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Recent Progress in Energetic Probablistic
Scaling Laws for Quasi-Brittle Fracture

Zdenék P. BaZant and Jia-Liang Le

Abstract Rational determination of safety factors necessitates establishing the
probability density function (pdt) of the structural strength. For perfectly ductile and
perfectly brittle materials, the proper pdf’s of the nominal strength of structure are
known to be Gaussian and Weibullian, respectively, and are invariable with structure
size and geometry. However, for quasibrittle materials, many of which came recently
to the forefront of attention, the pdf has recently been shown to depend on structure
size and geometry, varying gradually from Gaussian pdf with a remote Weibull tail
at small sizes to a fully Weibull pdf at large sizes. The recent results are reviewed,
and then mathematically extended in two ways: (1) to a mathematical description
of structural lifetime as a function of applied (time-invariable) nominal stress, and
(2) 10 a mathematical description of the statistical parameters of the pdf of structural
strength as a function of structure size and shape. Finally, recent experimental data
are analyzed and applicability of the present theory is verified.

Keywords Probabilistic mechanics - extreme value statistics - structural strength -
cohesive fracture - scaling - size effect

1 Introduction

The uncertainty in the understrength (or capacity reduction) parts of safety factors,
which are still essentially empirical, is much larger than the typical errors of modern
computer analysis of structures. This problem is of paramount importance for qua-
sibrittle structures. Iis resolution would yield greater benefits than most refinements
in computational mechanics.

Purely empirical, statistically based, safety factors are adequate for structures
whose failure is either purely ductile or purely brittle because the type of cumulative
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probability distribution function (cdf) of structural strength is independent of struc-
ture size and geometry, and is either Gaussian (normal) or Weibullian,

Not so for structures consisting of quasibrittle materials, which include, at normal
scale, concrete, fiber-polymer composites, tough ceramics, rocks, sea ice, wood,
etc., at normal scale, and many more at the scale of MEMS and thin films. For
such structures, which are the focus of this study, the cdf continuously varies from
nearly Gaussian to Weibullian as the structure size increases, and also depends on
the structure geometry.

Quasibrittle structures are characterized by a fracture process zone that is not
negligible compared to the cross-section dimensions of the structure. As firmly
established by now, the mean strength of quasibrittle structures failing at fracture
initiation does not scale as a power law but varies with the structure size as a gradual
transition between two asymptotic size effect laws of power law type — one of them
deterministic (or energetic), based on stress redistribution due to a large fracture
process zone, and the other statistical, based on the weakest-link model and Weibull
theory or random material strength.

In this study, it is argued that the safety factors for such structures, which have
generally been considered as size independent and purely empirical, must also be
considered to depend on the structure size as well as shape. Furthermore, the de-
pendence of structural lifetime on structure size (at fixed nominal stress) must be
considered to deviate, for such structures, from the power law predicted by Weibull
theory, and the type of cdf of structural lifetime must be considered as size depen-
dent. The safety factors must ensure an extremely low failure probability, <1076,

For such a low probability, direct experimental verification by strength his-
tograms is impossible. Therefore, a physically based theory whose experimental
verification is indirect is required.

Extensive review of background works and related studies is given in [3].

2 Conspectus of Main Results

Recently it has been shown [2, 3] that the cdf of strength can be derived from the
transition rate theory and the stress-dependence of activation energy of interatomic
bond breaks (Fig. 1a). The analysis indicates that the far-left tail of every cdf of
strength of a representative volume element (RVE) of any material must be a power
law. For ductile (plastic) materials, the power-law tail is so remote that it plays no
role, but not for quasibrittle materials. The cdf of strength of quasibrittle structures
of positive geometry (which are the structures failing at fracture initiation) can be
modelled as a chain (or series coupling) of RVEs (Fig. le).

It is demonstrated that the RVE must be modelled by neither a chain nor a bundle.
Rather, it must be statistically represented by a hierarchical model consisting of
bundles (or parallel couplings) of only 2 long sub-chains, each of them consisting
of sub-bundles of 2 or 3 long sub-sub-chains of sub-sub-bundles, etc., until the
nano-scale of atomic lattice is reached. The power-law character of the cdf tail is
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indestructible. It is transmitted through all the scales from nano to macro while its
exponent is gradually raised from 1 on the atomistic scale to a value equal, on the
RVE scale, to the Weibull modulus (typically between 10 and 50) (Fig. 1f).

The physical meaning of Weibull modulus is shown to be the minimum of the
sum of strength powers among all possible cuts seperating the hierarchical model
into two halves, which should be equal to the number of dominant cracks needed
to break the representative volume element (RVE) of material. Thus the model in-
dicates the Weibull modulus m to be governed by the packing of inhomogeneities
within a RVE. It is also shown that the RVE cannot be defined in the classical sense
but must be understood as the smallest material volume whose failure causes failure
of the whole structure (of positive geometry).

The model indicates that the cdf of RVE strength must have a broad Gaussian
(or error function) core, onto which a power-law tail of an exponent equal to the
Weibull modulus is grafted at the failure probability of about 0.001, if the structure
is quasibrittle [2-4]. The model predicts how the grafting point, Separating the Gaus-
sian and Weibullian parts, moves to higher failure probabilities as the structure size
increases, and also how the grafted cdf depends on the temperature, lifetime (or load
duration, loading rate) and activation energy (which in turn is affected by aggressive
chemical environment). On a large enough scale (equivalent to at least 5000 RVEs),
quasibrittle structures must foilow the Weibull distribution with, necessarily, a zero
threshold. Thus the cdf of structure strength changes from predominantly Gaussian
for small sizes to predominantly Weibull for large sizes (Fig. 1e).

It is widely agreed that engineering structures must generally be designed to
ensure failure probability P; < 107%. Since the point of P; = 1075 is, for the
Weibull distribution, about twice as far from the mean than it is for the Gaussian
distribution of the same mean and variance (Fig. 1b), the understrength part of the
safety factor may change greatly when passing from the Gaussian cdf for small
sizes to the Weibull cdf for large size (Fig. 1d). The consequences for the necessary
safety factor may be serious. They are unique to quasibrittle structures. They have
not been considered in the design of large concrete structures or large composite
parts of aircraft made of composites.

On the other hand, the coefficient of variation (CoV) of quasibrittle structures,
unlike perfectly brittle structures, decreases with structure size untit the Weibull cdf
is reached. This behavior may partly or fully offset the need for a larger safety factor
Fig. 1(d).

The experimental histograms with kinks, which were previously thought to re-
quire the use of a finite threshold, are shown to be fitted much closer by the proposed
chain-of-RVEs model with a zero threshold (Fig. 1c). For not too small structures,
the model is shown to represent, in the mean sense, essentially a discrete equivalent
of the previousty developed nonlocal Weibull theory (7], and to match the mean size
effect law previously obtained from this theory by asymptotic matching (Fig. 1e)[1].

The chain-of-RVEs model (Fig. le) can be verified and calibrated from the
mean size effect curves, as well as from the kink locations (Fig. 1c) on experi-
mental strength histograms for sufficiently different specimen sizes. The former
is more effective. Strength histograms for specimens of one size only are not
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sufficient for fully calibrating the theory. The mean stochastic response agrees with
the cohesive crack model, crack band model and nonlocal damage models [5, 6].
The first few statistical moments of cdf for various sizes agree with the nonlocal
Weibull theory. This indicates that, due to the finite size RVE, the present theory
also captures the energetic size effect (of Type 1, [1]), which is caused by stress
redistribution.

3 Review of Size Effect in Weakest Link Model
and Its Asymptotics

We will consider geometrically similar structures of different sizes D, represent-
ing the characteristic dimension of the structure. We will restrict consideration to
structures of positive geometry. This is a broad class of structures, for which the
derivative of the energy release rate with respect o the crack length at constant load
P is positive. These are structures that fail (under load control) as soon as the full
fracture process zone (FPZ) forms and a distinct continuous macro-crack begins to
grow. Let oy = P/bD = nominal stress in a structure, where P — applied load (or
parameter of the load system) and b = structure width. For geometrically similar
elastic or elasto-plastic structures, oy at maximum load (or the nominal strength of
structure) is independent of the structure size, and, therefore, a decrease of oy with
the structure size is called the size effect.

From the viewpoint of failure statistics, a structure of positive geometry may be
modeled as a chain, which is known as the weakest link model. In that case that the
structure fails as soon as the FPZ, roughly equal to one RVE, is fully formed). For
such structures, the representative volume element (RVE) must be defined as the
smallest material volume whose failure causes the whole structure to fail. The size
of the RVE can be considered equal to the width of the FPZ and typically equals
2-3 material inhomogeneity sizes. If one RVE fails, the whole structure fails, i.e.,
the strength of the chain is decided by its weakest element, or link, which is called
the weakest link model. In our interpretation, each link corresponds to one RVE,
and so we have a chain-of-RVE model. '

It has been shown that the strength of one RVE of a quasibrittle material must
have a composite cdf having a broad Gaussian core onto which a Weibull tail is
grafted at the probability of about P, & 103 (called the grafting probability) [2-4].
Since, in the weakest-link model, oy = o = stress in each link (i.e., one RVE), the
Gaussian core may be written as:

H2ge = INTH

1 X
P|=¢(x)=\/T_n/. € %

H

where 4 = mean, sp = standard deviation, and ®(x) is the error function rep-
resenting the standard (unit) Gaussian (or normal) cdf. Because P, is, for a sin-
gle RVE, very small, the Weibull tail is nearly identical to a power function, i.e.
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is rescaled horizontally and vertically to be normatized. According to Eq. (2), if
the strength of each link in a chain is Weibullian up to stress oy, corresponding to
link failure probability Pj{ow), then the cdf of the strength of the whole chain is
Weibullian for all Py < Py, =1 —[1 — Pi(o,)]V.

In the remaining part for Py > Py, the cdf at increasing o closely approaches
the Gaussian distribution if N is small, but the Gumbel distribution if N — oo. For
large N the Weibullian part occupies almost the entire cdf (i.e., Py, — 1), and so
the Gumbel part is irrelevant.

Hence, we may assume that, approximately, the strength cdf for any N is a graft
of Weibull cdf onto a Gaussian cdf, with the grafting point given approximately by

Pyg=1—(1 =P, Py =Poy) (12)

If Py,, 6y, w are known for any N, the grafted Weibull-Gaussian cdf can be
constructed similarly to Eqs. 50-56 in [3]. The entire cdf being known, one can
then calculate the load for which the structural failure probability is, e.g, 1075, In-
tegrating this cdf with the pdf of the load, one can also obtain the structural failure
probability for a given distribution of the load.

6 Size Effect on Structure Lifetime

All of the foregoing analysis applies for constant temperature and a fixed load du-
ration 7. We will now explore the question of size dependence of lifetime T of
quasibrittle structures under a given nominal stress oy.

The transition state theory with the concept of activation energy has been used
to show that the left tail of the cdf of the strength of interatomic bonds must have
the form F(o) = (Cp«/kT)o = power function of stress ¢ with exponent 1 [2, 3];
where T = absolute temperature, k = Boltzmann constant, ¥ = coefficient of
linear dependence of activation energy on o, and C, = constant. Based on this fact
it is further shown that, for various (though constant) T and 7 values, the nomi-
nal strength oy /so in the argument of failure probability P, of one RVE must be
replaced by oy /soR(z, T) where

1 1\o
A(zp) le(F_i—’) *

R(z, T)= A0 To

(13)

where Ty, 1o = reference values of T and t, for which R = 1, and function A indi-
cates how the stress for which the atomic thermal vibrations produce a contiguous
surface of a break in the material nanostructure scales with the load duration [3]
(where, for the sake of simplicity, one may set A(z) = rt = linear function of t;
r = constant). Hence, for a finite chain of RVEs, Eq. (2) must be generalized as:

Py(on, T, T) = 1 — {1~ Pifow/soR(z, T)H" (14)
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From this we can obtain not only the pdf of structural strength as a function of
applied oy, i.e. py = [dPy/doy]r., but also the pdf of strength as a function of
load duration 7, i.e. py(t) = [dPw/dT]7 5 Which can be calculated from Egs. (13)
and (14). This distribution agrees with the requirements that, for oy — 0, one has
Py = 0and T — oo; while for 6y — 00, one has Py = I and 7 — 0.

The mean structural lifetime (or durability) as a function of oy and T may be
calculated as

T(N,on, T) = f (I — Py)dr = / {1 — Pilon/soR(z, T)}¥dr (15)
0 0

[eo]
and for N — 00 : #(N,on, T) = [ e NRlow/wREDIg e (16)
0

The last equation follows by setting Py = x/N and noting that limy__(l —
x/NY = e=*_If we assume that R is linear in 7, i.e. A(T) = rt, and note that
F(1/m)/m =T + 1/m), then for N — oc:

oo
F = —N(ent/sotoRy)" - So T (%“'7")% 1
T= dt=p——— 0/ AT T+ — 17
/0 e T OUNToNl/"’e +m (17)

Note that the mean lifetime for N — oo decreases as a power law of structure
size and is inversely proportional to the applied stress. For finite N, however, there
is a deviation from the power law.

For the coefficient of variation w, of structural lifetime under load oy and at
temperature T, one has

1
O% R — / [t(ox. T)PAPyIR(x, T)oy] - | (18)
0

"~ [ilon, I
fOTN*w:wf:M_l
(14 1/m)

(19)

This is the same coefficient of variation as for the strength at fixed load duration,
and is governed solely by Weibull modulus.

To obtain the small size asymptotics of T and w,, asymptotic matching similar as
before may be used. For small N, the cdf of 7 is again Gaussian, except for the tail
of probability < circa 0.001, and with increasing N, a Weibull tail grows into the
Gaussian core until, for N > circa 5000, it occupies essentially the entire cdf of .

To determine the approximate complete pdf of lifetime, one must begin with the
grafted cdf of o at fixed t, which gives the (cumulative) failure probability for any
chosen 7 and oy. Its differentiation with respect to t yields the desired grafted pdf
of lifetime for a structure of any size N,,. Again, the grafting point is found to move
from left to right as the structure size increases.
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7 Closing Comments

The mathematical modet established in this article for the effect of structure size and
geomeltry on the probability distribution of structural lifetime at constant load is not
yet verified experimentally. The verification and calibration is left for a forthcoming
journal article.
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The Fractal-Statistical Nature of Size-Scale
Effects on Material Strength and Toughness

Alberto Carpinteri and Simone Puzzi

Abstract The size-scale effects on the mechanical properties of materials arc a
very important topic in engineering design. Three different modeling approaches
have been proposed and analyzed at least, i.e. the statistical, the energetical and
the fractal one. Aim of this paper is to revisit the fractal approach and to reject
the most recurrent criticisms against it. Moreover, we will show that it is wrong to
set the fractal approach to size-scale effects against the statistical one, since they are
deeply connected. More in detail, by analyzing a fractal distribution of micro-cracks
in the framework of Extreme Value theory, we will obtain a scaling law for tensile
strength characterized, in the bi-logarithmic plot, by the slope —1/2. Conversely, by
considering a fractal grain size distribution in a grained material, we will obtain a
scaling law for fracture energy characterized, in the bi-logarithmic plot, by the posi-
tive slope 1/2. These slopes are the natural consequence of perfect self-similarity of
the flaw (or grain) size distribution. Eventually, the theoretical results regarding the
link between fractals and statistics will be confirmed by numerical simulations.

Keywords Size-scale effects - self-similarity - fractals

1 Introduction

Since the pioneering paper by Mandelbrot et al. [9] on the fractal character of the
fracture surfaces in metals, the fractal features in the deformation and failure of ma-
terials have been investigated by several Researchers. Self-affinity of roughness of
fracture surfaces has been found in a wide range of materials, from metals to wood,
from ceramics to concrete, from rock to polymers (see, e.g. the review paper [10]).
Since fractality had been discovered, several Authors tried to connect it with the
size-scale effects on fracture energy [11-17].
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