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Due to the statistical nature of material properties, crack growth is a random
process. This process may be described by the Markov chain model (see Fig.
1). However, model must exhibit R-curve behavior. The basic relation for the
Markov chain model (Bogdanoff and Kozin, 1985) is
X
":x = E(’ P (0

in which p. is the initial state probability vector, p. = {m, mn,, .. ®, .,
T =0 0 1 2 B-1
0}, Z "j = 1, in which nj = Prob{damage state j is initially occupied). We

1
starts from state I; Py is the damage state probability, Py = (px(l). px(Z),

assume w, = 1, with other nJ. = 0, which means the crack (or damage) always

px(B))T where px(j) = Prob(damage state j is occupied at stress level X); P is

the probability transition matrix,

P, q 0o RPN ) 1
Pr %
[¢] p3
P=.o (2)
0 0..pg, 9,
.0 1
L J
where p, = probability of remaining in the state i during one loading step,

and q; = probability that in one loading step the damage moves from state i to

state i+l The present model is a unit-jump, discrete-variable and
state-dependent stationary process. P and q; can be determined from the

deterministic relation of stress and crack length and the deviation of this
relation. The deterministic relation for the nomina! stress may generally be
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where X represents the mean nominal stress (which is proportional to the crack path @
applied load), Ec is initial elastic modulus, R(a - aO) is the R-curve, F(asd)

is a geometry dependent !\J—;létion. available in handbooks (e.g. Tada, 1983), a
is  the current crack length, and a, is the initial crack (or notch) length.
The R-curve can be obtained from the size effect law proposed by Bazant

} non-decreasing
(Bazant and Kazemi, 1990), calibrated by size effect measurements.
~ The variance at state j ‘may be expressed approximately as a linear
LS

crack propagation

function of the crack length a,
(a, - a.)
2 J 0 2
o, = o (4)
j (a aoj max

max

where a can be obtained from Eq. 3. 0'2 , representing the variance of
max max :

the peak load, may be considered to be size independent, because the random a
scatter is mainly related to the size of the fracture process zone during the
loading process and at ultimate state the fracture process zone size is almost
independent of the structure size.
The formula for any state j can be derived from Egs. 3,4 stay
(% - %) |
B, = . + B, (s NN
] X j 1 O N

2
.-aJ._l) \C :‘/ o

i1 _ wall go right one way random wak

mean path

o
[+]

o

where By = ry/liery). and g; = Vllry). Fig. 1 One way random walk model

Consider, now, a notched three-point-bend beam specimen of high
strengtconcrete as an example. The details of the test can be found in Gettu
(1990). The R-curve obtained from the peak loads is shown in Fig. 2. Fig. 3
shows the probability at each damage state and nominal stress. One can see
that, for example, at loading leve! 61 (almost the peak load) the probability
for the occurrence of the damage state 61 (almost the failure state) is very B=0215
high, more than 90%. On the other hand, the probabilities for the occurrence dy=2.09
of the lower damage states, 1| - 50, at the same loading level are almost zero, 0.30 4 E _2.2”03 psi
which is true in reality. : [

An advantage of present model is that the wample curve can be easily
simulated by the computer. In this manner, the scatter band and the trend of
damage evolution can be seen. Fig. 4 shows the sample curves of the relation
between the crack extension and the loading level. One can clearly see that
the generated sample curves represent the observed test curves quite well. R g
This means that the present model can characterize the probabilistic structure ‘l—dJ ]L
for the entire loading history from the initial state up to the failure load. 0.10 P\ [N A
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Fig. 4 Samples of load - crack propagation



