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SUMMARY

Scaling, that is, the change of response due to similarity preserving changes of the
size of a physical system, is the most fundamental aspect of every physical theory. If
the scaling is not understood, the phenomenon itself is not understood.

The question of scaling of the failure of structures was studied already in the 16th
and 17th centuries by Leonardo da Vinci and Galileo Galilei and the size effect in the
fallure of ropes was qualitatively explained in terms of strength randomness already in
the 17th century by Mariotte. In the 20th century, while the problem of scaling has
played a central role in fluid mechanics, it has been largely neglected in solid mechanics
uutil about 1980. The reason is that the theories of structural failure that have prevailed
for a long time exhibit no deterministic size effect. These are: (1) plasticity and other
theories based on the concept of critical stress (strength) or critical strain, and (2)
fracture mechanics applied to a critical flaw (crack) whose size at incipient failure is
independent of the structure size D and negligible in comparison to D, as is typical of
most metal structures embrittled by fatigue.

Therefore, the experimentally observed size effects were generally attributed to the
randomness of material strength, as mathematically described in 1938 by Weibull, and
their study was relegated to the probabilists. However, even though this explanation
s realistic for metallic and other structures that fail at fracture initiation, before the
“rack reaches macroscopic dimensions, it does not work for quasibrittle structures.

741



742 BazZant

Energetic Size Effect

The present keynote lecture deals with structures made of quasibrittle materials, such
as concrete, rock, sea ice, toughened ceramics an composites. As a result of their het-
erogeneity and development of a large fracture process zone, these materials typically
fail only after a large crack has grown in a stable manner.

The size effect is understood to be the change of oy as a function of D in geo-
metrically similar structures with similar cracks (the effect of deviation of cracks from
similarity is an effect of shape, which must be described separately from the size effect).
The nominal strength on of such structures exhibits a complex size effect, which has
been explained by the release of stored release energy caused by fracture. While the en-
ergy dissipated in geometrically similar structures with similar cracks is proportional to
the crack length and thus to the structure size D, the energy release caused by fracture
in structures under the same nominal stress grows with D faster than proportionally—
hence the size effect. But because of the large size of the fracture process zone, which
releases additional energy in proportion to the fracture length, the overall energy re-
lease grows with D less than quadratically. This causes the size effect to deviate from
the power law size effect (o o D~12) of linear elastic fracture mechanics (LEFM).

The lecture outlines a general asymptotic theory of scaling governing the quasibrit-
tle size effect [1). The energy release from the structure is assumed to depend on its size
D, on the crack length, and on the material length c; governing the fracture process
sone size. Based on the condition of energy balance during fracture propagation and
the condition of stability limit under load control, the large-size and small-size asymp-
totic expansions of the size effect on the nominal strength of structure containing large
cracks or notches are derived. It is shown that the form of the approximate size effect
law previously deduced by simpler energetic arguments can be obtained from these
expansions by asymptotic matching (Fig. 1). This law represents a smooth transition
from the case of no size effect, corresponding to plasticity, to the power law size effect
of linear elastic fracture mechanics. Fig. 2 compares this law to some recent test data.

The analysis of size effect is then extended to deduce the asymptotic expansion
of the size effect for crack initiation in the boundary layer from a smooth surface
of structure. Furthermore, a universal size effect law which approximately describes
both failures at large cracks (or notches) and failures at crack initiation from a smooth
surface is derived by matching of the aforementioned three asymptotic expansions {Fig.
3).

Furthermore, the analysis is generalized to the case that a ductile failure mechanism
operates simultaneously with crack propagation. A new approximate formula utilizing
LEFM energy release functions is derived for the size effect arising when a residual
cohesive stress is transmitted between the opposite crack surfaces. The logarithmic
plot of this size effect (nominal strength versus size) exhibits a positive curvature for
larger sizes, whose presence in test data was recently emphasized by Carpinteri.
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Figure 1: Size effect law based on energy release analysis (solid curve, BaZant 1984) as
t!ie asymptotic matching of the large-size and small-size asymptotic series expansions of
size effect (dashed curves); B, f{, Do = constants.
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Figure 2: Size effects observed in fracture of carbon-epoxy fiber composites (BaZant, Daniel
and Li, [2]) and of sea ice (tests of J. Dempsey's team [3] near Resolute in the Arctic Ocean,
in which floating notched square specimens of thickness 1.8 m and sides ranging from 0.5
m to 80 m were broken in a computer-controlled manner), and comparison with the curves
of the size effect law proposed by BaZant.
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Figure 3: Universal size effect law for quasibrittle failures [1], having correct asymptotic
behaviors for large and small sizes D and for large or zero relative length ag = ao/D of
traction-free crack at maximum load (f; = tensile strength of the material, ¢; = effective
length of the fracture process zone).
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The Question of Size Effect Caused by Fracture Fractality

Recently an alternative suggestion has been made by A. Carpinteri—namely that the
cause of the observed size effect on nominal strength of concrete structures might be
the fractal nature of crack surface or microcrack distribution.

It is of course true that recent observations by many researchers have demonstrated
that, within a certain range of scales, the fracture surfaces in many materials, especially
brittle heterogeneous materials such as rock, concrete, ice, tough ceramics and various
composites, exhibit partly fractal characteristics. Considerable advances in the study
of the fractal aspects of crack morphology and energy dissipation by fractal cracks
have been made by Mandelbrot, Brown, Mecholsky, Mackin, Cahn, Hornbogen, Peng
and Tian, Sacuma, Bouchaud, Chelidze and Gueguen, Issa, Long, Malgy, Mosolov and
Borodich, Borodich, Lange, Xie, Carpinteri, Feng and others. A correlation between
the fractal dimension of the crack surface (observed over a limited range of scales) and
the fracture energy or toughness of some brittle materials has been detected. However,
the connection between the fractal nature of cracks on the microscale and the scaling
law on the macroscale has so far been based merely on intuitive analogy and geometric
arguments. It has not been solidly established in terms of mechanics.

The lecture proceeds to outline an analysis of this connection on the basis global
energy balance and asymptotic matching, generalizing the nonfractal analysis. The
modifications of the scaling law caused by invasive fractality of the crack surface are
derived, both for quasibrittle failures after large stable crack growth and for failures
at the initiation of a fractal crack in the boundary layer near the surface. Subse-
quently, attention is focused on the hypothesis that lacunar fractal characteristics of
the distribution of microcracks cause the size effect. This hypothesis is shown to lead
to an analogy with Weibull’s statistical theory of size effect due to material strength
randomness [4] (Fig. 4).

The predictions ensuing from the fractal hypothesis, either invasive or lacunar, are
shown to disagree with certain experimentally confirmed asymptotic characteristics of
the size effect in quasibrittle structures. It is also pointed out that considering the
crack curve to be a self-similar fractal (such as the von Koch curve) conflicts with the
kinematics of crack opening. This can be remedied by considering the crack to be an
affine fractal.

It is concluded that the fractal characteristics of either the fracture surface or the
microcracking at the fracture front cannot have a significant influence on the law of
scaling of failure loads, although they can affect the fracture characteristics such as
the fracture energy value, and may have to be taken into account in micromechanical

prediction of fracture energy.

Scaling of Compression Fracture

Furthermore, the lecture outlines a simplified fracture-mechanics-based model of com-
pression failure of centrically or eccentrically loaded quasibrittle columns [5], which
can predict the size effect on the nominal strength of a column. Failure is modeled
as lateral propagation of a band of axial splitting cracks, in a direction orthogonal
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Figure 4: Idea behind consistent Weibull-type analysis of the hypothesis of size effect due
to lacunar fractality of microcracks: Although small and large structures may be subdivided
into small and large elements exhibiting different fractal dimensions (a and c), the use of
the same material also requires that the large elements of the large structure be further
subdivided into the small elements exhibiting the same fractal dimension as in the small
structure (b) [4].



748 Bazant

or inclined with respect to the column axis. The maximum load is calculated from
the condition that the energy released from the column due to crack band advance be
equal to the energy consumed by the splitting cracks. The axial stress transmitted
across the crack band is determined as the critical stress for buckling of the microslabs
of material between the axial splitting cracks, and the work on the microslabs during
postbuckling deflections is taken into account. The critical postbuckling deflection of
the microslabs is determined from a compatibility condition. Under the assumption of
small enough material inhomogeneities, the spacing s of the splitting cracks is calcu-
lated by minimizing the failure load and is found to decrease with structure size D as
D5,

The size effect on the nominal strength of geometrically similar columns is found to
disappear asymptotically for small sizes D, and to asymptotically approach the power
law D=%/5 for large sizes D (where D = cross section dimension). However, when
the material inhomogeneities are so large that they preclude the decrease of s with
increasing D, the asymptotic size effect changes to D~1/2. The size effect intensifies
with increasing slenderness of the column, which is explained by the fact that a more
slender column stores more strain energy. The predicted size effect describes quite well
previous tests at Northwestern University of reduced-scale tied reinforced concrete
columns of different sizes (with size range 1:4) and different slendernesses (ranging

from 19 to 53); Fig. 5.

Application to truss model for shear failures of concrete

Finally, the lecture outlines an application of the aforementioned approximate theory
of the scaling of compression fracture. The classical truss model for shear failure of
reinforced concrete beams (also called the strut-and-tie model) is modified to describe
fracture phenomena during failure [6].

The failure is assumed to be caused by progressive compression crushing in the
concrete strut during the portion of the loading history in which the maximum load is
reached. The crushing is assumed to occur within a crushing band propagating across
the strut. The width of this band is assumed to occupy only a portion of the strut
length and to represent a fixed material property independent of the bearn depth—
features that inevitably lead to size effect (if the width of the compression crushing
zone were proportional to the beam depth, there would be no deterministic size effect)
(Fig. 6).

The energy release from the truss is calculated using two alternative approximate
methods: (1) according to the potential energy change deduced from the concept of
stress relief zones, and (2) according to the complementary energy change due to stress
redistribution caused by propagation of the crushing band across the compressed con-
crete strut. Both approaches show that a size effect on the nominal strength of shear
failure must exist and that it should approximately follow the size effect law proposed
by Bazant in 1984.

The physical mechanism of the size effect is explained in a clear and simple manner.
Further it is shown that the applied nominal shear stress that causes large initial
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Figure 5: Data points obtained at Northwestern University by BaZant and Kwon in reduced-
scale tests of tied reinforced concrete columns of different sizes and slendernesses ), and
comparison with the curves of size effect predicted by energy analysis of compression fracture
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