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Abstract

The lecture deals with failure analysis of structures
which exhibit distributed cracking. First, a continuum model
which permits distributed cracking to occur over finite zones
of the material is presented, and then the method of finite
element analysis is described. The problem of formulating
strain-softening relations under general loading histories is
also discussed, and numerical examples are presented.

Introduction

Structures made of a heterogeneous brittle material such
as concrete often exhibit brittle failures in which the mate-
rial progressively fractures and the fracturing is distributed
over a zone of finite size. In the continuum approximation,
the behavior of such a fracturing zone is characterized by
strain-softening, that is, a stress-strain relation in which
the maximum principal stress decreases at increasing strain.
Strain-softening may be easily implemented in a finite element
code, however, problems are encountered in convergence as the
mesh is refined. Using a finite element discretization of
the classical, local continuum, the failure zone always local-
izes into a zone of vanishing thickness, which means that in
the 1limit of an infinitely small mesh size the structure is in-
dicated to dissipate negligible energy during failure. This
aspect is obviously incorrect, and it causes an unacceptable
sensitivity of the results to the chosen element size [1-5].

An expedient remedy is possible with the crack band model,
in which the cracking front is forced to have a fixed width
which is a material property. This type of analysis has been
shown to yield good agreement with all important fracture test
data for concrete, as well as rock [5,4]. However, a discon-
certing feature remains from the theoretical point of view.




Fig. 1 - Representative Volume of an Aggregate Material.
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Fig. 2 - Finite Element Discretization of Imbricate Nonlocal
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continuum is the limiting case as the element size
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One is not allowed to refine the mesh to sizes smaller than a

certain characteristic length, and so one does not have a
limiting continuum which the finite element model is supposed
to approximate. To obtain such a model, it is necessary to
abandon the idea of a classical, local continuum, as will now
be shown in the first part of the lecture.

Nonlocal Continuum Model

From the works of Krdner and others [6-16], it is known
that in a statistically heterogeneous medium which is not in
a macroscopically homogeneous state of strain, the averaged
(smoothed) stress at a certain point depends not only on the
gradient of the averaged displacements at that same point
(local properties), but also on the averaged displacements
within a certain characteristic finite neighborhood of that
point. The properties of such a medium cannot, therefore, be
said to be local, and the medium is, therefore, called nonlocal.

The nonlocal displacement gradient may be defined by the
relation

du, (x")
1 1
Du,(x) == [ —d3avr=23f u(x"n(x)ds (@)
i3~ v V(g) axi ‘ \ S(g) h| i~

in which u, are the cartesian displacement components (j = 1,
2,3), x isIthe coordinate vector of the given point character-
ized by cartesian coordinates x,, V(x) is the characteristic
volumé of the material centered at point x, S(x) is the sur-
face of this volume, n,(x') is the unit normal of this surface
at point x', and D is*the gradient averaging operator. The
surface integral in Eq. 1 follows from the volume integral

by application of the Gauss integral theorem. More generally,
a weighting function can be introduced in Eq. 1. Using the
gradient averaging operator, the mean strains may be defined as

- 1
€45 = Z(Diuj + Djui) (2)

In previous works dealing with nonlocal continua it has
been generally assumed that the continuum equation of motion
has the form

C... (&) D u, =opu (3)
~ m

in which C,_. are secant elastic moduli which, in general, de-
pend on th& mean strain, p is the mass density, and superior
dots refer to time derivatives. It is found, however, that

Eq. 3 is incapable of describing a strain-softening continuum.
It always lead to unstable response as soon as strain-soften-
ing begins. The difficulty has been traced to the asymmetry
of these equations due to the combination of partial deriva-
tives 3/9x, with the gradient averaging operator Dm. This

*Fiq. 1
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feature gives rise to nonsymmetric finite element matrices even
if Ci xm 27€ constant, i.e., if the medium is elastic. Such a
nonsy&metry is certainly an unacceptable characteristic.

For this reason, a systematic derivation of the continuum
equation of motion on the basis of Eq. 1 has been attempted,
using the calculus of variations. It has been found [13-14]
that the proper form of the continuum equation of motion is

- - : 3 3 .
(l—c)DjCijkm(g)Dmuk + c axj Cijkm(g) 3;;-uk = puy 4)

in which ¢ is an empirical coefficient between 0 and 1, and
Ci xm 2Ye the local secant moduli. In contrast to Eq. 3, each
te%m of the last equation has a symmetric structure, and con-

sequently, discretization by finite elements leads to symmetric

stiffness matrices if the elastic moduli Cijkm and Cijkm are
symmetric.

Eq. 4 can be also written in the form

(l—c)chij +c Tij’j =pu (5)
in which
%35 = €y ® i T Cigun D0 (6
du
k )

"33 " Cijm Ckm T~ Cijim o=

in which t,, are the usual, local stresses, and ¢,  are the
id it

stresses characterizing the stress state in the enitire repre-

sentative volume of the material and are called the broad-

range stresses [13,14].

When the continuum defined by Eq. 4 is discretized by
finite elements the size of which is smaller than the size %
of the representative volume, one obtains a system of over-
lapping (or imbricated) finite elements visualized in Fig. 2.
Therefore, the present type of nonlocal continuum has been
called imbricate. The finite elements keep a constant size £
as the mesh is refined, and the number of finite elements
crossing a given point is inversely proportional to the mesh
size, while the cross section of these elements diminishes so
that all imbricated elements have the same total cross section
for any mesh size. It can be also shown that the limiting
case of the finite difference equations describing such an
imbricated system of finite elements is the differential
equation in Eq. 4 [13,14]. 1If the finite element size h is
larger than the characteristic length £, then the finite
element model of the imbricate continuum becomes identical to
that for the classical local continuum. )

.To assure convergence and stability, the local stress-
strain relations (Eq. 7) may not exhibit strain-softening, ot
else unstable response and spurious sensitivity to mesh size,
along with incorrect convergence, may be obtained. The strain-
softening properties must be described solely by the broad-
range stress-strain relation in Eq. 6.

Fig. 3 reproduces some of the results of explicit dynamic
finite element calculations from Ref. 13, in which wave propa-
gation in a strain-softening bar of length £ was analyzed.

Both ends of the bar are subjected to a constant ocutward
velocity d beginning at time t = 0. This loading produces

step waves of strain propagating inward. When these waves meet
at midlength, the strain suddenly increases and strain-soften-
ing ensues. 1If this problem is analyzed with the usual finite
element method for local continuum, it is found that strain-
softening is always limited to a single-element width. Thus,
the width of the strain-softening zone reduces to zero as the
element mesh is refined.* As a consequence, the energy W con-
sumed by failure decreases with decreasing mesh size and
approaches zero as the mesh size tends to zero (Fig. s5). More-
over, the finite element model of local continuum exhibits a
discontinuous dependence of response on the prescribed end
velocities as well as on the slope E_ of the strain-softening
branch. The solution, however, converges to a unique exact
solution, although this solution is unrealistic from the
physical point of view.

By contrast, for the present imbricate continuum, the
solution of wave propagation in the strain-softening bar (Fig.2)

-exhibits correct convergence with a strain-softening zone of

a finite size in the limit., Also, the energy consumed by
failure in the bar converges to a finite value, as shown in
Fig.5 . The characteristic length in these computations has
been considered as & = L/S5.

Differential Equations for Imbricate Continuum

For the purpose of analytical solutions it may be useful
to approximate the integral operator that defines the mean
strain by a differential operator., To this end, we expand
the integrand of Eq. 1 into Taylor series;

1y = ] | ]
uj'i(;g ) uj'i(g) Wik X % + 4 uj'ikm(:_g) X Xp tees
" This yields
D.u, = u, +1 +18B +oes
. luJ(;g) u3,1(§) 2 A u],lkm(x) 25 j lkmpq(}j)
5 (8)
vhere A =1 {x x av=325 (9)
vV 20
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B =lf X %x_ x_ 4dv (10)
xmpg ~ V ‘v *x *m *p %q
if the representative volume is considered as a sphere of

diameter £. Neglecting terms of higher than second degree, we
obtain

2 2.2, %9
= 1 ATV —_—
Di uj uj,i + A uj,ikk (1 + ) Sxi (11)

in which A = 22/40 and V2 = Laplace operator. Since £ equals
approximately 3da where 4, = maximum aggregate size, we note

"

that A approximately equals the maximum aggregate radius. 1In
view of Eg. 11, the field equations for the imbricate nonlocal

The principle of virtual work for a body (whose domain is
B and surface is S) made of the imbricate continuum may be

©w ~ continuum (Egs. 5-~6) at c=0 may now be written as follows
w 0 o
. - O §<n
T 207 o8 £ 2 g2 :
| . ] (1M +A°VY) o.. . =9 u, (12)
© 2SEug 5,570
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W —H9g 90 . . .
" HETD ¥ in which 6u,(x) is any kinematically admissible displacement
w E S8 . variation, and p; and t; are the given distributed surface and
o Z O~ volume loads. Substituting Eq. 14 for €;; and applying
o — J ' repeatedly Gauss integral theorem, one c derive the field
o ) - O equations (Egs. 12-15) from the virtual work relation
v © e o0 (Eq.16). Moveover, the variational procedure yields the
= boundary conditions at surface S;
T T i . -
eith ua, = 0 .. D, = p, S :
8 8 g 8 o er u, or 013 nj p; {on S) (17)
ANASNOD

_ 2 o2
oij = (1 + A V) aij {18)

In the classical nonlocal continuum theory, the mean
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strain is more generally defined with the help of a certain

given weighting function w(z) where ¢ = x'- x i.e.,
’

du, (x")
W (£) —me e AV' (19)
~ 9x

fv(x)
~ ~3

in which f w(g) dv' = 1 (normalized weights). Introducing
again the ¥aylor series expansion of 3Ju,/9x}! and truncating it
after the quadratic term, one finds tha

VDiuj(§)=

E(x) = (1 + a Az Vz) E,. (20)
1y~ 13
in which
1 ] L] L]
a== fv wir) X Xy av (21)

However, as long as A is to be calibrated empiricaily, one can
determine only the product @ A, and not a and A" sepa-
rately. Thus, it does not matter which weighting function is
used, and the simplest case w(x) = 1/V = const. may be
chosen.

It is intereéting to compare the equation

=€,, + l—Az (u )

i5 ~ %13 T2 i3k T Yy, 1kk
with the well-known couple stress theories or micropolar
theories. In them, only first and second derivatives of dis-
placements appear, while here only first and third derivatives
appear and the second derivatives are skipped. Moreover,
there is no need to associate with the higher displacement
derivative any special type of stress tensor of a higher rank,
such as the couple stress tensor. Only one, second-rank

stress tensor is used here,

Let us now check stability of the continuum. Consider
linearly elastic properties, characterized by Young's modulus
E, and the one-dimensional case, with x; = X, u; = u., From
Egs. 12-15 we obtain the differential equation of motion

/ 2 32 2 32u 7] 32u
\1+)‘ — =% 3 (22)
Ix ax ot

Now seek a solution of the form u = A expli w(x - vt)] where v
= wave velocity, w = frequency. Substitution in Eq. 22 pro-
vides the condition ' .

v2 =E (1
p

- 2222 (23)
We see that the wave velocity is always real. Thus, the
approximation by derivatives of the imbricate continuum is
stable even without the local terms in Egqs. 4 and 5, i.e. for
c=0.
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The chief advantage of the approximation by derivatives
is that it facilitates analytical solutions, for which the
boundary layer method known from fluid mechanics may be uti-
lized, For computer programing, the use of imbricated finite
elements (Fig. 1) seems, however, the simplest approach, since
ordinary finite elements may be used and the nonlocal proper-
ties are entirely taken care of by the element imbrication
(overlapping). Existing finite element codes and the usual
element types can be used and one only needs to properly
define the integer matrix giving the nodal numbers
corresponding to each element number. 7

Crack Band Theory for Progressive Fracturing

For very fine meshes for which the element size h is less
than the characteristic length £ of the medium, the fracture
front may be many elements in width. However, for most
practical applications it 1s sufficient to use finite elements
whose size is equal to the characteristic length or is larger.
In such a case, the cracking zone is of single element width
at its front, and the finite element model of the imbricate
continuum then coincides with that of the classical local con-
tinuum. The fracture analysis then becomes identical to what
has been previously developed as the crack band theory {4,5].

Distributed cracking has been modeled in finite element
analysis by adjustments in material stiffnesses since 1967 [16]
when Rashid introduced this approach. Recently it has been
demonstrated this approach yields consistent results,
independent of the mesh size, only if the stress-strain rela-
tion with strain-softening is associated with a certain fixed
finite element size, £. For concrete, this size appears to be
roughly £ = 3d, where d_ = the maximum size of the aggregate.
This size of finite elements is too small for many practical
purposes. In the crack band theory it has been proposed and
verified that consistent results can be obtained with larger
finite elements provided that the tensile strain-~softening
relation is adjusted so that it yields the same fracture energy
regardless of the mesh size. The fracture energy is expressed

as .
de. =g a2f1 1 (24)
g = Ve J o33 de33 =3 £} (E_‘F)

0 t
in which £ now represents the width of the cracking front! Og
and 44 are the stress and strain in the finite element normai
to the direction of cracking, f£f' is the direct tensile strength
of the material, E_ is the init¥al elastic Young's modulus, and
E_ is the mean downward slope of the strain-softening segment
of the stress-strain diagram, which is negative. If the finite
element size is h + £, then Eq. 8 with £ replaced by h must

G
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yield the same value of G.. This may be achieved by adjusting,
first, the downward strain-softening slope E_, and second, if
the slope becomes vertical, by reducing the actual tensile
strength f! to a certain equivalent strength £f' [1-5]. This
type of model has been shown to agree with essgﬁtially all
fracture test data for concrete, including the maximum load
data and the R-curve data [4,5].

It may be noted that approximately the same results may
also be obtained if the cracking strain accumulated across
the width of the crack band is expressed as a single cracking
displacement, and a certain stress-displacement relation in
the connections between the finite elements is introduced into
the analysis. This was the approach followed by Hillerborg
et. al. [13].

Constitutive Relations for Strain-Softening

In the analysis of many practical situations, including
all fracture tests, the principal stress direction in the
fracture process zone remains constant during fracturing.
Triaxial strain-softening can then be introduced in the form

E=Do+E (25)

Here ¢ and ¢ are the column matrices of the components of
strain and stress, D is the 6 x 6 matrix of elastic constants,
and £ is a column matrix representing additional smea¥ed-out
stralns due to cracking, £ = (€ 1’ 522, 533, 0, 0, 0)°. The
normal stresses may be assumed %o be uniquely related to their
associated cracking strains,

010 = C&11) Bips Opp = C(Ey)) Eyps 035 = ClE53) B35 (26)

in which C is the secant modulus which reduces to zero at very
large cracking strains and may be calibrated from direct ten-
sile test data which cover strain-softening [17-24]. Different
algebraic relations must, of course, be used for unloading.

For some situations, especially in dynamics, it is
necessary to describe progressive formation of fracture during
which the principal stress directions rotate. In such a case,
the foregoing model is inadequate. A satisfactory formulation
can be obtained with an analog of the slip theory of plasticity,
which was called the microplane model [25,23]. In this model
it is assumed that the strain on a plane of any inclination
within the macroscopic smoothing continuum consists of the
resolved components of one and the same macroscopic strain
tensor €,.. Using the condition of equal energy dissipation
when calddlated in terms of the stresses and strains on all
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such planes and in terms of the macroscopic stress and strain
tensors, one may obtain the stress-strain relation

c
4905 = Dijim ¢ Cyy (27)
in which
D; = IZ“ fﬂ/z n,n.nn_ F'(e ) sinp d6dé (28)

This equation superimposes contributions to inelastic stress
relaxations from planes of all directions within the material,
defined by spherical coordinates 6 and ¢; n, are the direction
cosines for all such directions, and F(e ) is a function
characterizing the constitutive properties and representing
the stress—strain relation for one particular microplane with-
in the material; e n, n, e, = normal strain on a plane
with direction costhesn). th %as been demonstratedozgg;/%he
microplane model allows describing tensile strain-s ening
under general stress or strain histories and always leads to

a reduction of stress to zero at sufficiently large tensile

strain.’

Conclusion

The concept of imbricate nonlocal continuum, along with
strain-softening stress-strain relations,allows a mathematically
consistent and realistic description of progressive distributed
cracking in concrete structures.
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