energy dissipated per unit volume, W,.

To this end, one needs to stabilize the specimen by bonded reinforcing rods so that; con-
crete can deform homogeneously and remain in a macroscopically homogeneous state %ing
the softening behavior, without any localization of cracking. This may be accomplished us-
ing the specimen shown in Fig. 6.16, which also shows a companion fracture specimen used
for determination of G. The longer sides of the rectangular cross section are restrained by
gluing to them, with epoxy, a system of parallel densely spaced thin steel rods. The gaps
between the rods, filled partially by epoxy, are quite deformable, so that the system of thin
rods cannot develop any significant transverse stresses and thus cannot interfere with the
Poisson effect in concrete. By choosing the cross sections of the rods to be much smaller than
the maximum aggregate size, the rods cannot affect the nonlocal behavior of the material in
the transverse direction. The rectangular cross section is elongated, so as to minimize the
influence of the wall.effect and of the local stresses near the short sides of the cross section.
The thickness of the specimen is chosen to be only three times the maximum aggregate
size. The reason is to assure the restraint due to steel rods to be effective through the entire
thickness (for much thicker specimens, localization of cracking could occur at mid-thickness).
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The combined cross section of all the steel rods _is selected so as to assure the tangential
stiffness of the composite specimen to be always positive. This guarantees the specimen

Yo be stable, making localization instability impossible. The force in softening concrete,

characterizing the true post-peak stress-strain diagram, can thus be obtained after the force
;n steel rods calculated from the measured strain is subtracted from the measured total force.

* 7The specimen is gripped at the ends, e.g., by metallic plates glued by epoxy to the surface
of the steel rods. The specimen is subjected to tension in a closed-loop testing machine, and
the plot of force vs. relative displacement, over gauge length L in the middle part of the
specimen is recorded; see Fig. 6.16c. The inclined straight line in this plot represents the
gtiffness of the rods alone, without any concrete. For very large displacements, the response
.pproaﬁhes this line asymptotically. Work W,, the desired result, is represented by the
cross-hatched area between the response curve and the rising straight line for the steel rods

one.

! For the particular concrete used by BaZant and Pijaudier-Cabot (a microconcrete with
maximum aggregate size 9.5 mm), substitution of the measured value of W, into Eq. 6.34
yjelded the nonlocal characteristic length £ = 2.7d,. This is rather close to what has been
inferred from finite element fitting of the size effect data fron_l fracture tests.

" It might be noted that evaluation of the present type of test by means of the fictitious
crack model appears problematic. If one takes care to produce a nearly perfect restraint,
multiple parallel fictitious cracks with arbitrarily close spacing could be obtained in compu-
tations, making the results ambiguous. As already pointed out, this problem can be avoided
by enriching the fictitious crack model with a third independent material parameter, the
minimum spacing of the line cracks (such spacing of course is equivalent to the nonlocal
characteristic length £).

An interesting point to note is that the characteristic length, £, cannot be identified from
uniaxial tests of unrestrained specimens of different lengths (e.g. tests of van Mier, 1984,
1986) or different gage lengths (Shah and Sankar, 1987). Such data can be fitted equally
well using any value of ¢, including £ = 0 (Bazant, 1989a).

;
6.10 Identification of Tensile Post-Peak Softening Stress-Strain
Curves

To identify a strain-softening triaxial constitutive relation from test data, one must in
general solve an inverse boundary value problem taking into account strain localization
(Ortiz, 1988). This is a task of formidable complexity. However, identification of a uniaxial
strain- softening stress-strain relation is relatively simple, provided that the characteristic
length is determined in advance, as already explained. As shown by BaZant’s (1989a) analysis
of unjaxial test data for specimens of various lengths, localization in uniaxial test specimens
can be adequately described by the series coupling model, in which a strain-softening loading
zone of length £ is coupled in series to an unloading zone. If the value of £ is known, the axial
strain in the strain-softening zone corresponding to uniaxial stress s may be approximately
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calculated as (Bazant 1989a):
iy’ L
efo) = 7e(0) - (7 - a) (o) (6.23)

where L > £, (o) = mean axial strain corresponding to o, obtained from measured displace.
ment over the gage length L, and ¢,(¢) = axial strain in the unloading part corresponding
to o for an unloading branch emanating from the peak stress point.

6.11 Material Parameters for Mode II and Planar Mixed Mode
Fracture

For two dimensional stress states, in general it may be presumed that crack propagation
would take place under the combined action of Mode I (opening) and Mode II (sliding)
deformation. In concrete, however, the effect of aggregate interlock, which leads to volume
dilation, tends to resist crack propagation in any mode other than opening (BaZant and
Gambarova, 1980). Nevertheless, there has been an extensive amount of experimental work
done over the years, and continuing today, in an attempt to cause cracking and fracture in
concrete to occur in mode II or at least in mixed mode.

The Josipescu specimen geometry, shown in a modified form in Fig. 6.17, has been used
by various investigators (Barr et al., 1987; Bazant and Pfeiffer, 1985a, 1985b, 1986; Swartz
and Taha, 1987) and so has a similar geometry with only one notch (Arrea and Ingraffea,
1981; Swartz, Lu, Tang and Refai, 1988). Beams in three-point bending with off-center
notches have been used by Jenq and Shah (1987a, 1987b) and Swartz, Lu and Tang (1988)
(see Fig. 6.18). Biaxial testing systems have been developed in which combinations of di-
rect tension and compression are used (Reinhardt et al., 1989) or direct tension and shear
(Hassanzadeh et al., 1987).

Numerical modeling of the Iosipescu specimen was done by Arrea and Ingraffea (1981),
Ingraffea and Panthaki (1985), Ingraffea and Gerstle (1985), Bazant and Pfeiffer (1985b),
Rots and de Borst (1987), and Swenson (1986). Rather interesting was the finding by
Bazant and Pfeiffer that if the shear zone in the beam is very narrow, the crack propagates
in the cross section plane rather than in an inclined direction. This provided a challenge
for numerical modeling. Acceptable fits of test results were obtained (BaZant and Pfeiffer,
1985b) assuming a Mode II state at the crack tip, modelled as a band of inclined Mode I
microcracks. Others obtained acceptable fits assuming the crack propagation to occur with
only Mode I deformation at the crack tip although Mode II-type deformation (combined
with Mode I) exists immediately behind the crack front. The application of Swenson’s
model to beams tested by Swartz et al. in three-point bending (Fig. 6.18) and four-point
bending (Swartz, Lu, Tang and Refai, 1988) (similar to Fig. 6.17, but with only one notch)
shows clearly that propagation in their type of test occurs in Mode 1. However, alternative
explanations of the fracture pattern observed by Bazant and Pfeiffer (1985b, 1986), which
require only Mode I type cracking, have been offered by Ingraffea and Panthaki (1985), and
Swartz et al. (Swartz and Taha, 1987), while Rots and de Borst (1987) considered the crack
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opening to initiate in Mode I and subsequently to respond possibly in Mode II also. Ingraffes
and Panthaki have argued that the observed fracture originated from tensile splitting stresses
in the region between the notch tips (Fig. 6.17). The existence of these stresses was alsq
shown analytically by Rots and de Borst. Similar experiments by Swartz et al. (Swartz and
Taha, 1987) showed the principal fracture originating in this region and not at the notch

tips. The finite element analysis of Bazant and Pfeiffer (1985b) confirmed the existence of -

significant tensile stresses between the crack tips but showed the inclined principal tensile
stresses at the crack tips to be even higher. Recent tests at Northwestern University (Kazemi
and Bazant, 1988) indicated that if the specimen in Fig 6.17 is loaded symmetrically by P/2
at each side of each crackmouth rather than antisymmetrically, then it splits at a load not
much higher than the maximum load for the antisymmetric loading shown. This suggests
that the splitting tensile stress might be important.

From size effect tests, Bazant and Pfeiffer (1986) found the Mode II fracture energy to
be many times higher than for Mode I (Bazant and Pfeiffer, 1985a, 1985b).

Clearly, aggregate interlock and shear friction play a major role in providing energy
to resist crack propagation even though the driving energy at the tip is due to Mode I
deformation. Whether this can indeed be modeled properly by appropriate use of a crack
band with inclined microcracks or friction elements is not clear at present. At the same time,
there are no good microscopic observations available to indicate the presence, shape and size
of a process zone although evidence of this is clear from Mode I bending and tension tests.

With regard to Mode II or mixed mode crack propagation, there is thus a general lack of
information and understanding. There is no general agreement as to the suitability of test
methods, data evaluation or failure theory to predict mixed-mode crack propagation and
fracture in concrete.

6.12 Material Parameters for Mode III Fracture

In the losipescu type mixed-mode specimens already discussed, a perfect antisymmetry
is not achieved. The specimen fails with a planar crack in the cross section plane, although
the principal normal stresses were inclined with regard to the cross section plane. However,
a perfect antisymmetry, required for Mode III fracture, can be achieved in a cylindrical
specimen with a circumferential notch in the middle, subjected to torsion. Such a specimen
was introduced by Bazant and Prat (1988a), and Bazant, Prat and Tabbara (1989); Fig. 6.19.
Testing geometrically similar specimens of different sizes, they found a pronounced size effect
and used it to determine the Mode III fracture energy, G}” . For specimens with no axial
force, they found it to be about three-times larger than that for Mode 1. However, they
observed that despite perfectly satisfying the antisymmetry of geometric conditions and
loading arrangement required for a Mode 111 situation, a Mode III field might not have been
achieved locally due to volume expansion of the fracture process zone. They also observed
that the Mode III fracture energy is apparently very sensitive to the normal stress across
the fracture process zone. It appears that Mode III fracture energy cannot be a material
constant; but it could be a material function, depending on the transverse normal stress and
possibly other variables.

Recently, sihilar lests of Xu and Reinhardt (1989) indicated only a negligible size effect
in torsional Mode III specimens. The reason for this difference is not clear.
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Chapter 7. FACTORS INFLUENCING FRACTURE
PARAMETERS

7.1 Effect of Loading Rate and Creep

In no material can fracture happen instantly. Cracks take a finite time to form and to
propagate over a finite distance. The reason is that the process of bond ruptures proceeds
at a certain finite rate. The basic physical theory describing the process is the rate process
theory, in which the rate of bond ruptures is determined by the activation energy, U. The
probability (or frequency) of bond rupture depends on the microstress level at the crack tip,
which in turn is determined by either the stress intensity factor, K7, or by the energy release
rate, G. Based on these physical observations, the following approximate relation ensues
(Evans, 1974):

& = v(K1/Ky.)" e VIRT (7.1)

in which a = velocity of crack tip propagation, T = absolute temperature, R = universal gas
constant, and v., n = empirical constants. Roughly, n =2 30, while v, can have very different
values. According to Eq. 7.1, the relationship between loga and log K; should be linear,
But this is true only approximately. Experiments indicate a mildly nonlinear relationship
between log K and the loading rate, but no clear information exists with regard to a.

There exist other useful relations relating the remote stress to the remote stress rate or
remote strain rate, or unloading rate (e.g. Reinhardt, 1984). They are however valid only for
certain particular situations and are not generally interpretable. (“Remote” are the locations
so far from the crack so that the stress is not significantly affected by the crack).

John and Shah (1985, 1986, 1987, 1989a; also John, Shah and Jenq, 1987) applied the two-
parameter fracture model to Mode I and Mixed Mode fracture tests conducted at different
strain rates. They concluded that Kj. is rate- independent but that dcrop, as well as the
effective crack length at peak load, decrease as the loading rate increases.

It should also be observed that the effects of crack growth rate and loading rate are, in
their physical mechanism, related to the stress corrosion effect in fracture.

In analyzing the fracture behavior of specimens or structures under various loading rates,
the phenomena of fracture and creep are inseparable. The results are influenced by the short-
term linear viscoelasticity of concrete, which is quite pronounced, and in the high stress
regions near the fracture front, by the additional nonlinear creep of concrete. Furthermore,
the strain- softening behavior in the fracture process zone is likely to be even more time-
dependent than the nonlinear creep in the hardening high stress range. Recent studies of
the size effect at various rates of loading (Baant and Gettu, 1989) indicate a very strong
creep or stress relaxation in the strain-softening range which prevails in the fracture process
zone. This phenomenon seems to reduce the size of the fracture process zone as the loading
rate diminishes (i.e. the time to failure increases), with the consequence that long-time
response might be closer to linear elastic fracture mechanics than short-time response. This
is illustrated with recent data of Bazant and Gettu (1989) in Fig. 7.1 in which the results
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for different times to failure, plotted as oy vs. the brittleness number of BaZant (Sec. 5.1
and 5.2), can be seen to shift to the right as the time increases. '

Similar findings, indicating that the process zone size and fracture energy decrease as the
time to failure increases, have been recently reported by Wittmann et al. (1987), although
this study did not deal with size-independent fracture characteristics.

Lest it be perceived that the aforementioned findings of Bazant and Gettu contradiet
those of John and Shah, one should realize that John and Shah’s method determines bg.
sically the reach of the fracture process zone where there is significant displacement dye
to microcracking. But at the locations where the microcracks are opened most widely, the
stress may have already relaxed to zero. This portion of the microcracking zone would not
be manifested in the process zone size obtained by the size effect method, which eventually
gives the length of the zone over which significant bridging stresses are transmitted. It ig
quite conceivable that, due to stress relaxation, this length represents only a small part of the
length of the microcracking zone, as obtained by John and Shah’s method. More rigorous
studies are needed, however.

The experimental techniques for measuring fracture properties at high loading rates are
discussed by John and Shah (1985), Reinhardt (1984), Mindess (1984), and others.

7.2 Effect of Temperature and Humidity on Fracture Energy

This effect is likely to have at least partly the same physical mechanism as the effect of
crack velocity on loading rate. The rate of bond ruptures depends not only on the stress leve]
but also on temperature, according to the activation energy theory. Using Eq. 7.1 as the
point of departure, Bazant and Prat (1988b) have shown that, according to the activation
energy theory, the fracture energy of concrete should depend on the absolute temperature
as follows: oU

~wR

in which Tp = reference temperature, G} = fracture energy at reference temperature, and
v = constant. Eq. 7.2 agrees well with test results of the size effect method obtained for
various temperatures from room up to 200°C; see Fig. 7.2. Some resuits have also been
obtained for temperatures in the freezing range, indicating the trend in Fig. 7.2 to continue
down to about - 20°C, and then reversing (Maturana et al., 1988).

A similar dependence of G; on T was experimentally determined by Brameshuber (1988,
1989) who, however, used different formulas to describe the observed trend.

The aforementioned size effect tests were conducted at various temperatures on satu-
rated (wet) concrete as well as on concrete which was dried before the test. The difference
in humidity conditions appeared insignificant at room temperature, however, at high tem-
peratures the wet concrete had a much lower fracture energy than the dry concrete (Fig. 7.2,
after BaZant and Prat, 1988b). Assuming linear dependence on the specific water content,
parameter < was expressed as

Gy =Gy exp(% - %o), (1.2)

w
T=v%+(n- ‘70);l (7:3)
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G which w = specific water content, w, its value at saturation, and .7, n = value of v
ip dry and wet conditions (for the concrete tested, it was found that 4 = 600°K, and
" 1900°K).

The effect of temperature is quite pronounced in polymer concretes, in which viscoelastic-
jty of the polymer binder is no doubt an important factor (Vipulanandan and Dharmarajan,
1987, 1988, 1989a,b,c).

7.3 Effect of Cyclic Loading

Repeated loading tends to gradually increase the crack length even if the maximum
siress intensity factor of the cycles is well below its critical value for static loading. The
rate of increase of the crack length, a, with the number of cycles, N, has been shown for
many materials to be approximately described by the Paris law (Paris and Erdogan, 1963):
dafdN = C(AK/Kjc)™, in which C' and m are empirical constants. Although Eq. 7.4 is
essentially empirical and does not have a fundamental physical basis such as Eq. 7.1, it is
nevertheless an equation of rather general applicability. For concrete, however, it was found
(Bazant and Xu, 1989) that deviations from Paris law arise due to the size effect. They can
be described by the following generalization (BaZant and Xu, 1989):

da AKN™ . _ d \*
— "C(K_z,,.) . with Kpmo= Kr. ( I d) (7.4)

where dp is a constant having a similar meaning to dp in the size effect law (Eq. 1.4), K., is the
apparent (size-dependent) fracture toughness calculated from the peak load of the specimen
and LEFM relations, and d is the size of the specimen. Test showed that dy ~ 10d, when
the load is cycled between 0 and 80% of the maximum load for monotonic loading. Eq. 7.4,
shown in Fig. 7.3 by the three straight lines, is seen to agree quite well with the data for
three-point-bend notched beams of sizes 1:2:4. Paris law, by contrast, yields in Fig. J3a
single straight line and cannot describe the observed size effect. ,

An interesting point about Paris law is that the rate of crack extension does not depend
on the upper and lower limiting values of the stress intensity factor, but approximately only
on their difference, AK;. This might be explained by a sort of a shakedown in the fracture
process zone, with development of residual stresses after a number of cycles. Various other
interesting results on cyclic fracture of concrete, which pertain to particular test conditions,
have been obtained, for example, by Swartz, Hu and Jones (1978), Swartz, Huang and Hu
{1982), Swartz and Go (1984), Perdikaris and Calomino (1987), and others.

The interpretation of the A K;-value which should be substituted in Eq. 7.4 is subject to
some question with regard to the size effect on the value of K;.. The value of AKj should be
calculated for the elastically equivalent effective crack length a = ag + ¢, which means AK;
should be modified with respect to the length of crack extension froin the notch (Fig. 4.2).
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Fig. 8.1 Effect of Bond Slip of Reinforcing Bars Crossing Crack Bands
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Chapter 8. EFFECT OF REINFORCEMENT
§.1 Effect of Reinforcing Steel Bars

. When concrete is reinforced by a regular grid of reinforcing bars, it is often appropriate
“ consider concrete with the bar grid as one heterogenous composite material which is
macro-homogeneous on a larger scale. Obviously, in such a composite, the bars inhibit the
formation and propagation of cracks. I there were no bond slip, then the opposite faces of
s crack would not be able to open apart, and so there would be no fracture until the bar
peeaks. This simple consideration immediately clarifies that bond slip must take place and
must be taken into account. The property which matters is the stiffness of the connection
provided by the steel bars between the opposite faces of the ¢rack or crack band.
‘ Assurning the ultimate bond stresses U, to be approximately constant, the bar stress,
which is equal to o, at the crack crossing, decreases linearly over the distance of bond slip,
I;, on each side of the crack. From this stress distribution, one can estimate the relative
displacement of the bar against concrete over length 2L,. Furthermore, in a macroscopically
didiform or quasi-uniform field, the force carried by the bar at the crack crossing must
edullibrate the force per bar carried jointly by concrete and steel at locations beyond the
fond slip length. From these conditions it follows that (Bazant and Cedolin, 1980; Bazant
19856): & 1
b i 4

'-_[j_bl—-p-}-npa-’ (8.1)
i‘n which p = steel ratio, n = steel-to-concrete ratio of the elastic moduli, and A = bar &ross
gection. For the purpose of finite element analysis, one may further imagine an equivalent
bar which is anchored to concrete at the nodes of the finite element mesh and has no bond
itresses but a shorter equivalent free-slip length. Another simple formula for this length has
peen devised by Bazant and Cedolin (1980).
A detailed description of cracking in reinforced concrete requires a more sophisticated
theory; see e.g. Pijaudier-Cabot and Mazars (1989), and Breysse and Mazars (1988). These
studies used damage theory for concrete combined with an elasto-plastic model for steel bars.
?ﬁe results were interesting, giving information on the evolution of damage zones around
cracks, development of cracks and the global response of the structure. Bond stresses and
ship need to be also included in a detailed analysis; this has been done by Pijaudier-Cabot
et'al, (1989) in terms of a nonlocal damage model which also yields the size effect.

8.2 Fracture in Fiber-Reinforced Concrete

. Bond slip of the fibers is a phenomenon similar to the'slip of reinforcing bars, and again
??8 a major effect on fracture, along with the phenomenon of fiber pull-out due to short
egth.

Potentially useful improvements in the mechanical behavior of tension- weak concrete
Matrices can be effected by the incorporation of fibers. Similar to the behavior of plain
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1980; Wecharatana and Shah, 1983b; Visalvanich and Naaman, 1982) are the singularity
assumptions at the crack-tip, the criteria used for crack initiation and growth, and the
stability of the crack growth. More recently, Jenq and Shah (1986) have proposed a fracture
mechanics model to predict the crack propagation resistance of fiber reinforced concrete thaj
is somewhat different from either of these two approaches. Fracture resistance in fibrous
composites according to this model is separated into four regimes which include: linea
elastic behavior of the composite; subcritical crack growth in the matrix and the beginning
of the fiber bridging effect; post-critical crack growth in the matrix such that the net stress
intensity factor due to the applied load and the fiber bridging stresses remain constant
(steady state crack growth); and the final stage where the resistance to crack separation i
provided exclusively by the fibers. The model uses two parameters to describe the matrix
fracture properties (K7j,, modified critical stress intensity factor based on LEFM and the
effective crack length, and é¢crop, the critical crack tip opening displacement, as described
earlier for unreinforced concrete), and a fiber pull-out stress-crack-width relationship as the
basic input information .

Mobasher, Ouyang and Shah (1989) recently developed an R-curve approach for fracture
of cement-based fiber composites. The parameters of the R- curve can be uniquely deter-
mined according to material properties, such as K}, and écrop defined by Jenq and Shah
(1986). Toughening of the matrix by the fibers is incorporated into the R-curve by fiber-
bridging pressure. By incorporating the closing pressure in the equilibrium conditions during
the stable crack propagation, the onset of instability of matrix is shown to be dependent on
the fibers.

All of the fictitious crack models rely on the stress-crack-width relations obtained exper-
imentally. There have been some attempts at predicting the macroscopic stress-crack-width
relations of the composite from a study of the mechanics of the fiber-matrix interface. They
can be grouped as models based on the shear-lag theory or modifications thereof (Lawrence,
1972; Laws et al., 1972; Gopalaratnam and Shah, 1987b; Gopalaratnam and Cheng, 1988),
fracture mechanics based interface models (Stang and Shah, 1986; Morrison et al., 1988)
and numerical models (Morrison et al., 1988; Sahudin, 1987). Many of these models have
been successful to varying degrees in predicting the peak pull-out loads and the load-slip
response of idealized aligned single fiber pull-out. These models have been tremendously
useful in understanding the basic mechanics of stress transfer at the interface and showing
that interfacial debonding plays an important role in the fracture of such composites. Signif-
icant research efforts will, however, be needed to modify these models to predict the pull-out
characteristics of inclined fibers that are randomly oriented at a matrix crack (randomness
in both the angular orientation as well as the embedment length).

Stang and Shah (1989) proposed a damage model for the study of distributed microc-
racking. The compliance of the composite subjected to uniaxial tension was initially derived
according to the shear lag theory. A damage variable, which is a function of crack spac-
ing and fiber debonding length at the crack section, was introduced. After specifying the
damage evolution law by a damage surface, the stress and strain response of fiber reinforced
composites subjected to uniaxial tension can be calculated.

Fracture has also been studied for glass-fiber polymer (polyester) concrete. Such materials
show considerable nonlinearity and stable crack growth prior to peak load, and the R-curves
that have been measured reflect this behavior (Vipulanandan and Dharmarajan, 1987, 1988,
1989a,b,c). =
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Chapter 9. CRACK SYSTEMS

In contrast to metallic structures, concrete structures contain numerous large cracks
which are close enough to interact. Therefore, understanding of crack interaction is more
important than it is for metallic structures.

9.1 Response of Structures with Interacting Growing Cracks

Consider a structure with cracks of lengths a;(i = 1,2...n) loaded by a system of forces
ot boundary displacements, shrinkage or thermal dilation proportional to parameter A. The
energy (under isothermal conditions, more precisely the Helmholtz free energy) of the struc-
tural system is the sum of the strain energy U, which depends on the load parameter as well
as the crack lengths, and the energy needed to produce the cracks, i.e.,

F=Ulm,..an)) + 3 /o R(a!)dal (9.1)

in which R = specific energy (per unit crack length) required for crack growth and a! are the
crack length values between 0 and a;. In the case of linear elastic fracture mechanics, R = Gy.
The equilibrium condition of the system is 6 F = L(U,; +R(a;))éa; = 0 for any variation a;,
which implies that —U,;= R(a;). This is the well-known condition of crack propagation
already stated at the beginning. The stability of the structure with the cracks requires that
the second variation 62F be positive for any admissible fa; (Bazant and Ohtsubo, 1977,
1978; Bazant and Wahab, 1979). From Eq. 9.1, we have

1 3R(a.~)2 1
2 = - . . . —_— AY] — —A.. . .
§F = E} ;S 2U,IJ ba;ba; +Z§ B (6a;) %3 %3 2A.,5a,5a, (9.2)
in which A;; form a square matrix,
Aij = Ui; +2R,; 6;;H(ba)) (9.3)

Here the subscripts following a comma represent partial derivatives with respect to a; ,
B;=1ifi=jand 0if ¢ # j; and H(6a;) = 1 if §a; > 0, and 0 otherwise. Note that
=U,i= K}/E' where K; = stress intensity factor of crack a; (any mode), and —E'U;; =
2K K ; =2K; K;;.

As the loading parameter A increases, the cracks grow. At a certain crack length it can
happen that there are more than one solution for the crack increments, i.e., the path of
:he system plotted in the space with coordinates a; bifurcates. It can be shown that the
sifurcation condition is

det A,‘j =90 (94)

After bifurcation, the path which is followed is that for which (Bazant, 1988):

For displacement control: 4§2F = min
For load control: §2F = max (9.5)
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This condition is derived from the fact that the path which occurs must be that with the
maximum internal entropy increment.

More recently, Bazant (1989b) and BaZant and Tabbara (1989) have shown that the
tangential stiffiness matrix containing N interacting cracks of lengths a;(i = 1,...N) is

v v 82F 62F
T __ s :
KL,=K,-Y3 Vim G e Barda, (9:6)

k=1 m=1

where )
¢r = displacements (r = 1,... Ny, Ny = number of displacements);

K?, = 0*F/dq,8q, = secant stiffness matrix of cracked structure;

v = number of cracks that propagate during loading (cracks a,,1,...ay remaining sta-

tionary, v < N);

Ui, = inverse of the matrix ®y,,, in which

i = 0*F[0ardam + bxmdRm/dan; and

Run(am) = given R-curve of the m-th crack (in LEFM, Ry =Gy, dRy [dan, = 0).

Eq. 9.6 is valid only if ba, = —X;Up,2; 6q582F/3ak8q,, > 0for all m < v and
£,02U/8andq; > 0 for all m > v. If not, the set of propagating cracks is different than
assumed. Obviously, various sets of propagating cracks must be tried until the foregoing
conditions are met for all m. Based on Eq. 9.6, 26°F = %,Z,K},6¢.6qs, which needs to be
used to determine the stable path of evolution of the crack system. For further details, see
the textbook by BaZant and Cedolin (1990). '

9.2 Interacting Parallel Cracks

The preceding formulation has an interesting application to systems of parallel eracks
caused, e.g., by drying shrinkage or cooling stresses, or by bending. In the idealized cdse of
a massive wall treated as a half-space, the shrinkage cracks start at some close spacing s and
then, as the drying front advances into the wall, they continue to grow inward. Calculations
on the basis of Eq. 9.2 have shown that the system becomes unstable when the crack length
reaches the value approximately a; = 1.7s, at which point the drying front is approximately
at the depth 2.6s (Bazant and Ohtsubo, 1977; Bazant, Ohtsubo and Ach, 1979; Bazant and
Wahab, 1979). At this point there is a bifurcation of the equilibrium path in the space of a;.
Every other crack stops growing and closes, keeping the length a,, while the intermediate
cracks of length a; continue to grow, their spacing doubled to 2s. The arrest of the growth
and closing of every other of the leading cracks is again repeated later, and so on. This
produces the crack systems shown in Fig. 9.1.

The spacing of the cracks, s, is important for determining their width. As is well known,
it is desirable to keep the crack width less than about 0.lmm to 0.4mm, mainly because
narrow cracks are not really continuous and do not serve as good conduits for moisture or
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corrosive agents. If the average shrinkage strain or cooling strain is ¢®, and the bedy is
restrained, then the opening of the cracks is

S~ sl (9.7)

The drying cracks that have stopped growing will gradually close (Fig. 9.1). Thus, one
must substitute in Eq. 9.6 the spacing of the leading cracks, which evolves as s = so, 230,
459, 850,.... The spacing of the leading cracks generally remains between s = a3 /1.7 and
2a;/1.7, i.e., on the average s =~ 0.9¢;. Thus, in view of Eq. 9.6, the opening width of the
shrinkage cracks is, on the average,

‘Sc o~ 0.9‘11 60 (98)

The behavior is rather similar for parallel cracks caused by cooling, as well as parallel
cracks in beams caused by bending or axial force. In reinforced concrete structures, the
gradual opening of the shrinkage cracks with the progress of drying or the bending cracks
with the progress of loading, is prevented by reinforcement. In fact, it is possible to calculate
(provided the bond slip length is known) the minimum reinforcement which is required to
keep the cracks propagating with equal lengths at their small initial spacing. Such a re-
inforcement prevents the opening width of the cracks from exceeding a certain value. The
necessary reinforcement has been calculated from the stability condition based on Eq. 9.2
in Bazant and Wahab (1980), and it turned out that, for a typical situation, the minimum
reinforcement was about 0.2% of the cross-sectional area of concrete. Thus we see that the
empirical rules for minimurn reinforcement are in fact explicable by means of fracture me-
chanics. An interesting point, though, is that the precise value of the minimum reinforcement
needed to prevent progressively wider opening of the cracks is not a constant but depends
on the reinforcement outlay, the structural geometry, the distribution and history of pore
humidity or temperature, etc.

The phenomenon just described may also be regarded as a kind of localization of the
cracking strain into some preferred cracks.

9.3 Crack Spacing and Width in Beams

Although the current code provisions regulating the width of cracks are empirical, a
deeper understanding can be gained through fracture mechanics. One must distinguish be-
tween: (1) crack initiation, which corresponds to the peak point of the stress-strain diagram
and signals the start of development of microcracks, and (2) crack completion, which cor-
responds to a reduction of the tensile stress to zero and coalescence of microcracks into
continuous cracks.

The crack initiation is governed by the strength criterion, while crack completion is
governed by the fracture mechanics energy criterion. For approximate analysis, one need
not write the energy balance condition for infinitely small crack length increments, but one
can write it for the entire change from the uncracked to a fully cracked state:

AU = AW; + AW, (9.9)
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in which AU = total release of strain energy, AW; = GyA. = energy. needed to produce
fracture (A, = area of all the cracks), and AW, = energy dissipated by bond slip which
occurs simultaneously with cracking. . '

Consider now concrete that is restrained by steel bars which are sufficiently strong to
prevent the previously discussed instabilities of crack systems in which some cracks close
and the spacing of the open cracks multiplies. For the sake of simple illustration, consider
a round concrete rod in tension, with a single steel bar in the middle (Fig. 9.2). This also
approximately simulates the behavior of the concrete zone surrounding one of the bars in a
beam, in which the cross section area is subdivided into non- overlapping zones of concrete,
each interacting with one bar only. One may distinguish four simple, idealized cases (Bazant
and Oh, 1983b, 1984). ‘

Case 1la. Strength Limit and No Bond Slip. - In this case, the strain at which
cracking begins is:

&> fi/E (9.10)

Case 1b. Strength Limit and Bond Slip. - By force equivalence condition, the force
across the crack plane, A.f], must be equal to the bond force UL, accumulated over the
bond slip length L;, (U] = ultimate bond stress). Since s > Ly and A, = 7b%/4 (b = diameter
of the concrete cross section, and the cross section of the bar is neglected), the cracks can
begin to form in this manner if

s > (xfi/AU}) ¥ (9.11)

Case 2a. Energy Limit and No Borid Slip. - As an approximation one can imagine
that the full formation of a crack relieves the stress from the triangular areas cross-hatched
in Fig. 9.2a. The volume of the region obtained by rotating this area about the bar axis is
Vi = wb3[12k. Therefore, AU = Vi02/2E (o1 = E¢,;). Also ULy = A.f!. Neglecting AW, ,
we have AU > AW, . So we find the condition for complete crack formation:

€ > (6kGy/ E)Y/2p=112 (9.12)

Case 2b. Energy Limit and Bond Slip. - In this case, instead of oy = Ee, we Bave,
from the condition of equilibrium with the bond stresses over length s, oy 7b?/4 = Uls, all
the other equations being the same as in case 2a. It follows that complete cracks can form
while there is bond slip if

s > (37%% E G [8UNV21? (9.13)

The foregoing calculations (Bazant and Oh, 1983b, 1984) are based on the assumption
that, the stress release zones of adjacent cracks do not overlap, as shown in Fig. 9.2a. If they
do, a slightly different calculation is required.

) A somewhat more sophisticated calculation (Bazant and Oh, 1983b, 1984) yields con-
f;ll'luous relations between spacing s and strain e, representing a transition from microcrack
initiation to complete crack formation. These calculations have been shown to agree with
the test results of Clark (1956), Chi and Kirstein (1958), Mathey and Watstein (1960),
Hognestad (1962), and Kaar and Mattock (1963).
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As another illustration of the fracture approach to the formation of complete cracks,
consider the cracking of the concrete cover associated with strain ¢, in the concrete ba.r
shrinkage and temperature effects disregarded; Fig. 9.2b. For the sake of simplicity, comnder
two-dimensional action only. Formation of a complete crack relieves the initial strain energy
density Ee?/2 from volume V; = k h? where V} is the cross-hatched area shown in Fig. 9.2b,
and k = some constant. Neglecting AW,, we must have AU > AW; or Gyjbh < (E€2/2)V,
Here we may substitute ¢, = é./s. Furthermore, assuming the bar to be sufficiently strong,
we know from the previous analysis of stability of a parallel crack system that the spacing
of the open cracks will be s = k;h where k; is some constant. Thus we obtain:

6. > k1(2Gsb/kE)Y/?h}/? (9.14)

Egs. 9.9 - 9.13 are interesting in that they rationalize the influence of the thickness b
of concrete around the bar (or bar spacing) and the influence of the thickness of concrete
cover. With regard to Eq. 9.13, one may recall the empirical formula established by extensive
statistical analysis of test data by Gergely and Lutz (1968, see also Meier and Gerge}y, 1981),
according to which the crack width &, is roughly proportional to A}/®. Since A. is roughly
proportional to A, this is only slightly different from Eq. 9.13. Under some more sophisticated
assumptions, the proportionality of &, to A/3 can be obtained by fracture energy analysis
(Ba- zant and Oh, 1983b,1984).

The foregoing discussion makes it clear that various existing provisions regarding mini-
mum reinforcement and crack width could be at least partially justified and probably also
improved by the use of fracture mechanics.

9.4 Interacting Microcracks

Modeling of the microcrack system in the fracture process zone helps in developing ra-
tional stress-displacement or stress-strain relations for the fracture process zone. In such
models, it is important to take into account the interaction of individual microcracks. This
interaction may lead to instabilities and localization of cracking.

Consider for example the idealized situation in Fig. 9.3. In the terminal phase of microc-
racking, two adjacent crack tips coalesce as the ligament between them is getting torn. This
coalescence may be roughly modeled as the terminal propagation of a circumferential crack
in a round bar (Fig. 9.3) while the radius of the circular ligament approaches zero. Based
on the known solutions of the stress intensity factor for this problem, one can calculate the
diagram of the applied remote stress vs. the displacement due to cracking; Fig. 9.3b. An
interesting property of this diagram is that it possesses a maximum displacement after which
there is a snapback instability.

It can be proven more generally that a maximum displacement with snapback instability
must occur for every type of crack ligament tearing, provided the ligament transmits a force.
On the other hand, if only a moment but no force is transmitted across the ligament, then no
snapback gccurs (Bazant, 1987b). Since the latter case is unlikely to prevail in the fracture
process zone, it follows from this analysis that the stress- displacement (or stress-strain)
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‘felations for the fracture process zone in nonlinear finite element analysis should exhibit a

maxlmum displacement (or strain) at which the stréss suddenly drops to zero. However, it is
fiot certain whether this conclusion is also valid in thie presence of friction and other inelastic

‘phenomena.

A rather powerful approximate technique for considering interactions between randomly
jocated cracks in a large body has recently been developed by Kachanov (1985, 1987); see

‘also Benveniste, Dvorak, Zarzour and Wung (1988).

UONCLUDING REMARKS

r'he present exposition of the state-of-the-art in concrete fracture concepts and determi-
pation of material properties reflects a tremendous surge in research activity in recent years
and documents a large degree of progress which has been achieved over a relatively short
si;a‘n of time. While only about ten years ago the applicability of fracture mechanics to
concrete structures was doubted, many experts now agree that fracture mechanics can have
a considerable impact, improving the safety and economy of concrete structures and making
new designs possible.

In three follow-up reports, ACI Committee 446 on Fra.cture Mechanics will attempt to
review the state-of-the-art in applications of fracture mechanics to structural behavior, with
a view toward potential code improvements, the state-of-the-art in finite element fracture
analysis of concrete structures, and the state-of-the-art in modeling of the rate effects and
dynamic fracture of concrete.

Acknowledgment. Thanks for help  with compilation of the references and various
revnslons are due to J.-K. Kim, Y. Xi, M.R. Tabbara, and M.T. Kazemi (all graduate research
assistants at Northwestern Umvetsxty)
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Appendix I.- Derivations of Some Formulas

Derivation of Eq. 1.4: The size effect law in Eq. 4.1 can be derived most generally by
dimensional analysis and similitude arguments (Bazant, 1984a) on the basis of the following
hypotheses: (1.) The energy release of the structure is a function of both: (a) the length
of fracture, a, and (b) the characteristic fracture process zone, ¢;. (IL) The length a, at
maximum load is not negligible and is proportional to structure size d, while ¢; is a structural
property independent of d.

The total amount of energy released from the structure into the fracture must be ex-
pressible in the form

W= Lol bdF(6,,0,), 0y =2 6,= (A1)

2E

where oy = P/bd; 6,0, are independent nondimensional parameters (their number follows
from Buckingham’s theorem of dimensional analysis), and F is a certain function which may
be expected to be smooth. From the crack propagation condition 3W/3a = Gyb, one gets

. _ 2EG; [aﬁ(al,o,) -

el vk ek 24 2
d a6, (A.2)
We now choose the state 8, = 0 (which corresponds to d — co) as the reference state, and
expand 0F/86, into Taylor series about this state i.e., F/80; = Fy + F20, + F30% + Fi63 +
... where Fy, F,,... are constants if geometrically similar shapes (same ;) are considered.
Substitution into Eq. (A.2) and truncation of the series after the linear term yields:

| 26
ON = (__—cmf T F1d) (A3)

This yields Eq. 4.1 if one denotes B = /(2E'G;)/(Facs f}) and dg = Fcg/Fy, and notes that
B and d; are constants.

From the size effect law (Eq. 1.4), we have P? = (onbd/c,)? = (Bfubd[cy)?do/(d + do).
Substituting for P2 in Eq. 5.2 and noting Eq. 6.24 for G, we get

Gla) = Gy ;%ﬁ (A4)

The critical state occurs if fracture propagation is possible also for the next adjacent
state, i.e. if 3(G — R)/8d = 0. Because dR(c)/8d = 0, we must have 3G/dd = 0. Since
a=afd=(ap +c}/d, we find fa/dd = ~c/d* = (ap ~ a)/d, and so substitution of Eq. A4
into 8G/8d = [0G(a)/da)8c/dd + 8G[8d = 0 provides

d+ do = dog()/['(@)(ex — )] (A5)
Substi;.uting this for (d + do) in Eq. A 4, we further obtain G(a) = Gy[¢'(a)/9(c0)]c/do-

Finally, noting that dy = csg(c0)/¢'(cp) (from Eq. 5.6), we obtain Eq. 4.1 (BaZant and

Kazemi, 1988). Furthermore, substituting Eq. 4.1 into Eq. A4 in which (R = G) and
eliminating d with the help of Eq. A.5, Eq. 4.2 ensues.
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