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ABSTRACT

Propagation of bending fracture along a floating sea ice plate, representing an elastic plate on
elastic foundation, is analyzed in the sense of linear elastic fracture mechanics (LEFM), assuming
the entire plate thickness to be fractured all the way to the fracture tip. The analysis focuses on
the size effect. Two specific problems are solved in an idealized form: steady state propagation of
thermal bending fracture and vertical penetration of an object through the plate. In both problems
it is found that the nominal strength (equivalent to the critical temperature difference in the first
problem) decreases as (thickness)=3/%. In the thermal problem, the (~3/8) power law is exact
(under the hypotheses of the analysns) while in the penetration problem it is only approximate,
approached asymptotically for large sizes. This (—3/8)-power law differs from that known for
two-dimensional or axisymmetric LEFM, in which the nominal strength scales as (size)’l/ 2. the
difference is caused by the presence of a characteristic length for bending disturbance decay along
the plate. An in-plane compressive force makes the size effect stronger than (thickness)‘:’/s, and
an in-plane tensile force makes it weaker. Creep and propagation rate effects are approximately
taken into account in the thermal problem, and so is the effect of in-plane forces on bending. A
numerical example shows that the temperature changes occurring in the Arctic suffice, according
to the present theory, to produce bending fractures. Such fractures might serve to initiate the
formation of leads of open water, pressure ridges and rafting.

INTRODUCTION

Ice, especially sea ice, is a quasibrittle material whose failure behavior is intermediate be-
tween plasticity and linear elastic fracture mechanics (LEFM). The latter must be approached
for large-scale behavior, as theory of quasibrittle fracture indicates [Bazant and Cedolin, 1991].
Fracture mechanics of ice has been studied extensively and much has already been learned [see,
e.g., Sanderson 1988, Urabe and Yoshitake 1981, Bentley et al. 1988, DeFranco and Dempsey
1990, Dempsey 1989, 1990, Dempsey et al. 1989, 1990, 1991, Ketcham and Hobbs 1969, Palmer
et al. 1983, Parsons 1991, Parsons et al. 1987, 1980, 1989, Stehn 1990, Timco 1991, Timco
and Sinha 1988, and Weeks and Mellor 1984]. It appears, however, that most of the existing
studies have been confined to the laboratory scale, from which the applicability of fracture
mechanics to field problems is not directly apparent.
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A low degree of notch sensitivity of laboratory specimens has been raised as an objection to
applying fracture mechanics. Recently, however, Dempsey et al. [1991] showed that the notch
sensitivity greatly increases with specimen size. This corroborates that indeed the applicabil-
ity of fracture mechanics is a question of scale, as theory indicates. The problem has often
been confused by the myth of "material brittleness”. It has often been thought that a steep
decline of the post-peak load deflection diagram indicates material brittleness and the occur-
rence of instability right after the peak load state means perfect material brittleness. These
phenomena, however, cannot be material properties. Rather, they are properties of the entire
structure, being governed by stability and bifurcation criteria for the structure, and change
with structure size as well as shape. Furthermore, it has often been suggested that “material
brittleness” is determined by the strain rate, slow deformation leading to ductile response and
fast deformation to brittle response. But again, the type of response depends on the entire
structure, which cannot be correctly characterized without taking creep separately into ac-
count. It is even possible that the structural response is more brittle for slow loading than
fast loading (this occurs when stress relaxation in the fracture process zone is so strong that
it causes this zone to shrink). Brittleness can be meaningfully, unambiguously characterized
only by some measure of proximity of the response of the entire structure to LEFM. It is a
structural characteristic, which of course depends on the structure size (and shape).

It might be objected that the size effect on the nominal strength of structures ought to
be described by Weibull’s statistical theory. Recently it has been shown, however, that this
explanation is incorrect for quasibrittle materials in which large stable crack growth occurs
before the maximum load [BaZant and Xi, 1990].

Strictly speaking, ice fracture should be analyzed according to nonlinear fracture mechanics
in which the localization of damage and the finite volume of the fracture process zone are

. taken into account. However, such analysis, already accomplished for concrete, must be done
numerically on a large computer. This is not only difficult but obscures the basic general
properties. To bring such properties to light, we will use an analytical approach, which must of
course be suitably simplified to be feasible. The simplification is achieved by adopting LEFM,
which represents an extreme type of behavior. The reality in general lies between plastic
limit analysis and LEFM, the latter being approached with increasing size. While plastic
limit analysis (or elasticity with allowable stress) exhibits in general no size effect, LEFM
exhibits the strongest possible size effect when geometrically similar situations are compared.
In recognition of these facts, the size effect has currently emerged as a topic of major interest
for ocean ice dynamics [Curtin, 1991).

We will focus on two important problems: (1) Initiation of long fractures that serve as
the triggering events for the formation of leads of open water, pressure ridges and rafting, for
which we will explore the hypothesis that they might be caused by the release of the energy of
thermal bending moments, and (2) penetration (downward or upward) of an object through
the floating ice plate. In this paper the analysis is presented in a rather condensed form, but
the analysis of thermal bending fracture will be given in detail in Bazant [1992).
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Figure 1: (a) Floating ice plate, (b) its deflections, (¢) the beam on elastic foundation, (d)
view of propagating fracture from top, and (e) profiles of temperature and thermal stress.
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state of the plate in the region 1284 is very complex. But we do not need to know it if we
study only the steady-state crack propagation. In that case, if we consider crack extension by
dz, the rectangular region 5678 (Fig. 1d) obtained by moving rectangle 1284 ahead by dz with
the crack advance contains the same amount of energy as the original rectangle. The energy
contained within rectangle 2679 (Fig. 1d) flows into the rectangle 1234 as it moves forward
with the crack, and the energy contained in the rectangle 1584 (Fig. 1d) has flowed out. So
the overall energy change is given by the difference between the energies contained within the
rectangles 2678 and 1584, which is what we have calculated.

The energy dissipated per unit length of fracture may be expressed as W = hG; where G;
is the average (mode I) macroscopic fracture energy of the material over the ice plate thickness;
Gy=K f/ E where Ky = average fracture toughness [Broek, 1986] and E is Young’s modulus
of ice. Setting hGy = W (Eq. 2) leads to the following expression for the critical thermal
bending moment at which the fracture must propagate:

ohG
My = \/ 3 ,\3’ 2

The difference of ice temperature from the temperature of the sea water, Tp, may be written
as AT(z) = AT: f(¢) where z = vertical coordinate; { = z/h = relative vertical coordinate,
AT, = temperature difference between the top and bottom faces of the plate, and f = function
defining the temperature profile (Fig. le), which must be calculated in advance. Taking into
account that the normal strains in both the z and y-directions as well as the vertical normal
stresses are zero, we find that the thermal bending moment in the plate before fracture is Mz =
ff,{jz EaAT(z)zdz, with E = E/(1-v) where a = coefficient of linear thermal expansion of ice,
and the value of the elastic modulus E is taken as the average over the plate thickness. We also
ignore the variation of a throughout the plate thickness and take an average value. Substituting

for AT(2) and denoting It = fl{“}z f(¢)¢d¢ (a constant), we obtain Mr = EaAT h*Ir.

Fracture will propagate if Mt = M;. From this, the critical temperature difference required
for crack propagation is AT., = ATy = (Ealrh?)~1(ohG;/2)%)!/2. Substituting now the
foregoing expressions for A and D and rearranging, we obtain the result:

- . 1 — v)5/8 p1/8

AT, = C, h-¥8,  with C, = ﬂ[(s(l _3’2)15 /8 E‘s/f:’i i (3)
An important property to note is that the critical temperature difference depends on 4, i.e.
there is a size effect (or scale effect), as shown in the plot of Fig. 2a. According to plastic limit
analysis or elastic analysis with allowable stress, there is—as a rule—no size effect, i.e. ATj is
independent of h. The size effect is the salient property of fracture mechanics. In the present
problem, the size effect differs from that known for two-dimensional or axisymmetric prob-
lems, for which linear elastic fracture mechanics (LEFM) generally predicts the critical stress
or critical temperature difference to be proportional to size='/2, provided that geometrically

similar structures with similar cracks are considered.
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Figure 2: (a) LEFM size effect in thermal bending fracture, (b) transition to in-plane fracture
with its size effect, and (c) effect of creep on size effect.

Fracture in Presence of In-Plane Forces

The sea ice plate is normally subjected to a significant in-plane force N, which we consider
to be normal to the crack direction (defined as negative when compressive). The second-order
geometric effect known from the theory of column buckling must then be taken into account.
Therefore, we now generalize the solution to a semi-infinite beam on elastic foundation carrying
axial force N. The slope (derivative) w’ of the deflection curve w(y) has generally the form
(see e.g. Bazant and Cedolin’s textbook, 1991, Sec. 5.2) w' = (Asinry+ B cosry)e~*¥ where
r=M1+7 s=A/T=7, v = -=N/(2v/2D) and A and B are arbitrary constants. The
boundary conditions at the crack, y = 0, are v’ = ¥ and Dw"” — Nuv’' = =V = 0 where the
primes denote derivatives with respect to y and V = vertical shear force. From these two
conditions: B = —9 and A = —9[s? — r2 — (N/D)]/2rs. Substituting this into the expression
for the bending moment in the beam, which is expressed as M = Dw” after w” has been
calculated by differentiating w’, one gets (for y = 0) M = (1 -27)(1—)"Y2ADY. The energy
release rate due to fracture propagation may now be calculated as W = M9/2:

_VitT M )
1-2y 2AD
Setting this equal to the energy dissipated by fracture, W = hGy, and solving for M, one
obtains for the critical thermal bending moment M causing fracture propagation the result:
M} = 2hADG/(1 - 2v)/\/T=7. From the condition that M; = Mr, it follows that

1-v 1-2y

Finally, introducing the foregoing expressions for A, D and C;, and rearranging, one obtains
the result:

ATe = Cy K38 (1 - 293 (1 = 4)" V4 = ¢y h™3/3(1 - % T4--) (6)
in which v = —k;5/vh, with @ = N/h and k; = [3(1 — v?)/Eg)V/2.

The most interesting aspect property to note is that the critical temperature difference
again exhibits size effect. Asymptotically for small |N| the size effect is the same as before.
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But as N becomes negative (compressive) of increasing magnitude, the size effect is getting
-3/8

stronger than h~%®, and as N becomes positive (tensile) of increasing magnitude, the size
effect is getting weaker. Furthermore, the influence of the average in-plane stress on the size
effect diminishes as the plate becomes thicker.

The fact that, for similar temperature profiles, a thicker plate must fracture at a smaller
temperature difference can explain Assur’s [1963] observation that new fractures in the arctic
pack-ice generally do not form along the lines of weakness, such as thin refrozen leads, but run
through intact floes and across old pressure ridges. From the strength theory, which gives no
size effect, this observation cannot be explained.

If in-plane forces are present, they alone can produce fracture. So they can have a strong
effect. In the foregoing we have tacitly assumed that fracture extension causes no release of the
energy of the in-plane forces in the ice plate, in the manner of tensile cracks. For the sake of
simplicity, assume that o, = 0. The in-plane remote uniform normal stress is & = Tyy = N/h.
The average stress value that would cause the crack in an infinite ice plate to propagate is [e.g.
Broek, 1986]: @ = {/E Gy/7a in which a is the half-length of the crack (Fig. 1d); Gy is the
large-scale fracture energy for in-plane through-fracture of the ice plate (which could be much
larger than the Gy-value for a crack propagating across the plate thickness), and K is the
associated large-scale in-plane fracture toughness. Note that the strength & according to the
last expression is independent of the plate thickness.

Because 7 « a~!/2, the plot of log@ vs. loga (Fig. 2b), is a straight line of slope -1/2.
In this plot, the thermal bending fracture is represented by a horizontal line since the crack
length a does not appear in Eq. 3 or 6. Obviously, these two straight lines intersect at a certain
critical crack length (Fig. 2¢): _

0o = Toh o

The value of 7 is basically controlled by the mechanism of ice floe movements in the
arctic ocean and is independent of the thermal effects. It follows that, when an in-plane force
is present, thernal bending drives the fracture formation and growth only at the beginning.
When the crack becomes long enough, namely @ > a., the thermal stresses must cease to
matter and the fracture becomes driven by in-plane forces. Thus, steady-state propagation
of thermal bending fracture can go on ad infinitum only when the in-plane force happens to
vanish, N = 0, which is an unlikely situation. Otherwise, the thermal bending fracture is only
quasi-steady, up to fracture length a,.

Rate and Time Effects

The foregoing analysis has neglected creep, which is very strong in the case of ice. One effect
of creep is to relax thermal stresses. This can be approximately taken into account by replacing
the value of elastic modulus E in the expression for M with the effective (sustained) modulus
Eeys = E/(1 + 1) where E represents the secant modulus for rapid (nearly instantaneous)
loading and ¢ is the creep coefﬁcient, representing the ratio of creep-to-elastic strains for
the typical duration ¢; of the temperature difference in the plate. Because of the pronounced
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nonlinearity of the creep strain as a function of stress o, the value of this ratio varies through
the thickness of the plate as well as along the plate. For the sake of simplicity, we assume that
we can approximately take a certain average value of ¢;, determined as the creep-to-elastic
strain ratio for a certain average stress level go; then ¢; = ¢,/¢p where ¢ is the instantaneous
strain and ¢ is the creep strain.

Another effect of creep is to reduce the energy release due to crack propagation. Let t,
be the time that the fracture process zone (the oval-shaped zone F in Fig. 1d) takes to travel
across a fixed point. Noting that the value of the cylindrical stiffness D is proportional to E,
we can take creep approximately into account by replacing D in the expression for M; with
D /(14 ¢p) where ¢, is the creep coefficient representing the value of the creep-to-elastic strain
ratio for the time duration t,. Again, due to nonlinearity of the creep law of ice, this ratio
varies through the plate thickness and along the plate but, for the sake of simplicity, is taken
as a constant, evaluated for the average stress level oy.

One may now retrace the foregoing derivations, replacing E and D as indicated. This shows
that Eqs. 3 and 6 remain valid but the expressions for C; and k; must be modified as follows:

1—p)5/8,1/8 1+ 3(1-v2
PSR ok A/ M L. £ SR 1€ . 1O S S
V2 [3(1 - v2)]3/8 Iy E5/8a (1 + @) Ep
We see that the creep prior to fracture, which relaxes the thermal stresses, tends to increase
AT, (Fig. 2c), while the creep during fracture, which reduces the energy release rate, tends
to decrease AT.,. For rapid fracture, the latter effect may be neglected (x? = 0).

Numerical Example

Consider the following typical values of material parameters: ¢ = 9810 N/m3, v = 0.29,
a = 5-1075/°C [Weeks and Assur, 1967, Butkovich, 1957]. The value of the instantaneous
(dynamic) elastic modulus Eg is Eg = 7 GPa. For our simplified analysis, however, we need
to include the primary (short-time) creep into the apparent elastic (short-time) deformation,
which means that we need to use for E the apparent elastic modulus value obtained in con-
ventional static tests in laboratory testing machines, approximately £ = 1 GPa (as used by
Evans, 1971). According to Urabe and Yoshitake [1981}, Weeks and Mellor [1984] and Sander-
son [1988, p.91], we may use K; = 0.1 MN - m~%/2, and the corresponding fracture energy
value of sea ice is Gy = K}/E = 10 N/m.

With respect to creep, we need to estimate at least roughly the average magnitude of
thermal stresses. If the secondary creep is taken into account using Norton’s law, the stress-
strain relation may be approximately written as ¢ = E~1¢ + k.o where t = time, the superior
dots denote time derivatives and k. = Ae~9/RT(1 — \/v;]v5)~3 [Sanderson, 1988, p. 82], in
which Q = activation energy of creep, R = gas constant, Q/R = 7818 °K, A = 3.5 -10°
(MPa)=3 57!, yo = 0.16, and v, is the porosity due to brine pockets, which we take as vy =
0.06. Considering temperature —40°C, i.e. T = 233 °K, we get k. = 161 -10~° (MPa)~3 571,

Suppose now that a dramatic temperature drop of AT = 40 °K occurs over the period of
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= 14 days. According to the effective modulus method, the creep value may be approxi-

“ mately based on the final stress . To get its crude estimate, we may write for uncracked ice

at the top plate surface an incremental uniaxial stress-strain relation E~lo + k.o3At = aAT.
Substituting the aforementioned values and solving this cubic equation for o, we get the es-
timate 0 = 0.209 MPa. The basic equation of the effective modulus method is € = o/E,
with E.gr = E/(1 + ;) and € = aAT. From this we solve ¢; = (EaAT o) -1 = 8.57 = 9.
To estimate the value of I, we assume the characteristic temperature profile to be a cubic
parabola with a zero slope at the bottom of the plate, for which one obtains Iz = 3/40. The
following estimates then ensue:

For h=1m: AT, = 24.6°K; for h=3m: AT, = 16.3°K; for h=6m: AT, =12.6°K. (9)

These values are often exceeded by the arctic weather. This means that the thermal bending
moments are indeed capable of causing a bending fracture through the whole thickness of the
ice plate (but other possible fracture mechanisms, of course, are not excluded by this result).

It must be emphasized that this result is applicable to the case of approximately similar
temperature profiles. If h is increased, the time to reach a similar profile increases proportion-
ally to h?, but the surface temperature change may not be sustained long enough or the surface
temperature history may become more complex. Thus, in practice,' the profiles are unlikely
to ever become exactly similar. One important point, however, should be noted: The most
critical temperature profiles, which maximize Mt according to the elastic calculation we used,
are similar. This is the main practical justification for the applicability of the assumption of
similar profiles.

SIZE EFFECT IN VERTICAL PENETRATION THROUGH ICE PLATE

Consider now another important problem: the maximum load P required for the pene-
tration of an object through the arctic sea ice plate, either from top (the problem of bearing
capacity) or from below. This problem has been studied extensively on the basis of either elas-
ticity theory with an allowable stress limit or plastic limit analysis [Kerr 1976, 1991). Fracture
mechanics, which is much more realistic for sea ice, apparently has not yet been applied. We
will attempt it now, considering a small punch such that load P is applied as an almost concen-
trated force. From observations it is known that the failure process involves the propagation
of n radial cracks (Fig. 3a, typically n = 4 to 12), followed by the formation of circumferential
(or “hoop™) cracks (Fig. 3b) at radial distance a,,.

Approximation by Narrow Wedge Beams

For the sake of simplicity, we now assume that the cracks are through-cracks all the way
to their tip. This is certainly an idealization, but is necessary to permit the use of plate
bending theory in conjunction with LEFM. Further we assume that the cracks relieve all
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Figure 3: Typical cracking pattern caused by vertical penetration; (a) radial cracks and (b)
subsequent circumferential cracks.

the bending energy of the circumferential bending moments My everywhere up to the radial
distance @ where @ = radial crack length. This assumption means that, for r < a (where z =
radial coordinate), the plate is replaced by infinitely many continuously distributed infinitely
narrow radial wedge beams resting on an elastic foundation. The wedge beams have a variable
width zd¥ and transmit bending moment (per width zd¥) Md¥ = zDw"d9 and shear force
Va9 = (dM/dz)d¥ (this assumption overestimates the energy release due to fracture, and so it
may be expected to underestimate the failure load). For z > a, we have axisymmetric bending
of an infinite plate on elastic foundation. The problem is, therefore, one-dimensional. The
governing differential equations are:

1d (&
fOl’ZSG: ;F( dl:) +=-w=0 (10)
d 1d\[dwv 1dw q
forz >a: (d_:ﬁ-*’:—t.a)(m-*—zdz)*-b_w_o (11)

At the interface, z = a, w and v’ must be continuous. The boundary conditions are: for
£=0:P=-2rD(zw") = —2rDw"(M = M = 0 is automatic), and forz — o0 : w = v’ = 0.
Let wp be the value of w at z = 0. (The solution of the differential equation (10) alone, for
w=w'=0atz — oo, was given by Nevel [1958, 1961] in the form of an infinite series.)

Introduce now non-dimensional variables § = z/L and ¢ = w/L where L = (D/g)}/* =(\/?2)
= decay length (i.e., characteristic length for the decay of flexural disturbances along the plate),
and denote T = a/L. The foregoing two differential equations then take the form:

— 1d d2
. d 1d d’c 1d¢ _
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At { = @, both ¢ and {’ must be continuous. The boundary condition at £ = 0 may be
considered as ( = wo/L (where wo = load-point deflection), and for §¢ — 00 : ¢ = ¢’ = 0.
Introduction of the nondimensional variables achieved that the physical constants disappeared
from the differential equations; a physical constant, namely @, is present only in the interface
condition, aside from wp in the boundary condition. Because of linearity of the problem, the
solution ( is proportional to wp.

Let us now define { = F(,@) as the solution of the foregoing two differential equations for
the boundary condition { = 1 at £ = 0, the other boundary and interface conditions being the
same. Then

w = woF((,a); P = 2xwo\/pD/ f1(a) (14)
where 1/ f1(a) = [d®F(£,@)/d£?)¢—o. Calculating now the load-point compliance C(@) = wo/ P,
applying the well-known fracture mechanics formula {811/8a]p=const. = (P?/2)dC(a)/da (=
energy release rate, and Il = complementary energy of the system), and imposing the energy
balance condition for crack propagation, which reads 911/8a = nhG; where n = 2r/p =
number of radial cracks and ¢ = angle between the adjacent radial cracks (Fig. 3), one finds
that the radial cracks are critical (i.e. can propagate) if P = 2,/7nhGy(oD?)}/8/,/fi(a).
Expressing D in terms of h, we thus obtain for the applied nominal stress ox = P/h? and the

corresponding load-point deflection during radial crack propagation (at no hoop cracks) the
following results:

oON = Cp[f{(ii)]‘llzh's/s; with Cp = (4/27)1/8‘/7rntg‘/8[E/(1—1/"’)]3/8 (15)
wo = Cuhi@A@N2Y5;  with Cy = (V3[x)Cp((1 - v*)/eE]/? (16)

According to this result, there is again a size effect on the nominal strength. The factat
h=3/% is the same as before, however the (—3/8)-power size effect is modified since the value
@ = @y of the relative crack length @ = a¢/L at maximum load must depend on k. To
clarify this dependence, consider the role of the circumferential cracks. The load-deflection
curve P(wo) during the growth of radial cracks (at no circumferential cracks) must no doubt
be monotonically rising, with no peak. We will assume the circumferential cracks to grow
simultaneously across the plate thickness (although in reality they could also propagate along
the plate, which we neglect). Since the full formation of the circumferential cracks creates
a mechanism and thus reduces P to zero, one may expect that, during the growth of the
circumferential cracks across the plate thickness, the load P must be decreasing. By this
argument, the peak load P should occur right at the start of growth of the circumferential cracks
from the surface, which is governed by the tensile strength o, of ice. So we need to calculate
the surface bending stress, which is ¢ = 6M/h? = (6D/h*)w"” = (6 Dwo/h*L?)d*F(¢,T)/dE>.
Setting this equal to oy, and imposing the necessary condition of bending stress maximum
(do/d§ = 0), we get:

2 =\ 2 @
OB (:;C—Uffl(a)——d f,gi'“)) hon, TRED ()
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as £ = {m(h) and @ = @, (h). or a given h, these functions give the coordinate of the maximum
stress point and the radial crack length for which the maximum bending stress becomes equal
to the strength.

The variation of @,, with increasing h cannot be strong since the point @,, must lie within the
first half-wave of the deflection curve. Moreover, the first equation (17) indicates that f{(@) — 0
for h - oo. Thus h disappears from equations (17) for large thicknesses, which means that
&m and @, become independent of h. Consequently, the (—3/8)-power law is asymptotically
approached for large thickness h. To decide whether this power law is approximately applicable
for realistic ice thicknesses will have to await a numerical solution.

General Size Effect in Floating Plate under Concentrated Load

A more realistic solution would require two-dimensional analysis of the energy release from
a wedge-shaped floating plate of a finite angle ¢. This could, of course, be done by finite
elements. The type of size effect, however, cam be deduced without actually obtaining the
solution.

The deflection surface w(z,y) of a floating plate under distributed load p(z,y) is governed
by the differential equation:

DViw + ow = p(z,y) (18)

Consider now concentrated load P at point z = y = 0. Then p(z,y) = Pé(z,y) where
8(z,y) = two-dimensional Dirac delta function, such that [fé(z,y)dzdy = 1. Introducing
nondimensional variables £ = /L, = y/L and { = w/L, and noting that p = é(z,y)P/L?,
Eq. (18) is transformed to:

V4 +¢ = §(z,y)(PL/D) (19)

Consider now that the plate is infinite, with the boundary condition w = 0 at infinities.
Let { = F(¢,n;@) be the solution of the differential equation:

VA + ¢ = 8(z,y) (20)
for a plate containing a crack of relative length @ = a/L (with the proper boundary con-
ditions written for the crack surfaces). Then the solution of differential equation (19) is
¢ = F(§,ma)(PL/D). Now the complementary energy of the floating plate may be calcu-
lated as IT = Pwp/2 = PL(y/2 = Fo(@)p’L?/(2D) where we denoted Fo(@) = F(0,0;a).
For the energy release rate we now have the condition [011/8a]p=const. = [011/8a]p/L =

5(@p*L/(2D) = hGy. Solving P from this equation, calculating the nominal strength
an = P/h? and expressing L and D in terms of h, we get the result:

8, g \3% [G
- -3/8, ; (LY (=_ -1 21
on = Coh /% with  Co (103) (1—:/2) Q) (21)
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