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Chapter 2

Material Models for Structural
Creep Analysis’

2.1 INTRODUCTION

Creep and shrinkage of concrete is an intricate phenomenon, and a constitutive
equation which is both generally applicable and realistic is difficult to formulate.
Before the computer era, this task was not really an issue because no structural
analysis problems could be solved with a sophisticated constitutive model. After
1970, however, large computer codes that could accept a complicated constitu-
tive model became available. Yet nothing useful could be done with these large
codes if a good constitutive model was unavailable. Thus, computers have been
providing an impetus for development of realistic constitutive relations for
concrete creep and shrinkage, and tremendous progress has taken place during
the last fifteen years. ‘

The purpose of this chapter is to review the progress, spell out the fundamental
concepts, and emphasize some recent developments that are just becoming ready
for computational applications. Since two comprehensive reviews of a similar
nature appeared several years ago (ASCE, 1982; Bazant, 1982b), the subjects
discussed in depth in these reviews will be covered concisely, while the most
recent developments, such as the modeling of creep at variable humidity, will be
covered in more detail.

2.2 CONCRETE AS AGING VISCOELASTIC MATERIAL

2.2.1 Compliance function

The total strain of a uniaxially loaded concrete specimen at age t may be
subdivided as

() = ex(t) + £c(0) + es(0) + ex(t) = ex(t) +6"(0)
= ex(1) + ec(t) + () =&, (1) +£° () @.1)

in which g¢(¢) is the instantaneous strain, which is elastic (reversible) if the stress is

¥ Principal author: Z. P. Bazant. Prepared by RILEM TC69 Subcommittee 2, the members of
which were Z. P. BaZant (Chairman), J. Dougill, C. Huet, T. Tsubaki, and F. Wittmann.
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100 Mathematical Modeling of Creep and Shrinkage

small, ec(t) is the creep strain, eg(t) is the shrinkage (or swelling), & (t) is the thermal
expansion (or dilatation), £%(¢) is the stress-independent inelastic strain, " (t) is the
inelastic (stress-dependent) strain, and ¢,(t) is the stress-produced strain, also
called the mechanical strain. Strain eg(¢) is reversible (recoverable) immediately
after the moment of loading. Later, however, it is irreversible due to ageing caused
by hydration, as well as by other time-dependent changes in the microstructure;
see Section 1.3.

According to these strain definitions, measurement of creep generally requires
two identical specimens subjected to exactly the same environmental histories,
one specimen being loaded and the other (the companion specimen) being load-
free. The difference between the deformations of these two specimens defines the
mechanical strain, consisting of creep plus the instantaneous (elastic)
deformation.

In this section, we consider only creep at constant stress. By measuring strains
of test specimens loaded to different stress levels, and plotting the creep
isochrones, representing the curves of stress versus strain for various fixed load
durations (see Fig. 2.1), one finds that within the service stress range, i.e. for
stresses less than about 0.4 of the strength, these curves are approx1mately linear.
Thus,

ey=aJ(t,t')+ %) (2.2)

in which o represents the uniaxial stress, ¢ is the axial strain, t is the time, normally
chosen to represent the age of concrete, and J(¢,t') is the compliance function
(often also called the creep function); this function represents the strain (elastic
plus creep) at time ¢ caused by a unit constant uniaxial stress that has been acting
since time t'. Within the linear range, the creep at uniaxial stress is completely
characterized by function J(t, t’). The typical shape of this function is sketched in
Fig. 2.1. The compliance function is often expressed as a sum of the elastic
(instant) compliance 1/E(t') and the creep compliance C(t, t) (also called the
specific creep), i.e.

1 I+ o@,1)
Jtt)y= ()+C(t Y= E(t)

where E(t') is the elastic modulus characterizing the instantaneous deformation
ataget’,and ¢(t,t') = E(t')J(t,t') — 1 is the ratio of the creep deformation to the
initial elastic deformation, called the creep coefficient. The values of ¢ for long
times such as 30 years usually lie between 1 and 6, with 2.5-3 as typical values.
The long-time values of the shrinkage strain, included in £° (Eq. 2.2), are normally
between 0.0002 and 0.0008.

The values of the compliance function and shrinkage are influenced by many
factors, which may be divided into intrinsic and extrinsic. The intrinsic factors are
those that become fixed when the concrete is cast; they include the concrete mix
parameters, such as the aggregate fraction, the elastic modulus of aggregate, the

(2.3)
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Figure 2.1 Creep isochrones (top), and compliance curves for various ages ¢ at loading (bottom)

cement content, the water—cement ratio, and the maximum aggregate size, as well
as the design strength. The extrinsic factors are those that can be changed
externally after the concrete has been cast; they include temperature and the
specific water content (including their histories), the age when loading begins, the
degree of hydration, etc. The mathematical expressions for the compliance
function and the influencing factors will be discussed in more detail in Section 2.5
and in the meantime it will be assumed that the compliance function J{(t, t') is
known, being given either by an analytical formula, or a graph, or a table of values
(Fig. 2.2).

An important property of the compliance function of concrete is that it is a
function of two variables, the current age, ¢, and the age atloadingt' (Fig. 2.1). It is
a salient characteristic of concrete that the compliance function cannot be
considered as a function of one variable, i.e. the time-lag ¢t — ¢, as is customary in
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Figure 2.2 Compliance data measured concrete cylinders by Hanson and

Harboe, and curves obtained after smoothing with ageing Maxwell chain.
(after BaZant and Wu, 1974b, Hanson (1953) and Hanson and Harboe (1958)

classical viscoelasticity for other materials, e.g. polymers. The ageing is a
considerable obstacle to analytical solutions of structural problems, and necessi-
tates that most real problems have to be solved by numerical methods.

2.2.2 Principle of superposition

As a consequence of creep and shrinkage, the stress in redundant structures
usually varies with time even if the load is constant. The calculation of creep
caused by variable stress is greatly facilitated by the principle of superposition.
This principle is usually assumed to apply to concrete within the service stress
range, and its use in design is permitted by contemporary building codes and
recommendations of engineering societies. The principle of superposition, which
is equivalent to the hypothesis of linearity of the constitutive equation that relates
the stress and strain histories, states that the response to a sum of two stress (or
strain) histories is the sum of the responses to each of them taken separately.
According to this principle, the strain caused by stress history o(f) may be
obtained by decomposing the history into small increments do(t') applied at
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Figure 2.3 Decomposition of stress history into stress steps (left) or stress impulses (right)

times ¢, and summing (as illustrated in Fig. 2.3) the corresponding strains which
equal da(t'), J(t,t') on the basis of Eq. (2.2)

t
e(t)= J J@t,t)do(') + £°(2) 24
o

This equation is a general uniaxial constitutive relation defining concrete as an
ageing viscoelastic material. The integral in this equation should be understood
as the Stieltjes integral, which is preferable to the usual Riemann integral since it
applies not only for continuous but also discontinuous stress histories. When o (f)
is continuous, we may substitute do(t') = [do(t')/dt’ ] dt’ which yields the usual
(Riemann) integral. For each finite sudden jump Ac(t;) at time t;, the term
J(t,t;)Aa(t;)is implied by the Stieltjes integral and must be added to the Riemann
integral. The principle of superposition (Eq. 2.4) was proposed by Boltzmann
(1876) for non-ageing materials, and by Volterra (1913) for ageing materials.
Equation (2.1) was introduced for concrete by McHenry (1943).

The principle of superposition (Eq. 2.4) yields accurate predictions only under
the following conditions:

1. The stresses are within the service stress range, i.e. less than about 0.4 of the
strength.

2. Unloading, i.e. strain of decreasing magnitude, does not take place (although

the stress may decrease, as in relaxation).

There is no significant change in moisture content distribution during creep.

4. Thereis no large sudden stress increase long after the initial loading (this is the
least important condition).

[

In practice, the superposition principle is often used even when conditions
(2)-(4) are violated; however, the predictions may then be rather crude. It may be
noted that the proportionality property for creep under constant stress (Eq. 2.2)
appears to have a broader applicability than the principle of superposition
(cf. Section 2.4.1). It may be also noted that a certain simple non-linear
generalization of the principle of superposition extends the applicability range
significantly; see Addendum to this chapter.
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Substituting da(t') = [da(¢')/dt']dt’ and integrating by parts, one may trans-
form Eq.(2.4) to the following equivalent form, introduced for concrete by
Maslov (1941):

&(t) gt + f L(t,t)o(t)dt + &°
- Yo (t)dt + €0t .
it . (0 23)
in whic‘h L(t,.t') = —0J(t,r')/ot’. Geometrically, this equation means that the
stress history is decomposed into vertical strips each of which is considered as an
impulse function of stress (Dirac J-function); see Fig. 2.3. Thus, L(, t') represents
Fhe strain at time ¢ caused by a unit stress impulse at time ¢’ and is called the stress
impulse memory function.

Differentiating Eq. (2.4), we see that the strain rate is expressed by the history

integral,
. . ,
é(t)=&+ f L)
E() o Ot
where superior dots denote time derivatives.
The principle of superposition may be equivalently expressed in terms of the
relaxation function, R(t, t') (also called the relaxation modulus), which represents
the uniaxial stress ¢ at time ¢ caused by a unit constant axial strain imposed at
time ¢’ and held constant afterwards. Imaging the strain history &(t) to be
decomposed into small strain increments de(t') imposed at times ¢/, the principle
of superposition means that the responses to these increments, given as
R(t,t')de(t'), may be superimposed. This yields the constitutive relation of
ageing viscoelasticity in the form

da(t) (2.6)

a(t) = j R(t, 2')[de(t') — de°(t')] @.7)
0

in which the shrinkage (and thermal expansion) increments de®(¢) must be
subtracted from de(t') since, by definition, they produce no stress.

The typical relaxation function of concrete is plotted in Fig. 2.4. Note again
that it is a function of two variables ¢ and ¢, and cannot be expressed as a function
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Figure 24 Curves of the relaxation function for various ages ¢ at strain
imposition
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of one variable, the time-lag ¢t — ¢, as is customary in classical viscoelasticity of
pon-ageing materials.

When the strain history is given, Eq. (2.4) represents a Volterra integral
equation for the strain history &(¢). By solving this equation for the strain history
specified as a step function (a constant unit strain imposed at age t'), one may
calculate the stress histories for various t' (relaxation curves), and thus obtain the
relaxation function. For realistic forms of J(t, t'), this solution must be carried out
numerically. Conversely, Eq. (2.7) represents a Volterra integral equation for (¢).
By solving this equation for the stress history in the form of a step function, i.e. a
constant unit stress applied at age t', one may calculate the individual creep
curves, which together define the compliance function. Equation (2.7) is said to be
the resolvent of Eq. (2.4) and vice versa. Functions J(¢,t') and R(t,t'), called the
kernels of the integral equations, are complementary to each other, and if one of
them is specified the other one follows.

For the creep functions typical of concrete, the relaxation function may be
approximately calculated from BaZzant and Kim's formula (Bazant and Kim,

1979):
, _I—Ao_ 0.115 J(t—A,t’)—
R(t’t)_J(t,t') J(t,t-l)(_J(t,t’+A) 1> (2.8)

inwhich A = (t — t')/2, Ay ~ 0.008, and times must be given in days. Compared to
the exact solution of the Volterra'integral equation, the error of this formula is
normally within 1 per cent of the initial value of the relaxation curve. A
comparison of this formula with the accurately calculated relaxation curves is
shown in Fig. 2.5 based on Bazant and Kim (1979) (with a correction by Chiorino
et al. 1984, p. 150). Also plotted is the estimate R(t,t') ~ 1/J(t,t') = E ¢ = effect-
tive modulus, which is often used in classical, non-ageing viscoelasticity. For no
ageing, the use of E yields good results, but not if ageing is present as Fig. 2.5
confirms. Development of an approximate formula for R(¢,t') was also proposed
by Chiorino et al. (1972) and others.

Although Eqs(2.4) and (2.7) are equivalent, description of concrete creep
behaviour in terms of the relaxation function is adopted rarely. The principal
reason is that good experimental data on R(t,t') (Hansen, 1964; Ross, 1958a;
Harboe et al. 1958; Hanson, 1953; Klug and Wittman, 1970; Rostasy et al. 1972;
Davies et al. 1957) are much more limited, since the relaxation tests are not as easy
to carry out as the creep tests. However, for certain types of problems it is
advantageous to first determine R(t,t') from J{t,t') and then carry out the
structural analysis on the basis of R(¢,t').

There is solid experimental evidence (e.g. Hanson and Harboe, 1958; Hanson,
1953) showing that the conversion of creep function into the relaxation function
according to the principle of superposition is quite accurate, provided that
simultaneous drying or wetting does not cause significant deviations from
linearity and the stress is not high; see Fig. 2.6.
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Figure 2.5 Comparison of approximate formula for relaxation function (dash-dot
lines) with exact solution of relaxation function (solid lines) for various ages ¢’ at
loading, obtained from a smooth compliance function fitted to various data (a-e) or
determined from ACI 1971 model (f). Dashed lines show effective modulus predictions.
Where indistinguishable, dashed and dash-dot lines coincide with solid lines. (after
Bazant and Kim, 1979; data from L’Hermite, Mamillan and Lefévre, 1965,
supplemented by private communication, Mamillan, 1971).

Multiaxial generalization of all the preceding relations is obtained easily, by
virtue of the fact that the material is essentially isotropic. Based on the hypothesis
of linearity (principle of superposition), Eqs (2.4) and (2.5) are generalized as

g(t) = fl BJ(t,t')de (') + £°(2) (2.9)
)]

or as

o) ' Nl g ,
“”“BE@ +_J.O BL(t,t')a(t')dt’ + £°(t') (2.10)
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Figure 2.6 Relaxation measurements on concrete cylinders _by Hanson (1953) gmd Harboe et al.

(1958), compared to exact relaxation function curves for.vanous ages t at loading, calculated by

superposition principle from smoothed compliance function measurcments (one of the best proofs
that the superposition principle correctly predicts relaxation; after Bazant and Wu, 1974b)

“in which

T — . . T
6=(0,,,052,033,013, 033, O3y), €=(81. €22, £33,€12-623:831)

e% =(£2¢%¢%0,0,0)7

~and R -
1 —v —v 0 0 0
1 —v 0 0 0
B= | 0 0 0 (2.11)
l+v 0 0
1+v 0
L 1+v

The numerical subscription of ¢ and ¢ denote the components of the stress and
strain tensors in cartesian coordinates x,(i = 1,2, 3), superscript T denotes the
transpose of a matrix, and v is the Poisson ratio generalized for viscoelastic
behaviour, with v(t,1) representing the elastic Poisson ratio at age t.

In the service stress range, and under the conditions stated above, the test data
on shear creep (torsion) and biaxial creep (McDonald, 1972; York, 1970;
Arthanari, 1967; Neville and Dilger, 1973, 1981; Meyer, 1969; Iliston, 1972, etc.)
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approximately agree with the additivity of the responses to various multiaxial
stresses implied in Eq. (2.9).

Most generally, the Poisson ratio in Eq. (2.11) could be a function, v = v(z, t').
However, it so happens that at constant humidity (basic creep) this ratio is almost
constant (approximately v ~ 0.18), and then matrix B can be moved in front of the
integrals in Eq. (2.9). However, when creep during variable moisture content is
considered and is described by means of a mean compliance for the entire cross-
section (Section 2.5.4), then the corresponding apparent overall Poisson ratio of
the cross-section is quite variable and can drop almost to zero (BaZant and Wu,
1974a). Unfortunately, no unique function v(t, t') then exists, since the evolution
of v depends on the humidity history and the cross-section size. Moreover,
matrix B then takes, strictly speaking, the form of a compliance matrix for
anisotropic materials.

The multiaxial stress—strain relations may also be written without matrix
symbolism, as separate relations for the volumetric components and for the
deviatoric components of the stress and strain tensors (Bazant, 1975, 1982b;
ASCE, 1982). These equations are similar to Eqs (24) and (2.5), the uniaxial
compliance function J(t, t') being replaced by the volumetric compliance function
JY(t,¢')=3(1 —2v)J(t,¢') and by the deviatoric compliance function J®(t,¢') =
2(1 +v)J(¢,t'). The matrix formulation in Eqs (2.9) and (2.10) relates more
directly to the way finite element programs are written.

Sometimes it is convenient to define creep operator E~! and relaxation
operator E by writing Egs (24) and (2.7) in the forms e =E !¢ +¢° and
¢ = E(g — £°). The multiaxial generalizations are then simply written as

e=BE '6+¢° or 6=B 'E(c—¢°) (2.12)
in which

[1, vd—v), vt=v, 0, 0, 0]

1’ V/(l—V), 0) 07 0

-1 E(—v) 1, 0, 0 O

T+ v)(1=2v) v, 0, 0

vk 0

1-2v
* —

TR (.13)

The relaxation operator E is the inverse of the creep operator E~!. These
operators can be manipulated according to the rules of linear algebra (with
certain minor limitations, particularly the lack of commutativity, which is due to
ageing). This property may be exploited to prove an extension of the elastic-
viscoelastic analogy to ageing viscoelastic materials, which permits converting
any equation of linear elasticity to an analogous equation for ageing creep
(Mandel, 1958; Bazant, 1961b, 1966, 1975; Huet, 1980) (see also Chapter 3).
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2.2.3 Differential-type constitutive relations

Numerical creep analysis of large structural systems may be greatly facilitated,
and analytical solutions of some problems may be rendered possible, if the
integral-type constitutive equations from the preceding section are converted to a
differential-type form consisting of a system of first-order ordinary differential
equations in time. Such a conversion is possible if the kernel J{t,¢') or R(t,t') has
the degenerate form, ie. consists of a sum of products of functions of single
variables ¢ and ¢. The most general forms of the degenerate kernels may be
written as

1
u(t)

RG0) = Y Ey(t)explya() — u)] @.15)
u=1

J@,t)

{1 —exply,(t) - y.(01} (2.14)

I
tu[v]z
9]

Here C,(t') and E,(t') are functions of one variable, called the reduced times.
They may be considered as

v@=7) (u=12...,N) (2.16)

in which g, are positive exponents < 1. Here 1, are constants called either the
retardation times in the case of Eq. (2.14), or the relaxation times in the case of
Eq. (2.15). The expansion in Eqs (2.14) and (2.15) represents a series of real
exponentials, called the Dirichlet series (also called the Prony series) (Hardy and
Riesz 1915, Lancosz 1964, Cost 1964, Schapery 1962, Williams 1964).

The expansion in Eq. (2.14) is normally made to include as its first term the
instantaneous (elastic) part of the compliance function. This is achieved by
choosing an extremely small first retardation time 7, (¢ = 1), e.g. 7, = 10~° day.
Then the first term of the series in Eq. (2.14) is in all practical situations almost
exactly 1/C,{t'), which represents the instantaneous compliance, C,(t') = E(t’).
Using very small but non-zero t, is more convenient for computer programming
than writing in Eq. (2.14) a separate instantaneous term which differs from the
other terms of the sum.

If the compliance function is given, it is not difficult to calculate functions C, “‘(t’)
or E, (¢') for which Eqgs (2.14) or (2.15) are close approximations. The calculation
procedure is discussed in detail in BaZant et al. (1981) and a simple computer
program for this purpose is given in BaZant (1982) (and with a manual and
examples in Ha, H., Osman, M. A. and Huterer, J. (1984), User’s Guide).

For certain special forms of the compliance function, such as the double power
law or the logarithmic law, explicit expressions for C,(t) exist; see BaZant and
Wu (1973a), Bazant (1977, 1982b). In general, functions C,(t') or E,(t') can be
calculated by the method of least squares. As for 7,, however, they cannot be
calculated from measured creep data but must be suitably chosen in advance. (If
calculation of 1, on the basis of the least-squares condition is attempted, a
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system of ill-conditioned equations results.) The choice of 7, cannot be arbitary
but must satisfy certain conditions. The values of , must not be spaced too
sparsely in the log(t — t') scale, and they must cover the entire time range of
interest, in particular, the smallest t, must be such that t, < 37, and the largest
7, must be such that v, > 0.57,,, in which 7., and t_,, are the smallest and the
largest time delay after instantaneous load application for which the response is
of interest. Moreover, the smallest 7, must be sufficiently smaller than the age of
concrete t, when the structure is first loaded; 7, < 0.1¢t,, (otherwise the irreversible
effect of concrete ageing at small ages would be missed in calculations.

The 7,-values that give a close fit of given J(t,t') data are not unique. Equally
good fits of the given compliance function data can be obtained for many possible
choices of 7,-values which are uniformly spaced in the logarithmic time scale and
cover the entire time range of interest. This is, of course, the reason that an
attempt to determine 7, from a least-squares condition leads to an ill-conditioned
system of equations.

Exponents g, in Eq. (2.16) may be always chosen as 1, in which case

v(t)=t/t, (2.17)

However, the compliance function of concrete can be approximated with fewer
terms in the sum of Eq. (2.14) when the value of ¢, is chosen as roughly 2/3
(BaZzant and Chern, 1984c). In that case the spaung y of 7, may be chosen according
to the rule

5, =101, (u=34.....N) 2.13)

Although usually not the most cfficient, the values of ¢, in Eq. (2.16) may be
chosen as I; then the reduced times are proportional to the actual time, ic.
y{t)=t/r, and

T, =10*"'t,  (u=1,2,...,N-1) (2.19)

in which case the 7, values are spaced by decades in the log-time scale. The
individual terms of the Dirichlet expansion are then exponential curves which
have the shape indicated in Fig. 2.7(a), consisting of a spread-out step. It so
happens that this step extends over only about one decade in the log-time scale.
For this reason the number 10in Eq. (2.19) or (2.18) cannot be replaced by a larger
number, i.e. the 7,-values cannot be spaced apart farther than by decades. The
approximation of the creep curve or relaxation curve may then be imagined as a
sum of many spread-out steps as shown in Fig. 2.7(b) or 2.7(c).

The plot of C,(t) or E, () versus log 7, is called the retardation spectrum or the
relaxation spectrum. Its example is plotted in Fig. 2.8.

The Dirichlet series expansion should be regarded only as an approximation to
the compliance function, motivated by computational convenience, rather than
as a fundamental law. The expansion contains unnecessarily many material
parameters defining all the functions C,(¢') or E,(t'). The input for a computer
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Figure 2.8 Example of relaxation spectra for various ages ¢’ at loading, calculated from Dworshak
Dam data shown in Fig. 2.24 (after Bazant and Wu, 1974b)
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program should consist of the coefficients of a simple formula for J(¢,¢'), such
as the log-double power law. The coefficients defining the Dirichlet
series expansion should be generated from this formula by the computer
(Bazant, 1982a; Day et al.. 1984).

As already mentioned, the purpose of the Dirichlet series expansion is to
convert a constitutive equation of an integral type to one of a differential type.
For an ageing material, this conversion is somewhat simpler when the relaxation
function rather than the compliance function is used. Equation (2.7) with R(t,t’)
given by Eq. (2.15) may be rewritten as

o(t)= i 6,(t) (2.20)
in which =
o, ()=e" %" J” e’ BT E, (¢} [de(r') — de°(¢')] (2.21)
0
Now, expressing the derivative de,/dy,, we may verify that the column vectors
¢, called the partial stresses (internal variables), satisfy the differential equations
6, + yu()6, =B E, ()& —£%) (2.22)

Consider now the well-known Maxwell chain model (Fig. 2.9(b}), in which ¢, is
interpreted as the stress in the uth Maxwell unit. The strain rate in the ageing
spring is ¢,/E,(t), and that in the dashpot is ¢,/5,(t), where 5, represents the
age-dependent viscosity of the uth dashpot. Summing these strain rates, we get
B~ (¢ —£°)=(6,/E,) + (6,/n,), which may be written as '

E,@)
1,(¢)

Comparing the coefficients of this equation with Eq. (2.22), we see that the spring
moduli E (t) of the Maxwell chain are identical to the functions E,(¢) used in the

o, =B 1E, ()& —£°) (2.23)

6, +

N
l
U#Cn(fn) == €,
/i I
e - | e
MO G
u=1 2 * N o
'

Figure 2.9 Kelvin chain model (left), Maxwell chain model (middle), and Maxwell'chain model
enhanced with cracking element on top and shrinkage element at bottom (right)
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Dirichlet series expansions (Eq. 2.15), and that the viscosity of the uth dashpot is

n.(t) = E,()/,(0) (2.24)
In particular, for y, = (t/7,)* we have n,(t)=t1E (1)t" '/q (Bazant and Chern,
1984c), and for g = 1 we have 7,(t) = 7, E,(t), a relation which has been used in
most works so far.

The differential-type constitutive relation for concrete creep has also been
termed the rate-type constitutive relation. However, the latter term is used by
some authors in theoretical continuum mechanics (c.g. Truesdell) to refer to a
different formulation in which ¢ is a function of &, & &,....

A similar conversion to a differential-type form may be achieved for the
Dirichlet series expansion of the compliance function (Eq. 2.14); see, e.g. Bazant
(1971c, 1975, 1982b), Bazant and Chern (1984c), Bazant and Wu (1973b). The
resulting differential-type constitutive law may be written as

N
()= Z £,(1)+£°(t) 2.25)
with e
E@+nd), o 6
£, n (—t) £, = e (2.26)
and C, (0 C,(t)
=L E()=C,(1)——*~= 227
7,(8) 5,00 L(0=C,0 5,00 (2.27)

See Bazant and Chern (1984c). Equations (2.25)-(2.27) may be recognized as
the differential-type constitutive equation based on the Kelvin or Kelvin-Voigt
chain model Fig. 2.7(a). Indeed, the rate of stress in the uth spring is E, (t)é,, while
the rate of stress in the uth dashpot is 7,(f)¢,. Setting the sum of these two stress
rates equal to 6, we get Eq. (2.26).

Note that the differential equation for Kelvin chain (Eq. 2.26) is of the second
order, while for a non-ageing material it is of the first order. This is a disadvantage
in comparison to the differential-type formulation based on Maxwell (rather than
Kelvin) chain, obtained from the Dirichlet series expansion of the relaxation
function.

A further disadvantage of the Kelvin chain formulation is that, due to the
presence of the minus sign, Eq. (2.27) can yield a negative spring modulus E,.
Although this is not thermodynamically inadmissible (the thermodynamic
restrictions apply only to the overall material moduli, not to the partial moduli
E,), we then do not have a guarantee that thermodynamic restrictions are
satisfied overall. This is certainly disturbing.

The Kelvin chain formulation may also be converted to a system of first-order
differential equations.

dy, B do
oy = =1,2,..., ,
d, =g (u=1, n) (2.28)
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However, unlike ¢,, the variables y,(t) do not have any direct physical
interpretation, merely defined by the relation }, = £, + 6/C,(t). Nevertheless, the
numerical step-by-step algorithm for the Kelvin chain model may be based on the
first-order equation (Eq. 2.28) rather than the second-order equation (Eq. 2.26);
see Bazant (1971c, 1975, 1982b), Bazant and Wu (1973b).

Variables 6, or ¢, represent what-is known in continuum thermodynamics as
the internal variables, i.e. state variables that cannot be directly measured. (They
were originally called by Biot (1955) the *hidden’ variables.) The current values of
these variables characterize the effect of the past history of the material, thus
replacing the history integral. Only a few current values of 6, or £, are needed to
sufficiently characterize a long past history, e.g. only four values suffice for the
history from t—¢' =1 day until 10* days. Another term for o, is the hidden
stresses or partial stresses, and for g, is the hidden strains or partial strains.

Fig. 2.10 shows that the unit creep curves (compliance function) according to
the Maxwell chain model are smooth curves which can be made to fit very closely
the test data; e.g., those of Pirtz (1968), Hanson (1953) and Harboe et al. (1958).

From the previous discussion it may be concluded that either the Maxwell
chain or the Kelvin chain can approximate the integral-type creep law of ageing
viscoelasticity with any desired accuracy. Therefore, these two models are
mutually equivalent, and they must also be equivalent to any other spring-
dashpot model. For non-ageing materials this was rigorously proven long ago by
Roscoe (1950).

Certain subtle questions nevertheless remain in the case of ageing materials. It
may happen that, for the same J(¢,t'), the spring moduli and the dashpot
viscosities are always positive for one model but could become negative in some
time periods for another model. If this is disallowed, the rheologic models for
ageing materials are not completely equivalent (Bazant, 1979).

The fact that the Kelvin chain model leads to a second-order differential
equation and is more likely to give negative spring moduli or viscosities than the
Maxwell model is caused by the fact that the equation for the ageing spring must
be written as 6, = E,(t)é,, not as a,(t) = E,(t)¢,. The latter equation would be
thermodynamically correct for a chemically softening material (e.g. dehydrating
concrete at very high temperatures), while the former equation is required for a
material that is chemically hardening, as is concrete due to hydration (see
Section 2.4.4) (Bazant, 1966a, b, 1979).

Remark

After completion of the committee’s work, BaZant discovered a new creep model
for which a Kelvin chain with age-independent properties (constant E,) can be
used. The age-dependence is taken into account separately, by certain transform-
ations of time-dependent variables. This new model appears to be much more
efficient and better justified physically than the existing models just described; see
the Addendum to this chapter.
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Figure 2.10 Compliance function approximations based on ageing Maxwell chain model
(dashed lines), calculated from triple power law fits (solid lines) of various compliance data (after
Bazant and Chern, 1985d)
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2.2.4 Incremental quasi-elastic stress—strain relations

The most effective approach to numerical step-by-step structural creep analysis is
to approximate the stress—strain relation for the time step as an incremental
quasi-elastic relation, and then solve the structural creep problem as a sequence
of elasticity problems. This can be done both for the integral-type and the
differential-type formulations.

Let time ¢ be subdivided by discrete times t, (r =0, 1,2,...) into time steps
At,=t, —t,_, (Fig. 2.11). Time ¢, coincides with the instant of first loading. If
there is an abrupt load change at any time f, it is convenient for programming
to use a time step of zero (or almost zero) duration, ie. set t,., =t (or, e.g
te.,=t,+10"* day). Under constant loads, the strains and stresses vary
at a rate which decreases roughly as the inverse of time, and for this reason it is
advantageous to use progressively increasing time steps At,. They are best chosen
so that the time step be kept constant in the log(t — t') scale. When Bazant’s
second-order algorithm described below (Egs 2.31-2.32) is used, normally three
or four-steps per decade in log-time suffice.

Using the trapezoidal rule, the error of which is proportional to At?, we may
approximate Eq. (2.9) as

8r = szl BJr,s- 1./2 AGs + 8? (229)

where the subscripts refer to the discrete times, and s — 1 refers to the middle of
the time step A; J, -1, may be interpreted either as (J, 5+ J,5-1)/2, Or as
J(t,, ts-1,2)- Writing Eq. (2.29) also for €,_, and subtracting it from Eq. (2.29),
Bazant (1972a) obtained the following quasi-elastic incremental stress—strain
relation:

1
Az, = ;BAc, + A" or Ae,=E'B7!{Ae—Ac") (2.30)
in which

r-1
E'=1/J,,_1p, A= Z BWJ,s-112 ~J,1s-12)A0 + Ag}  (231)
s=1

Here E” may be interpreted as the incremental elastic modulus, and Ag” as the

/2
- ] 12L it L | log (f_/o)
r=1 2 3 4 5 6

Figure 2.11 Discrete subdivision of time with in-
creasing time steps
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column matrix of the incremental inelastic strains because Ag” can be evaluated
before the solution of the time step (¢, _ ;, ¢,) begins. The creep structural analysis
may thus be reduced to a sequence of elastic analyses performed in the individual
time steps. Using the foregoing algorithm, Huet (1980) developed a general
computer program for composite beams or frames.

To make programming easy, Madsen (1979) formulated Bazant’s second-order
algorithm (Eqs 2.30-2.31) as a matrix relation between the column matrices of
stresses and strains, such that the column matrix involves the stress or strain
values at all discrete times. This formulation represents a matrix version of the
elastic-viscoelastic analogy and makes it possible to obtain the solutions for
creep simply by replacing the elastic modulus in the formulas of elasticity with the
corresponding constitutive matrix (Madsen and BaZant, 1983) (in more detail, see
Chapter 3). However, the matrix solution is computationally even more ineffi-
cient than the step-by-step solution according to Eqs (2.30) and (2.31) and is
suitable only for problems with a few unknowns.

When large time steps are used, the accuracy of the foregoing second-order
algorithm may be somewhat improved (Bazant, 1984) by using for the last time
step Aa, the effective modulus E = 1/J,,-,. The sum in Eq.(2.29) is then
replaced by

r—1
s,:B( Z: Jrs-112 A65+J,v,_1Ac,>+A£? (232

Writing the equation also for g,_, and subtracting it, one can obtain instead of
Eq. (2.31), the relations

E'=1/J, -

for r>2:
r—1
A8"—"= gl(Jr,s-l,'z_‘Ir—l,s—1/2)A65+(‘]r.r‘3,’2'—Jr—l.r—Z)AO'r—l +A89 ( (233)

for r=2:

A" =], —J10)A0, +Aed; for r=1: Ag" = Aed

Algorithms that are based on a quasi-elastic incremental stress—-strain relation
corresponding to the use of the rectangle rule for the evaluation of the history
integral have been used in practice. However, they are not significantly simpler,
while their error, being of the first rather than the second order in At, is larger, and
the convergence at diminishing At is markedly slower than for the second-order
method (Bazant, 1972a).

An approximation of the impulse memory integral (Eq. 2.9) with a sum leads to
an algorithm which was used in some early works. However, this algorithm is
computationally less efficient and does not permit increasing At to very long
intc:jrvals as the stress variation is getting slower after a long period under dead
oad.
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The incremental quasi-elastic stress—strain relation based on the history
integral has the disadvantage that for each finite element one must store all the
preceding values of all stress components, and at each time step one must
evaluate long sums from all these values. This requires a very large storage
capacity and a very long computing time. For this reason, it is much more efficient
to base the incremental quasi-elastic stress—strain relation on the differential-type
formulation.

To obtain an efficient algorithm, the key idea is to use for the duration of the
time step the exact integral of the differential equation obtained under the
assumption that the cocfficients of the differential equation and its right-hand
side are constant during the time step, while they are permitted to change by
jumps between the time steps. Thus, exact integration of Eq. (2.23) for the
Maxwell chain yields (BaZzant, 1971c; BaZant and Wu, 1974b):

. o,=c,_ e “+E, 1B (Ac—As") (2.34)
in which

2,=(1—emyAy, (235)

Substituting this into Eq. (2.20), we may obtain again the quasi-elastic incre-
mental stress—strain relation in Eq. (2.31) in which

N N
E'= Y AE, ., b= El7 Y (1—e*)g, (2.36)
u=1 u=1
Note again that E” and Ae” can be evaluated before the solution of the time step
{t,— 1, t,) begins. After solving the stress and strain increments in the time step by
an elastic structural analysis, the new values of the partial stresses are obtained
from Eq. (2.34). _ '
For the Kelvin chain model, exact integration of Eq. (2.29) yields (Bazant,
1971c; BaZant and Wu, 1973a):

7"'=y“'e‘°y!+ l" B Ae 2.37)
Fe-172

which then again leads to the quasi-elastic incremental stress—strain relation in

Eq. (2.31) with
1 5’: 1-2,
E" I‘=1CA"—1/2
The computational algorithm based on Egs (2.30) and (2.34)2.36) or (2.37) and
(2.38) is called the exponential algorithm. For At approaching zero, this
algorithm becomes equivalent to the central difference approximation and
converges at the same rate as this approximation, ie. quadratically. The
advantage of the exponential algorithms is in the possibility of using time steps
that are much longer (even orders of magnitude longer) than the shortest
relaxation or retardation time, t,, for which the usual central or forward

N .
A"= ) (1—e )y,  +Ae° (2.38)
=1
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difference formulas would lead to numerical instability. The size of the time steps
is subjected to no numerical stability limit. This can be instructively explained by
examining the role of coefficient 4, as follows.

Amongall 7, there may be one, say t,,, which is of the same order of magnitude
as the current time step At. Then for all 7, < 7,, we have Ay, » 1, exp(— Ay,)~0,
and 1, =0, whereas for all t,>1, we have Ay, «1, exp(— Ay )y~1, and
A,~1. Thus, we see that the chain moduli E . which contribute to the
instantaneous incremental stiffness E” are only those for which 1,<T1,. Thisis
intuitively obvious because the stress in the Maxwell chain units for which
1, > At must get almost completely relaxed within a time period less than
the step duration. So, the effect of 4, as the time step is increased is gradually to
‘uncouple’ the Maxwell chain units as their relaxation time becomes too small
compared to At.

A few historical comments are in order. A compliance function in the form of a
single exponential was used in structural creep analysis by McHenry (1943),
Maslov (1940) and Arutyunyan (1952), although for the purpose of converting the
structural problem from integral to differential equations rather than for the
purpose of avoiding the storage of stress history in step-by-step solution. The
latter advantage of the degenerate kernel in the form of Dirichlet series was
utilized by Selna (1967, 1968) and Bresler and Selna (1964); but their algorithm
did not allow increasing the time step beyond a fraction of the smallest
retardation time. The exponential algorithm which does not have this restriction
was developed for non-ageing creep by Zienkiewicz and Watson (1966), Taylor
et al.,(1970) and Mukaddam (1974). The exponential algorithms for ageing creep
based on degenerate forms of the compliance as well as relaxation functions were

. developed by Bazant (1971c) and were applied in a finite element program by

BaZant and Wu (1974a).

Other forms of exponential algorithms which differ in some details were
developed by Kabir and Scordelis (1979), Argyris et al. (1977, 1978), Pister et al.
(1976), and Willam (1978) who also used these algorithms in large finite element
programs. Based on the second-order differential equation for the stress—strain
relation for Arutyunian’s compliance function (given in Bazant, 1966b), Haas
(1974b), and Schade and Haas (1975) developed a finite element program for
spatial beam structures of composite construction, which avoids the storage of
stress histories, applies to complex loading histories and to structures built
through successive construction stages. This formulation was later improved
(Haas, 1978) by introducing an increasing retardation time in order to get a better
fit of measured compliance functions.

Anderson (1980, 1982), Smith etal. (1977, 1978) implemented BaZant’s
algorithm (BaZant, 1971c, BaZant and Wu, 1973b) based on a degenerate form of
the compliance function in the general-purpose finite element program
NONSAP. The same was done for a degenerate form of the relaxation function in
the general-purpose finite element program CREEP 80 by Bazant, Rossow and



120 Mathematical Modeling of Creep and Shrinkage

Horrigmoe (Bazant and Rossow, 1981; BaZant et al., 1981) later refined and
applied in various reactor vessel studies by Pfeiffer et al. (1985); and also in the
finite element program SACAFEM by Jonasson (1977), who applied it in analyses
of shrinkage effects in concrete top layers. The algorithm developed by Kabir and
Scordelis (1979), also used by Van Zyl and Scordelis (1979), Van Greunen (1979)
and Kang (1977), and Kang and Scordelis (1980), has been applied in large finite
element programs. This algorithm, which likewise avoids the storage of the
previous history by exploiting the Dirichlet series expansion of the compliance
function, is similar to Zienkiewicz etal’s (1968) algorithm for non-ageing
materials; however, it has a lower order of accuracy than the exponential
algorithms just described, since the approximation error is of the first order in At
rather than the second order (this is because an approximation of the history
integral by a rectangle rule is implied). This less accurate approximation
nevertheless has the advantage that the same incremental elastic stiffness matrix
of the structure may be used in every time step if the age of concrete is the same for
all the finite elements, while the aforementioned exponential algorithms require
changing the stiffness matrix in each time step. This advantage is lost, however, if
the structure is of non-uniform age or if changes of stiffness due to cracking or
other effects need to be considered.

2.2.5 Age-adjusted effective modulus

For many practical purposes, the structural creep analysis need not be very
accurate. As a matter of fact, it makes no sense to do it accurately if the stochastic
nature of creep is ignored and no measures to reduce the statistical uncertainty
are taken. Approximate methods of structural creep analysis are then appropri-
ate. The simplest approach is to obtain the time variation from algebraic
relations, an approach which is usually formulated as some type of effective
modulus.

If the loads are steady, the most attractive method is to use a single, long step
At =t —t, spanning from the moment of first loading, t,, up to the current
time, ¢, and consider for this step an effective quasi-elastic stress—strain relation:

d)(ta t())

E(to)
in which Ag = £(1) — £(t,), etc. If the shape of the stress curve from ¢, to t is
specified, E” may be determined on the basis of the compliance function.

It might seem that for determining E” the best assumption would be a linear
stress variation from ¢, to t, for which we would have

E" = E(to)/[1 + ¢(t, 10)/2]

Not so, however. A better estimate is to assume that the stress jumps
discontinuously right after ¢, and is then constant until the final time. Then one

Ag = -LB Ac + Ag”,  Ag" =Bol(t,) + Ag® (2.39)

- E"
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obtains
E"=FE_=E(t,)/[1 + ¢(t. ty)] = effective modulus

(sustained modulus) (McMillan, 1916; Faber, 1927).

A still better assumption, which is much closer to the assumption that the stress
is constant after a jump at ¢, rather than to the assumption that the stress is
linearly varying (Fig. 2.12), is to consider that the strain varies from ¢, to ¢ in
proportion to the creep coefficient ¢ (¢, 1), or to J(t,t'). The stress history then is,
exactly, a certain linear algebraic function of the relaxation function R(t, t,), such
that the stress—strain relation may be written in the algebraic form of Eq. (2.39)
with

Elo) - Rty
Pt to)

This result (see the theorem in Chapter 3) was proven by Bazant (1970d, 1972b).
For a simplified proof, see Bazant (1982b).

It has been numerically demonstrated that, if there is no ageing, the values of E”
for concrete are nearly the same as the values of effective modulus E,. If there is
ageing, the E” values given by Eq. (2.28) can be considerably larger than the
effective modulus. Therefore, as compared to the effective modulus, Eq. (2.40)
introduces principally an adjustment for ageing, and therefore, E” in Eq. (2.40) is
called the age-adjusted effective modulus (Bazant, 1972b).

Modulus E” may be regarded as the effective modulus for a modified creep
coefficient ¢, i.e.,

”

(2.40)

E" = E(to)/[1 + x(t,10) (1, 6)]

where x(t,ty) is a positive coefficient normally les than 1.0. This type of correction
to the effective modulus has been introduced by many authors on an empirical

c 2 - better

3-correct

1 _ra(ro)

Figur.e 2.12 Stress history simplifications implied in mean modulus (line I, y = 0.5), classical
effective modulus (curve 2, x = 1), and age-adjusted effective modulus (curve 3) (left), and stress
histories for which the age-adjusted effective modulus gives exact results (right)
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basis. An approximate estimate of coefficient y has been obtained for relaxation-
type stress histories by Trost (1967). Trost's estimate of y is quite close to the exact
value given by Eq. (2.40) provided that the age-dependence of the elastic modulus
is neglected. Because y ~ 1 in the absence of ageing, coefficient y introduces
principally a correction for ageing and was therefore named by Bazant (972b) the
ageing coefficient. (Note, however, that x would not be close to 1 if the exponent
n in the power law, Eq. (2.78), were not much less than 1.)

The relaxation function needed in Eq. (2.40) may be calculated with high
accuracy using a step-by-step solution. For practical purposes, though, the
approximation in Eq. (2.8) may normally be used in Eq. (2.40). Alternatively, a
table or graph of the ageing coefficient y may be set up for any given compliance
function. But a table or graph becomes impractical if the dependence of J(z,1) on
many parameters is taken into account, as in the BP model.

If the load involves several sudden load changes, then the age-adjusted effective
modulus method must be applied separately for each load increment and the
results then superimposed.

The effective modulus gives exact results only if the stress is constant in time
(curve 2in Fig. 2.12). For all other stress histories sketched in Fig. 2.12 there is an
error. By contrast, the age-adjusted effective modulus gives exact results for all
the increasing and decreasing histories sketched in Fig. 2.12, provided they are
expressible as linear functions of the relaxation function. The stress histories in
structures under constant load are normally quite close to such a time variation.
This explains why the age-adjusted effective modulus method gives far better
results than the effective modulus method.

The quasi-elastic (algebraic) stress—strain relation based on the age-adjusted
effective modulus is the simplest possible approach to linear creep analysis of
ageing structures. The method has been endorsed in the latest recommendations
of ACI (1982) as well as in CEB-FIP Manual (Chiorino et al.. 1984). Excellent
results have been obtained in various practical applications (Bazant and Najjar,
1973; BazZant et al., 1975; Brueger, 1974; Bazant and Panula 1980).

2.3 TEMPERATURE AND HUMIDITY EFFECTS

2.3.1 Diffusion theory, residual stresses and cracking

The specific moisture content, w, and its rate of change not only produce
shrinkage or swelling but also exert profound influence on creep. The precise law
governing this influence, however, is difficult to determine from measurements
because test specimens are typically in a non-uniform moisture state, and
consequently have non-uniform stress distributions with self-equilibrated re-
sidual stresses, and usually undergo tensile cracking or strain-softening as a
consequence of these residual stresses. It is because of these complicating aspects
that the effect of humidity on creep has been the most argued about property of
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concrete, and it is only now, after some 50 years of research, that a clearer picture
is emerging.

Measurements on specimens exposed to drying or wetting cannot be interpre-
ted, and the behaviour of structures exposed to the environment cannot be
predicted, unless the distributions of water content and pore humidity through-
out the specimen are calculated. The movement of moisture through concrete
is governed by the diffusion theory. In the early investigations {Carlson, 1937;
Pickett, 1946; L'Hermite, 1952) the linear diffusion theory was used, but serious
discrepancies have been found in confrontation with measurements. It is now well
documented that the diffusion equation that governs moisture diffusion in
concrete is highly non-linear, due principally to a strong dependence of
permeability 4 (as well as diffusivity C) on pore relative humidity. The governing
differential equations may be written as (Bazant and Thonguthai, 1978, 1979,
Bazant et al., 1981)

i—’t": _div), J= —ggrad p (2.41)
C
in which 7
ow ¢wép eweT | . ow Ct,
ow _Cwep  aWel = e 242
& patéra o T Tager (242)

Here w = specified water content (kg/m?), including water that is chemically
bound, w = w(p, T, t,); w, = rate of free water loss from the pores due to hydration
(if w, < 0, w, represents the rate of free pore water gain due to dehydration, which
occurs at temperatures > 1007 C, J = flux of water through concrete (kg/s'm?),
a = permeability, g = gravity acceleration, ¢, = equivalent age = | BBy dt (where
B, By are functions of p and T, see Eq. 2.49), T = temperature, and p = pore
water pressure, representing the vapour pressure if the pores are unsaturated,
and liquid water pressure if the pores are saturated.

Substitution of Eq. (2.42) into (2.41) and elimination of J yields a differential
equation for p, coupled with the variation of temperature and of the degree of
hydration. Alternatively, the diffusion problem can be formulated in terms of w
instead of p. This is, however, inconvenient when the temperature is variable
because the water flux at non-uniform temperature is still governed by grad p as
the single driving force (BaZzant and Thonguthai, 1978). When w is used as the
basic variable, it means that J depends on both grad wand grad T, and not just on
grad w; this is a mathematical complication: (The flux caused by grad w is called
the Fick flux, and the flux caused by grad p the Soret flux or the thermal moisture
flux.)

At constant temperature below 100°C, it is convenient to reformulate
Eqs (2.41) and (2.42) in terms of pore (relative) humidity h = p/pea(T), where
Po{T) = saturation vapour pressure at temperature T (Bazant and Najjar, 1971,
1972). ]

?—ﬁ::—kdiv.]%—c—fﬁ, J=—Jdgradh (2.43)
it ct
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where k = (0h/0w)r,, = inverse slope of the desorption or sorption isotherm of
concrete at constant T and ¢, A = permeability-type coefficient dependingon T
and t., and h; = h(t.) = self-desiccation humidity, representing the variation of h
with the age in a sealed specimen. For normal concretes, h, decreases gradually
from 1.0 to between 0.96 and 0.98. This variation is quite small and may be
neglected as an approximation, which represents an advantage of the formulation
in terms of h.

It is also possible to formulate the diffusion problem at constant T in terms of
the free (evaporable) water content w, but then the source term in the diffusion
equation, representing the loss of free water consumed by the hydration reaction,
is large and must be included. This is an inconvenience in such an approach.

The basic assumption underlying Eq.(2.41) is that local thermodynamic
equilibrium always exists in each pore of concrete. This implies that w, p, and T
are not related by a differential equation but simply by a function, represent-
ing the set of empirical desorption or sorption isotherms.

The material properties are characterized by empirical coefficients 4, §,, r and
isotherms w=w(p, T,t,.), or coefficients k, a, and function h,(t,). Their direct
measurement is not an easy task. Generally it is physically simpler, albeit
mathematically more complicated, to deduce these material characteristics by
fitting transient data on h or p from drying or wetting tests with a finite element
program (e.g. Bazant and Wu, 1974b).

For desorption at room temperature, slope k may often be considered as
approximately constant, in which case Eq. (2.43) becomes

% =div(Cgradh) + Q}%l (2.44)
where C = kc = diffusivity of concrete. The assumption of constant slope k,
however, is not very accurate for many concretes, and it is then preferable to use
separate k and ¢ (Eq. 2.41) instead of their product, C (Eq. 2.44). Especially at
h— 1, the slope k may vary between the mean slope of isotherm and an almost
infinite value.

An important fact about moisture transport in concrete is that it is essentially
uncoupled from the stress-deformation problem. This is confirmed by the fact
that loading has no appreciable effect on the water loss due to drying, as observed
by Maney (1941), Hansen (1960b) and others. However, an exception is the
formation of large cracks due to stress, which were experimentally observed to
increase permeability diffusivity significantly (BaZant, Sener and Kim, 1987). In
that case, there is a two-way coupling with the stress-deformation problem.

The diffusion equation of moisture transfer (Eqs 2.41, 2.43 or 2.44) is strongly
non-linear because of the dependence of 4 (or C) on p (or h). It has been found
(Bazant and Najjar, 1971, 1972) that 4 (or C) decreases to about 1/20 as h drops
from 0.95 to 0.50 (Fig. 2.13). This is probably due to the fact that at a high degree
of saturation the moisture transfer occurs mainly in the capillary phase of water,
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while at a low degree of saturation the moisture transfer probably involves
surface diffusion along adsorption layers of water on the pore walls, as well as
vapour movements (see Chapter 1). A suitable empirical expression, which was
determined from drying data (Fig. 2.14) under the assumption of a constant value
of k and was used by many authors in finite element analysis, is as follows (BaZant
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and Najjar, 1972) (Fig. 2.13):
C=ki=~C (T t){005+095[1+3(1—h*]""] (2.45)

in which C, is the diffusivity value at h = 1; C depends strongly on temperature
and the degree of hydration, which may be described by the semi-empirical
formula (Bazant, 1975):

~ B\ T )
Cl(T, te) = CD [03 + <T> jlfrzexp <k70_ - ﬁ) (246)

<

in which Q = activation energy of diffusion, R = gas constant, T = absolute
temperature; Q/R ~ 4700 K.

Below 100° C, drying of concrete is a very slow process, orders of magnitude
slower than heating or cooling. A standard 6in diameter cylinder of normal
concrete requires over ten years to almost equilibrate pore humidity with a
constant environment.

Equations (2.41)-(2.44) apply, of course, for both drying and wetting. Note,
however, that diffusivity C greatly increases as concrete becomes oversaturated,
ie.h> 1orp> p,(T). Thisis because the inverse slope of the isotherm, ép/cw or

. Oh/dw, greatly decreases. As the boundary conditions, for a sealed surface the
normal water flux J, cannot be 0. For an exposed surface we may usually assume
perfect moisture transfer, in which case we have at the surface p = p,,,, where p,, is
the environmental vapour pressure (this is apparently true even if the environ-
mental and surface temperatures differ). In reality, the vapour pressure in the
environment and in the pores at concrete surfaces differ. This is important only
for very thin specimens, and one must then formulate the boundary condition
with the help of the surface transmissivity coefficient for moisture.

The initial condition consists of a prescribed spatial distribution of 4. The initial
condition for concrete as cast is that h >~ 1 everywhere.

Due to non-linearity of the diffusion equation, solutions must be obtained
numerically. This can be easily accomplished using a finite element formulation
in space and step-by-step integration in time. For the latter, the Crank—Nicolson
algorithm appears to be most efficient (BaZzant and Thonguthai, 1978, 1979;
BaZant et al., 1981). The finite element formulation may be developed using the
Galerkin-type variational procedure (Bazant and Thonguthai, 1978, 1979).

Consider now the basic physical consequences for shrinkage and creep. One
simple consequence of the diffusion theory is that geometrically similar specimens
or structures of different sizes have similar distributions and time histories of pore
humidity h. Using linear as well as non-linear diffusion equations, it may be
shown (e.g. Bazant, 1982b) that, at the same relative location in geometrically
similar bodies of different sizes, the pore humidity is a function of the non-
dimensional time:

0 =(t—ty)/r, with 1,=D?/C, (2.47)
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in which r, = age at the start of drying, D = characteristic dimension of the body
(c.g. thickness), and t, = a coefficient which may be called the drying half-time.
The time required for drying to reach the same pore humidity at the same relative
location is proportional to t,, which in turn is proportional to the square of the
dimension (thickness) of the concrete specimen or structure. Generally, the drying
(or wetting) times of geometrically similar bodies are proportional to their size
(dimension, thickness) squared.

The size-square dependence (Eq. 2.47) is useful for the modeling of shrinkage
and has been introduced in a recent shrinkage prediction model (Bazant and
Panula, 1978). However, this property is exactly true only if self-desiccation and
the age dependence of permeability (Eq. 2.43) are neglected, and if the temperature
is either constant or varies in a self-similar way for specimens of different sizes. On
the other hand, non-linearity of the diffusion equation does not spoil the size-
square dependence. Experimental data agree with this property quite closely.

Another simple basic property which follows from the diffusion theory
characterizes the rate of penetration of the drying front into concrete from the
surface. It can be shown (Bazant, Wittmann, Kim, Alou, 1987) that the
penetration depth J, of the drying front is initially (for short ¢ —¢,) given by

5, =[12C (1 — 1) 1" (2.48)

So, the penetration depth J,, is proportional to the square root of the drying time,
t — to. This property is again exactly true only if the self-desiccation and the age
dependencies of permeability and of the slope of the sorption diagram are
neglected. However, the non-linearity due to the dependence of diffusivity or
permeability (Bazant and Najjar, 1971, 1972) on h does not invalidate Eq. (2.48).
For a typical diffusivity value C, = 0.1 cm?/day, the drying front penetrates the
depth of 1 mm in 12 min, { cm in 20 hours, 10 cm in 83 days, and 1 min 23 years.
The drying times needed to reach a nearly uniform humidity distribution up to
this depth are about a hundred times longer.

An important consequence of Eq. (2.48) for the penetration depth is that the
shrinkage curves (for constant surface humidity) must be initially (i.e. asymptoti-
cally for short times) proportional to (t — t,) (¢ — t, = drying time) (see Eq. 2.84).
This property, which is true not merely for the linear diffusion theory but also for
the non-linear one (Bazant, Wittmann, Kim, Alou, 1987), closely agrees with
carefully controlled experiments.

As a consequence of non-uniform humidity distributions, the shrinkage strains,
as well as the creep strains at drying, are non-uniformly distributed throughout
the specimen. Consequently, additional elastic and creep deformations are
always produced such that the total strains become compatible. For the drying of
a wall, the pore humidity distributions at various times, the associated free
shrinkage strains, and the stress distributions produced are illustrated in
Fig. 2.15. The strains produced by non-uniform drying normally greatly exceed
the strain value for the tensile strength limit of concrete (i.e., f1/E). Therefore, they
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Figure 2.15  Typical subsequent humidity distributions in @ wall exposed to drying (ak the
corresponding shrinkages at various laycrs imagined as unrestrained (b). and shrinkage stresses with
cracking caused by restoration of compatibility (¢} tafter Bazant, 1982b}

cause teasile strain softening and cracking. This means that the deformations
measured in the standard tests of shrinkage and creep at drying or wetting merely
represent the apparent shrinkage and creep of the specimen but not the true
shrinkage and creep. They must be analysed and fitted with the help of a finite
element program (Bazant and Wu, 1974a) in order to infer indirectly the true
material properties.

232 Temperauire and humidity dependence of crecp viscosities and aging

Pore relative humidity h and temperature T affect creep and shrinkage in two
ways: (1) directly, by altering the viscosity coefficient 7,, and (2) indirectly,
through the effect on the rate of ageing (hydration). Consider the latter effect first.

The rate of hydration strongly decreases as h decreases; at h = 0.3 the hydration
rate is almost zero, and then there is no ageing. This may be conveniently
described by means of a change of the time-scale, considering that the age-
dependent material parameters, i.e. E, and 7, rather than being functions of the
actual age of concrete ¢, are functions of a certain equivalent hydration period t.;
thus we may write

le= jﬁh de, E,=E[(t), n.=n.lt) (249)

in which B, is an empirical function of h, which may be approximately considered
as f,=[1 +(a —ah)*]~" (Bazant and Najjar, 1972). Calibration by test data
yields a =~ 5. For h=1, we have f,=1 and ¢t =1.

Similarly, an increase of temperature accelerates hydration, provided the
temperature is below 100° C. Since the rate of chemical reactions generally
follows the activation energy concept (rate-process theory) (Glasstone etal.,
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1941), 'it is logical t(? use this concept for the rate of hydration or ageing;
accordingly, the definition of the equivalent hydration period (or maturity) may
be extended as

[.= J-/"rﬁhdf (2.50)

U1 1
Br=exp {7{- <ﬁ—;)] (2.5

Here T is the absolute temperature (in kelvins), T, is the reference temperature
(in kelvips. normally 296K) (for T=T,, ,=1), R is a gas constant, and
U,! = activationenergy of hydration; Bazantand Wu(1974a)found U,/R~2700K
(Fig. 2.16). Strictly speaking, Eq. (2.51) ignores the fact that hydration consists of
several simultaneous chemical reactions, each governed by a different activation
energy. So deviations from Eq. (2.51) may be expected, and Jonasson (1 984) finds
that the empirical relation U,/R =4600[30,(T — 263)]°3" agrees with the test
data better.

According to studies of non-linear creep (Bazant et al., 1983), it seems that the
rate of hydration (or ageing) might also depend on stress, as if compression
promoted the rate of formation of new bonds. In particular, Eq. (2.50) would thus
be generalized as

in which

le= jﬁ'l’/‘hﬂa dt ‘ (2.52)

in which B, is a function of the hydrostatic pressure component in concrete, such
that B, increases with the magnitude of pressure. This effect might be even more
complex in that each principal stress could affect the rate of hydration separately
for each direction.

Now consider the direct effect of temperature and pore humidity on the rate of
creep. This eflect may be described as (Bazant et al., 1981; Bazant and Chern,

1985a)
L ¢
nit) 1, E,(.)

¢rand ¢, are functions of T and h, which increase when T or h increase. The effect
of tcmpera_ture may again be based on the fundamental concept of activation
energy, which implies that

U1l 1

in which U, is the activation energy of creep; U /R =~ 5000K. The activation
energy of creep could have different values for different 7, (i.e. for components of
different relaxation or retardation times); however, the existing data do not
indicate any need for such a refinement.

u=12....N) (2.53)
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Figure 2.16 Compliance measurements for various temperatures, and fits (solid lines) by ageing

Maxwell chain model with viscosities and reduced time which depend on temperature according to
activation energies (BaZzant and Wu, 1974b) ’

The effect of pore humidity on the creep rate may be described by the empirical
equation (Bazant and Chern, 1985a) ¢, = 2, + (1 — a,)h?, which indicates that
the creep rate decreases if pore humidity decreases. According to some data for
cement paste specimens predried in an oven and then rewetted (Wittmann, 1968),
o, =~ 0.1. However, the preheating might have made this effect too severe. Tests
with drying at constant temperature (Bazant et al., 1976) indicate a larger value,
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2, ~ 0.5 (Bazant et al., 1976) which seems to work well for concrete (Bazant and
Chern, 1985a).

The aforementioned humidity dependence of the creep rate may seem to go
against the established notion that the creep at simultaneous drying is higher
than the creep of sealed specimens. For this reason, it first appeared surprising
when, during the 1960s, it was experimentally discovered that creep is lower at
lower humidity (Wittmann, Ruetz, Cilosani, Ishai, etc.). However, when normal
size specimens are drying while loaded, this effect is normally overridden by
transient effects of stress-induced shrinkage and of cracking or strain-softening
due to shrinkage stresses. These additional effects will be discussed later in this
chapter.

2.3.3 Shrinkage, thermal expansion, and their stress dependence

Shrinkage as a material property, called true shrinkage, is the shrinkage of a
material element at zero stress and variable humidity. Unfortunately, the true
shrinkage of concrete cannot be measured directly because it is impossible to
obtain a specimen with no residual stresses. This is because of the extremely slow
process of drying of concrete at normal temperatures (extremely low diffusivity).
To measure true shrinkage, it is necessary to use thin-walled specimens and vary
the environmental humidity sufficiently slowly so that the pore humidity distribu-
tion throughout the wall of the specimen remains nearly uniform at all times. The
wall thickness must be roughly 1 mm to permit changing the environmental humid-
ity from 100 per cent to 50 per cent within about one day (BaZant and Raftshol,
1982). Specimens of this thickness can be prepared from cement paste (Bazant
etal., 1976), but not from conérete. For the thinnest possible wall of concrete,
roughly 1 in., the aforementioned humidity change would have to be carried out
gradually over a period of about 2 years, and for a 6 in. thickness, over a period of
about 100 years. Therefore, the true shrinkage must be inferred indirectly from
observations of specimens in which there are significant residual stresses. These
stresses normally produce cracking, although the cracks are often invisible
because they are too fine.

The total shrinkage (or swelling) of concrete may be expressed as &, + &, + &,
where ¢, is the autogeneous shrinkage caused by volume changes due to
chemical reactions during hydration, 5, is the carbonation shrinkage due to the
reaction of calcium hydroxide from the cement paste with atmospheric carbon
dioxide, and ¢, is the drying shrinkage (or swelling). The autogeneous shrinkage is
normally quite small, about 5 per cent of the maximum drying shrinkage, and can
be neglected. So can the carbonation shrinkage, since carbon dioxide penetrates
only a very thin surface layer (perhaps ! mm) in a good-quality concrete. From
now on, we consider only the drying shrinkage (or swelling).

As shown by Carlson (1937), Pickett (1946) and others, drying shrinkage is
approximately proportional to the loss of water from concrete, ie. to w (the
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specific water content of concrete). However, although this dependence is very
simple, it seems usually more convenient to consider g, as a function of pore
humidity  because the changes of h produced by hydration are very small (only a
few per cent) while the changes of the evaporable water content are large.
Shrinkage as a material property may be best described incrementally,
de, = dh {2.55)

in which « is the shrinkage coefficient (incremental). Its values dependon h, T, and
t., and are different for drying (dh <0) and wetting (dh > 0). Because & is a
function of the specific water content w, Eq. (2.55) is equivalent to de, =k, dw
where k, is a constant.

The shrinkage coefficient (at zero stress) depends on pore humidity and the age
of concrete (degree of hydration). This may be approximately described as

dfi(h

K=£sl//’ lp:gs(te)_ dh

(2.56)

Here one may perhaps approximately introduce g.lt.) = E(t,)/E(t,) and
Sfoh)=1—h3(for h <0.99, since for h = 1 swelling results). According to Jonasson,
1—h* is good only for h>04, and for h <04 shrinkage is much_larger.
BaZant suggests h >~ 1~ h* + ¢y (1 — h), ¢, ~ 1, for 0 < h <0.99.

In structures, shrinkage always occurs simultaneously with elastic deform-
ations and creep. The previously given constitutive equation for linear ageing
creep at various humidities and temperatures may then be generalized as

1 1
Bs, +
Eft) " " m(t)

in which k and « are the column matrices of the shrinkage coefficients and
thermal expansion coefficients, defined as K=(K{1, K23, K33 Ky, K33, K3;)7,
a=(a,y,...)". If the shrinkage and thermal expansion coefficients were independ-
ent of stress, they would be expressed as «; =Y, j=0a°d;;. However, these
coefficients are not independent of stress, as has been recently established.

In the presence of stress, the shrinkage and thermal expansion coefficients may
be approximately considered as linear functions of the stress tensor defined
as follows (BaZant and Chern, 1985a)

Bo,=¢—kh—aT (2.57)

K,~j=8§’¢(5ij+ ro;sign H), ;= a%(d;; + poy;sign H) (2.58)

in which r and p are material constants and H = h + ¢T where ¢ is a positive
constant. A general linear dependence would also include terms 0,0;; (where
09 = 04/3 = volumetric stress); however, these terms appear to be negligible.
Coeflicient r is normally between 0.1/ and 0.6f +» and coefficient p is about,
2.5/f: (Bazant and Chern, 1985a). Equation (2.58) means that at constant T
the drying shrinkage is increased by compression stress and decreased by
tensile stress, while the opposite is true of swelling (Bazant and Chern, 1986).
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What is the physical mechanism that causes the stress dependence of x and «? A
definite answer does not yet exist; nevertheless, the following explanation seems
logical. In hardened cement paste there exist two classes of pores: the macropores
or capillary pores, and the micropores or gel pores. Their sizes differ by several
orders of magnitude. The passages of the macroscopic water transport through
concrete (drying or wetting process) pass mostly through the macropores and
traverse probably only very little of the micropore space, although they must
traverse at least some of it because capillaries in good-quality concretes are
known to be discontinuous (Copeland et al., 1960). The macro-diffusion process
governs the pore relative humidities, h. When h (or T) changes, thermodynamic
equilibrium of water between a macropore and adjacent micropores is disturbed,
and micro-diffusion of water, ie. the exchange of water with the adjacent
micropores, is produced. This micro-diffusion process passes through molecule-
size pores across which large stresses (resisting the applied load) are no doubt
transmitted, due to the surface roughness and probable presence of some solid
particle bridging the micropores. (The word ‘micropore’ is used here in the loose,
relative sense of mechanics rather than in the sense of cement physics, in which it
has a more precise meaning—pores <25 A in width; see Chapter 1.)

Now, although consensus on the details of the creep mechanism does not exist
at present, it is agreed by most that creep must consist of some sort of debonding
and rebonding of solid particles in the cement gel. It is reasonable to assume that
this process of bond ruptures and reformations is promoted by the movement of
water through the micropores. Thus, it seems physically justified to make the
hypothesis that the creep rate, or the creep viscosity 7, is a function of the flux of
micro-diffusion of water, j; i.e. n = (j). Moreover, since the direction of flux j
should not matter, # ought to depend only on |j.

The macro-diffusion cannot be supposed to affect the creep rate since it
bypasses most of the micropores which are significantly stressed by the applied
load. Indeed, tests showed that a steady-state permeation of water through a wall
does not appreciably affect creep.

The micro-diffusion transports water over extremely small distances, perhaps
of the order of 107% or 10~ ®m. From this, it may be estimated that the micro-
diffusion process approaches equilibrium within a time with the order of
magnitude of 10sec. Thus, the micro-diffusion process may be considered to be
infinitely fast. From this conclusion, and from the fact that diffusion is driven bya
difference in the specific Gibbs free energy of water {chemical potential), it can be
shown that the dependence of 1 on j is equivalent to a dependence of 7 on the
quantity |[H| = |h + ¢T|. The dependence of 1/ on |H| is no doubt smooth and
may be expanded in the Taylor series. If the series is truncated after the linear
terms, ie. (1/n) =(1/n,) + x,|H|, then, if we consider a single Maxwell unit, we
may write

1 .

G . .
—+|—+x,|Hl Jo=6—Kkoh—a,T 2.59
E+<n0+k1| )o E—Koh— a4 (2.59)
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K}, Ko, Mo» and &, are positive coefficients independent of h and T. Noting that
{H} = H sign T, this equation may be rearranged as

—JE—+”£=é—(Ko+KlasignH)H—(cxo+alasignH)T (2.60)
0

where a4 = ck, . Thus, we see that viscosity dependence on hand T is equivalent
to stress-induced shrinkage and stress-induced thermal expansion, defined by the
stress-dependent parts of the shrinkage coefficient and the thermal expansion
coefficient. Equation (2.60) is then generalized by referring its left-hand side to a
single Maxwell unit as in Eq. (2.23).

It may be noted that the formulation in Eq. (2.57) with stress-induced shrinkage
and stress-induced thermal dilatation is a special, greatly simplified case of
BaZant’s original thermodynamic theory (Bazant, 1969, 1970a, 1972a; BaZant
and Wu, 1974c), which was shown capable of describing the bulk of test data on
creep at variable humidity. In that theory, several unnecessary hypotheses
about the cement paste micro-structure and the mechanism of creep and
shrinkage were introduced. The special case just described does not depend on
these hypotheses, and it yields similar agreement with test data.

The stress dependence of the shrinkage coefficient and the thermal expansion
coefficient was introduced by BaZant and Chern (1985a). Modcling creep of
concrete at temperatures over 100°C, Thelandersson (1983) independently
deduced the stress dependence of the thermal expansion coefficient on the basis of
the test data of Schneider et al.,Bazant and Chern fitted with their theory the test
data of L'Hermite et al., (1965), L'Hermite and Mamitlan (1968a, b), Troxell
etal, (1958), Hansen and Mattock (1966), McDonald (1972), Mamillan (1969),
Brooks and Neville (1977), Ward and Cook (1969), Pickett (1946), Domone
(1974), Bazant et al. (1976), and others. Some of the fits of these data are exhibited
in Fig. 2.17.

The stress-dependence of shrinkage and thermal expansion coefficients means
that these deformations are not simply additive to creep. Rather, one affects the
other, contrary to what the current practical formulations for design imply. From
the thermodynamic viewpoint this constitutes a cross effect, whose presence is
normally to be expected whenever a phenomenon involves more than one
irreversible thermodynamic process.

2.34 Effect of strain-softening (cracking)

The residual stresses produced by shrinkage (as well as non-uniform creep) are
large enough to produce tensile cracking. These cracks may be either continuous
and visible, or discontinuous and so fine and densely spaced that they are better
described in a smeared, continuous manner as strain-softening. The latter case
appears to be typical of concrete, with the exception of very thick unreinforced
walls. This agrees with visual observations as well as theoretical calculations
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of crack width and spacing which were based on stability analysis of a parallel
crack system (BaZant and Roftshol, 1982).

The constitutive relation for creep with tensile strain-softening must satisfy
three requirements:
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1. In the absence of strain-softening (cracking), it must reduce to linear
viscoelasticity with ageing, augmented by shrinkage and thermal expansion
terms.

- In the absence of creep (as approximately true for very fast deformations), the
constitutive relation must reduce to a strain-softening law, which is best
described by an algebraic relation.

3. Irrespective of creep, ageing, shrinkage, and the loading path and history, the

maximum principal tensile stress must reduce at very large tensile strain
exactly to zero.

(30

The third requirement is essential. It makes it difficult to use various
incremental laws, such as those patterned after the theory of plasticity with
loading surfaces. The reason is that such laws are path-dependent, whereas the
final value of stress must be exactly zero regardless of the path. The uniqueness
and path-independence of the zero final stress value can be easily achieved if the
stress—strain relation for the part of strain, ¢, which is due to strain softening is
algebraic, i.e.

a=C(@)¢< - (2.61)

in which C(¢) is the variable secant modulus for strain-softening (Fig. 2.18). In
particular, the simple expression C = B, 'exp(— C&) is found to give a
reasonably shaped curve (B;, g, s, ¢ = constants, s> 1, 0 < g < 1).

A special case of strain-softening is an abrupt stress drop, which has been
extensively used in finite element simulation of cracking. Gradual strain-
softening, however, describes the real behaviour of concrete much better than an
abrupt stress drop.

How should the strain-softening relation be coupled with the stress—strain
relation for creep? The aforementioned requirements (1) and (2) can be satis-
fied if these stress—strain relations correspond to a series coupling in the
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Figure 2.18 Tensile stress-strain diagram of concrete measured by Reinhardt and
Cornellissen (1984), showing strain-softening due to invisible microcracking (dashed),
and its fit by a formula (solid curve)
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rheologic model (Fig. 2.9(c)). Thus, the strains (and strain rates) are assumed
to be additive, i.e.

g=e+e%+& (2.62)

in which e, £° E=column matrices of strains due to creep with elastic
deformation, shrinkage and thermal expansion, and strain-softening due to
cracking.

A difficult aspect is the modeling of progressive cracking under general stress
histories. A simple approach, which gives reasonable results if the principal stress
directions do not significantly rotate during cracking, is to permit only certain
fixed orthogonal crack directions which are fixed for each numerical integration
point of each finite element when its maximum principal tensile stress first
exceeds the tensile strength. A more realistic, but more complicated approach is
the microplane model, an analogue of the slip theory of plasticity, in which
cracking is modelled separately for all spatial directions and interaction of
various directions is handled by kinematically constraining the strain for each
crack direction to the same macroscopic strain (BaZant and Chern, 1985a).

When strain-softening occurs, particular attention must be paid to numerical
approximation. Incremental quasi-elastic stress—-strain relations may be based on
central difference time-step formulas. However, such formulas require very small
time steps, especially during strain-softening,

A much more efficient procedure is possible using the same idea as in the
exponential algorithm for rate-type creep based on Maxwell or Kelvin chain, and
applying that idea separately to the cracking strain . A separate quasi-elastic
stress—strain relation for the strain-softening part of deformation may be
obtained if the equation o = C¢ is differentiated, i.e. ¢ = Cé+ Cg = C¢+ Ca/C,
which may be rewritten as ¢ + o =C¢ in which p=—C/C. Now, this
differential equation looks the same as that for the Maxwell unit, and for & = O its
solution describes stress relaxation. Stress relaxation always eventually leads to a
reduction of stress exactly to zero, which conveniently satisfies the aforement-
ioned requirement (3) no matter how long the time step is. An exact solution of
this differential equation may be exploited to obtain incremental quasi-elastic
stress—strain relations which permit very long time steps. To this end, the
differential equation for ¢ is integrated exactly under the assumption that § and
C¢ are constant during the time step although they may change discontinuously
between the time steps. This leads to the incremental stress—strain relation
(Bazant and Chern, 1985a)

Ac 3
A= ) + A¢” (2.63)
in which
1—e™2° _ o AC
= "= 1 —e A A —_——
D A C, Af"=(1-e )D, z z
Here, C is the mean value of C(&) for the time step. Equation (2.63) is then

It

(2.64)
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combined in the manner of series coupling with a similar quasi-elastic stress -
strain relation based on the Maxwell chain mentioned above (Egs 2.31, 2.36). The
resulting formulas are numerically quite accurate and stable even for very long
time steps (Bazant and Chern, 1985a).

Whenever strain-softening (or an abrupt stress drop) is considered, questions
arise with regard to localization of deformation, stability, sensitivity to the mesh
size, and convergence as the mesh is refined. These questions border on fracture
mechanics and are beyond the scope of this chapter.

2.3.5 Pickett effect (drying creep)

Having expounded the mathematical models for moisture diffusion, viscoelastic-
ity with ageing, stress-induced shrinkage and thermal dilatation, and tensile
cracking or strain-softening, we are now in a position to discuss the Pickett
effect—probably the most intriguing phenomenon exhibited by concrete, named
after the man who was first to clearly document this effect and analyse it (Pickett,
1942). The Pickett effect consists. of the fact that, at simultaneous drying, the
deformation of a concrete specimen under sustained load exceeds, usually by a
large amount, the sum of the drying shrinkage deformation of a load-free
specimen and of the deformation of a specimen that does not dry, i.e. is.sealed
(Fig. 2.19). The excess deformation may be regarded either as drying-induced
creep (in short, drying creep) or as stress-induced shrinkage. The Pickett effect is
also called the drying creep, or the stress-induced shrinkage, or the mechanosorp-
tive effect (the last term prevails in the literature on wood).

Pickett (1942), in his original explanation, assumed that shrinkage stresses put
creep into the non-linear range, in which the creep per unit stress is larger, thus
producing excess deformation. This explanation is still in principle correct;
however, it is far from complete. After extensive analyses of numerous test data
pertaining to this phenomenon (Bazant and Chern, 1985a), it now appears that
there are essentially four mechanisms causing the Pickett effect. They are, in the
order of decreasing significance, as follows:

1. Stress-induced shrinkage (representing a thermodynamic cross effect).

2. Tensile strain softening due to cracking.

3. Irreversibility of unloading (i.e. resistance to contraction) after tensile
cracking,

4, Increase of material stiffness with age.

Mechanism (2) is an extension of Pickett’s hypothesis from non-linear
hardening behaviour to non-linear softening behaviour. Tensile cracking of
concrete specimens exposed to drying during creep was analysed by finite
elements by Bazant and Wu (1974a) who noticed a significant influence of
cracking on the response. Similar analysis was made by Jonasson (1978), and a
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Figure 2.19 Excess deformation produced ‘by simulta-
neous drying (Pickett effect)

similar conclusion about the importance of cracking was reached by Becker and
Bresler (1977) and Iding and Bresler (1982).

A more penetrating examination of this effect was made by Wittmann and
Roelfstra (1980) who suggested that tensile cracking might perhaps explain all of
the excess deformation at drying. They emphasized that the observed overall
shrinkage of load-free drying specimens is much less than the true material
shrinkage, due to the effect of cracking. The consequence is that the deformation
difference between the loaded and load-free specimens is magnified, and thus may
falsely appear as creep according to the traditional definition of creep. However,
when long-time compression creep, or creep in tension or bending, are
considered, it appears that the phenomenon of cracking alone is insufficient to
obtain agreement with experimental data. Compared to the assumption of a
sudden crack drop, a significantly improved agreement with long-term measure-
ments can be obtained when strain-softening is considered, as was done by
BaZant and Chern (1985a). Yet an additional effect such as the stress-induced
shrinkage appears inevitable for modeling the observed behaviour in its entirety.
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The various influences oncreep during drying may be illustrated in Figs 2.20 and
2.21. As shown in Fig. 2.20, the observed specimen shrinkage is considerably less
than the true material shrinkage between the cracks. Because the creep with elastic
deformation is determined by subtracting the deformation of a companion
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Figure 2.21 Various components explaining the excess creep at simultaneous drying

load-free specimen from the deformation of the loaded specimen, the observed
(apparent) creep is considerably larger than that which would be obtained by
subtracting the true (but unknown) material shrinkage. If the stress-induced
shrinkage is included in the calculation (curve 4 in Fig, 2.21(a)), the true creep
becomes even smaller.

If mechanisms (1), (3), and (4) are ignored, along with the coefficient a, (giving a
viscosity decrease as the water content decreases, and if the strain-softening is
modelled as a sudden drop of stress to zero, then typically the curve shown in
Fig. 2.21(b)is obtained (when plotted in the actual time-scale). Thus it might seem
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that a sudden stress drop due to cracking might alone suffice to explain the
Pickett effect. Not so, however. When the same curve is plotted in the logarithm
of load duration, the excess deformation (curve 2 in Fig. 2.21(c)) is seen to
disappear after about one decade in the log-time scale. The calculated excess
deformation can be made to last considerably longer if the tensile strain softening
is considered as gradual (curve 3, Fig. 2.21(c)). Eventually, though, the excess
deformation still vanishes. But if one further includes irreversible unloading that
does not return to the origin (Fig. 2.20, lines 4 and 7), the calculated excess
deformation never vanishes (curve 4 in Fig. 2.21(c)). If the stiffening of unloading
due to ageing is included as well, the calculated excess deformation becomes still
more significant at long times (curve 5, Fig. 2.21(c)). This is because in the later
stage of drying, when the core of the specimen shrinks, the outer layer, previously
cracked in tension, is forced to contract, which it resists (column ¢, curves 3-4,
Fig. 2.20).

These explanations become insufficient, however, if ¢,, ie. the reduction of
creep viscosities due to reduced water content, and the dependence of creep on
stress are included (Fig. 2.21(d), (f)). Then the curves 2-5 in Fig. 2.21(d) which are
in excess of curve 1 for the steady-state creep of a specimen in thermodynamic
equilibrium at a certain reduced humidity, cannot be made to exceed the basic
creep curve 0. This is one strong argument in support.-of the stress-induced
shrinkage. Only then one can obtain curve 6 (Fig. 2.21(c)) passing significantly
above the basic creep curve 0. An important aspect is that, since the stress-
induced shrinkage is defined incrementally and is irreversible, the calculated
excess deformation remains large for infinitely long times, while the contribution
from tensile cracking or strain-softening tends to die out (Fig. 2.21(c)).

A second argument for the stress-induced shrinkage arises from the stress
dependence of creep (Fig. 2.21(f)). Without the stress-induced shrinkage, the
isochrone for the total deformation at drying (curve 2 in Fig. 2.21(f)) rises with a
gradually increasing slope, approaching the basic creep curve 1 at higher
compressive stresses. By contrast, existing tests (Mamillan and Lelan, 1970) yield
the isochrone 3 in Fig. 2.21(f), which has a smaller slope than isochrone 1 for the
basic creep, and which is diverging from the basic creep isochrone as the
compressive stress magnitude increases. The reason that curve 2 (Fig. 2.21(f))
does not diverge from the isochrone 1 for basic creep is that the contribution to
the excess deformation which is due to tensile cracking arises totally in the load-
free companion shrinkage specimen, because the compression-loaded specimen
does not crack (curve 5 in Fig, 2.20). So this contribution is essentially constant,
independent of stress, and a stress-dependent contribution, as provided by the
stress-induced shrinkage, must be superimposed.

A third argument for the stress-induced shrinkage comes from tensile creep.
For tension, the compliance is generally observed to be at least as large as for
uniaxial compression, but usually larger (Brooks and Neville, 1977; Davis et al.,
1937 Uiston, 1965). This is also true for drying. Thus, the Pickett effect is at least
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as intense in tension as in compression, and usually it is more intense. The part of
creep increase per unit stress due to cracking is larger for tension than for
compression, according to the present theory, while the part due to the stress
dependence of shrinkage coefficient is about the same; see curve 6 in Fig. 2.20.
Thus, the isochrone of total deformation (curve 6 in Fig. 2.21(f)), has a smaller
slope than the basic creep isochrone in tension (curve 4). Without the stress-
induced shrinkage, however, the total deformation isochrone at drying, obtained
from computer simulations, has about the same slope as the basic creep isochrone
(curve 5). This is because the cracking caused by tensile loading in addition
to the cracking caused by shrinkage is not large enough, and also because the
additional cracking produced by tensile load does not increase much with
time.

In this context it should be observed that for concrete specimens in water,
which swell, the self-equilibrated stresses are opposite to those in line 3 of
Fig. 2.20. Yet, an increased creep is again observed during swelling (Domone,
1974; Gamble and Parrott, 1978), which was initially considered paradoxical. The
explanation is that since tensile stress o reduces the value of the shrinkage
(swelling) coefficient «, the swelling in a tensilejpaded specimen is less than the
swelling at no stress, thus making the deformation difference between the loaded
and load-free specimens larger. ’

A fourth argument for the stress-induced shrinkage is furnished by bending
creep tests, through which the drying creep effect was in fact first unambiguously
demonstrated by Pickett (1942). The bending creep test has the advantage that
shrinkage in a load-free specimen produces no bending, so that no companion
deformation needs to be subtracted. This eliminates the uncertainties due to
inevitable random differences between two specimens, as well as the difficulty due
to different cracking patterns and different residual stress distributions in the
foaded and load-free specimens. Pickett (1942) explained the excess creep
deflections by non-linearity of the tensile stress—strain diagram, with irreversible
elastic unloading. Drying produces microcracked layers near the surface
(Fig. 2.20(f)). As the bending moment M is applied, the lower microcracked layer
is further extended while the upper microcracked layer is forced to contract back.
The incremental stiffness for further extension is much less than that for reverse
contraction. This is true even in Pickett’s sense, i.e. without the strain-softening.
However, if strain-softening is taken into account, the differences in incremental
stiffness between the top and bottom microcracked layers become much more
pronounced, which is needed to fit the data on bending creep during drying
while at the same time the analytical model can represent compression and
tension creeps during drying (for which sufficient data were unavailable to
Pickett.

As for the effect of the stress-induced shrinkage, the compressed side of the
beam shrinks more and the tension side shrinks less than the true material
shrinkage at no stress. Evidently, this causes additional curvature in the sense of
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the applied bending moment. In computer simulations (Bazant and Chern.
1985a), this in fact appears to be the most important contribution of drying to the
excess deflections.

Fits of numerous test data pertaining to these effects are given by BaZant and
Chern (1985a) along with plots of residual stress distributions in test specimens at
various times.

The use of an extensive data set is important for being able to reach the
foregoing conclusions. History teaches us that limited test data can be fitted in
more than one way, sometimes using radically different theories. Determination
of a constitutive equation from test data becomes unambiguous only when the
complete set of information on the material is considered.

2.3.6 Behaviour at high temperatures

Due to applications of concrete in nuclear power plants and concern about their
safety in regard to various hypothetical nuclear accidents, behaviour of concrete
at temperatures over 100°C has recently been in the forefront of interest.
Predictions of response require a realistic constitutive relation for high-
temperature creep, shrinkage and swelling, as well as a realistic model for the
coupled heat and water transport through concrete. A reasonable mathematical
model is now emerging.

It appears that the formulations for normal temperatures can mostly be
extended to high temperatures, with some significant differences. For moisture
transfer, the most significant difference is that the permeability as well as
diffusivity of concrete for water increases about two hundred times as the
temperature exceeds 100° C. Another important aspect, not quite well under-
stood at present, is the interchange of water between the capillary, adsorbed, and
chemically bound (hydrated) states, along with the description of dehydration
and the consequent release of free water into the pores of concrete.

A curious aspect is that high pore pressures (in excess of 10atm) have never
been measured in experiments, although calculations of pressures from the
thermodynamic properties of water yield much larger pressures, under the
assumption that the pore space is constant and completely filled. The only
explanation is that significant increases in pore space available to free water result
from heating. The determination of pore pressure is very important for predicting
explosive spalling of concrete. All the existing experiments have been limited to
concrete at constant or decreasing water content. It could be that the increase of
the water content (oversaturation) which must arise when water is pushed into
the heated concrete layer ahead of the drying front, may result in much larger
pressures than those measured so far.

The aforementioned properties have been incorporated in the sorption-
desorption isotherms at high temperature, along with the thermodynamic
properties of water based on the well-known equation of state. The analytical
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results for pore pressures and water loss can then be brought in agreement with
measured data (Bazant and Thonguthai, 1978, 1979).

As for the stress—strain relation, the chief question remains with regard to the
effect of drying. All tests carried out so far pertain to specimens which were losing
moisture when heated over 100° C, except for some limited tests on small cement
paste specimens. From these tests it appears that the relation of creep at constant
water content and creep at drying is reversed compared to the situation at room
temperature. This may be due to the sharp increase in permeability, causing water
diffusion phenomena to be short-lived, with a very short half-time. Thus, the
transient aspect such as the stress-induced shrinkage, which is explained by the
effect of the microdiffusion flux on the creep viscosities, is important only at the
beginning of creep, while afterwards the reduction of creep viscosities due to the
decrease of water content prevails. This may explain why the existing tests
(Maréchal, 1970a,b, 1972a) indicate for dried concrete at high temperatures a
much lower creep than that at constant water content {Bazant et al., 1982).

Furthermore, significant difference is found at high temperatures between the
creep at constant water content and the creep in water immersion (Bazant et al.,
1976: Bazant and Prasannan, 1986). Apparently, the latter condition causes a sort
of microstructure conversion similar to autoclaving which is known to reduce
creep.

As for the triaxial properties, it is of interest to note that the creep Poisson ratio
at high temperatures has been observed at Northwestern University (Bazant
et al., 1976) to be much higher than for room temperature (0.46 compared to 0.18).
But this observation is limited to cement paste. The difference is much smaller for
concrete for which the Poisson ratio value is dominated by the aggregate skeleton.

The phenomenon of stress-induced thermal expansion, mentioned above, has
been detected for temperatures above 100° C and mathematically formulated by
Thelandersson (1983), based on the test data of Schneider and Kordina ( 1975),
Schneider (1982) and others (Bazant et al., 1982). A logical conclusion from this
result is that stress-induced shrinkage must also exist at high temperatures above
100° C, and the stress-induced thermal expansion at temperatures below 100°C.

Mathematical models for concrete creep at high temperature and the
associated coupled heat and mass transport have been developed and implemen-
ted in computer programs at Northwestern University (Bazant and Chern,
1985a; Bazant et al., 1981), Argonne National Laboratory (Lau, Acker et al.,
1986; Lazi¢, 1985), Technical University of Lund (Thelandersson, 1983), and
Gesamthochschule Kassel (Schneider, 1982, 1986).

2.4 NON-LINEAR EFFECTS AND THERMODYNAMIC ASPECTS
2.4.1 Deviations from linearity (principle of superposition)

The linearity of creep, synonymous to the principle of superposition, is applicable
for stresses within the service stress range, i.e. up to about one-half of the strength
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limit. Even within this range, however, there are deviations. The deviations may
be described as the phenomenon of adaptation (not to be confused with the
phenomenon of adaptation in cyclic plasticity). Concrete subjected to a sustained
compressive stress appears to adapt to the stress, getting stronger, as indicated by
increases of strength and stiffness observed at subsequent load changes, both
short-time and long-time. Thus, it appears that after a long period of compression
creep, the recovery is significantly less than that predicted by the principle of
superposition, and the additional creep due to a later compressive stress
increment is also significantly less (Fig. 2.22).

It seems that the phenomenon of adaptation may be adequately described by
generalizing the equivalent hydration period t, so as to represent an acceleration
of ageing due to compressive stress, and by introducing a stiffness adjustment
coefficient a(t) for which a separate evolution equation (a first-order differential
equation) is written (BaZant and Kim, 1979b). A model of this type permits the
representation of the test data of Komendant et al. (1976), Freudenthal and Roll
(1958), Roll (1964), Brettle (1958), Meyers and Slate (1979), Aleksandrovskii and
Popkova (1970), Aleksandrovskii and Kolensnikov (1971) and others.

The existing data on the deviations from linearity in the service stress range
may be also described in a different manner, admitting that the law governing
creep is inherently non-linear although at low stress it exhibits a proportionality
property for creep under various constant stress values. This formulation
(Bazant et al., 1983) has a form of a simple non-linear differential equation for
the case of constant stress, which may be explained in terms of the rate-process
theory (activation energy concept). For variable stress, this equdtion is gen-
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Figure 222 Typical observed deviations from superposition
principle in service stress range
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eralized by a history integral which is singular in terms of the creep strain. This
formulation also gives good agreement with the existing test data.

The most important deviations from linearity (principle of superposition)
within the service stress range are caused by humidity changes simultaneous with
creep. The non-linearity is due to tensile cracking or strain-softening. The stress-
induced shrinkage is linear in stress, to the first order of approximation
considered here.

Creep in the high-stress range at constant stress may be described quite well by
the simple differential equation &, =ao’(t —t')*&S in which a, r, u, and s are
material constants and ¢, is the creep strain. However, the proper generalization
of this equation to arbitrary stress histories is complicated and leads to a singular
history integral for creep strain (Tsubaki eral.,, 1982). A non-linear constitutive
law for concrete of a different type, which involves multiple history integrals, was
developed by Huet, Gaucher et al.

Remark

After completion of the committee’s work, Bazant and Prasannan (1987)
discovered a new model which describes both the high-stress non-linearity
(increased creep) and the reduced recovery (Fig. 2.22) in a manner that is close to
test data, simpler and physically better justified. See the Addendum to this
chapter.

2.4.2 Viscoplasticity and cyclic creep

Another important non-linear phenomenon arises for cyclic or pulsating loads
with many repetitions. According to the principle of superposition, the creep due
to cyclic stress should be approximately the same as the creep due to a constant
stress equal to the average of the cyclic stress. In reality, a higher creep is
observed. The larger the amplitude of the cyclic stress component, the larger the
excess creep.

The time-average compliance function for cyclic creep at constant stress with
amplitude A and a constant mean stress o may be reasonably well described by an
extension of the double power law (see Section 2.5.3) in which (t — t')" is replaced
by the expression [(t —t')" + 2.2¢,A2N"], where N is the number of uniaxial
stress cycles of amplitude A and ¢, is a function of mean stress ¢ (BaZant and
Panula, 1978, 12). For stresses beyond the service stress range, both the short-
time and the long-time responses of concrete become strongly non-linear.

The short-time response may, within certain limitations, be described by three-
dimensional constitutive relations of plasticity. Accordingly, the non-linear long-
time response needs to be described by viscoplastic constitutive relations.

At present, the question of short-time three-dimensional non-linear constitu-
tive models still remains unsettled, and so it is difficult to consider the three-
dimensional long-time non-linear behaviour. Except for some attempts to
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generalize certain existing non-linear multiaxial constitutive models for the
influence of strain rate, no models are available for non-linear triaxial long-time
creep. Some models have been formulated, however, for uniaxial loading. From
these it transpires that the hereditary aspect (history dependence) of creep
becomes weaker at high stresses, and the creep may be largely described as flow,
understood as the time-dependent deformation described by the Maxwell model
with a non-linear dashpot (Bazant and Kim, 1979b).

2.4.3 Cracking and strain-softening

While the non-linear creep properties under compressive stresses may be
described as viscoplasticity (flow), the non-linear creep under tensile stress states
requires a different description. For such loading, there is significant additional
deformation caused by cracking (frequently so finely distributed that it is
invisible) and strain-softening in tension. This aspect has already been discussed
in Section 2.3.4 in relation to drying. Nevertheless, the discussion pertains also to
cracking in the absence of drying, caused solely be applied loads.

2.4.4 Thermodynamics of constitutive relations

The constitutive equation for creep and shrinkage must satisfy certain thermody-
namic restrictions. For non-ageing materials, these restrictions are well under-
stood (Biot, 1955; Rice, 1971), but for ageing materials there has been much
misunderstanding. .

Not every function of two variables is acceptable as the compliance function
J(t,t'). Certain thermodynamic restrictions, such as &J(r,t')/dt >0,
d2J(1,')/dr* <0, and [dJ (¢, ¢')/dt'), . <O are intuitively obvious. Some further
restrictions, however, are necessary to express certain aspects of the physical
mechanism of ageing.

At present we know how to guarantee fulfilment of such thermodynamic
restrictions only if we first convert the constitutive refation to a differential-type
form and then make the hypothesis that these restrictions should be applied to
internal variables such as the partial strains or partial stresses in the same way as
they would be applied to the strains and stresses. If we did not accept this
hypothesis, we could say nothing about thermodynamic restrictions. It might be
possible that no thermodynamic restrictions are violated by the stresses and
strains even though they may be violated by the partial stresses or partial strains.
But we cannot guarantee it. It is certainly a matter of concern if violations occur.
It has been found (Bazant, 1979) that such violations do in fact happen for
certain existing creep laws. On the other hand, if the thermodynamic restrictions
are satisfied by the partial stresses or partial strains, it is guaranteed that they are
also satisfied by the total stresses and strains. This is one basic advantage of the
thermodynamic method (Section 2.4.4).
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If we reduce the compliance function to a rate-type form corresponding to a
spring-dashpot model, fulfiiment of the second law of thermodynamics can be
guaranteed by certain conditions on spring moduli E, and viscosities 7,. (The
second law might of course be satisfied by the compliance function even when
some of these conditions are violated, but again the point is that we cannot be
certain of it.) Two obvious conditions are E, > 0 and 1, > 0. However, the second
law leads to a further condition when the spring moduli are age-dependent

(Bazant, 1974).
6,=E, )i, for E,20 (2.65)
,=E,t)s, for E,<0 (2.66)

where o, and ¢, are the stress and the strain in the uth spring. The first relation
pertains to a solidifying material, such as an ageing concrete, while the second
relation pertains to a disintegrating (or melting) material, such as concrete at high
temperatures (over 150°C) which cause dehydration. . .

If Eq. (2.66) is used, it can be shown that the expression D, = — 62 E,/2E2
represents the rate of dissipation of strain energy due to the chemical process
(particularly due to disappearance of bonds) which proceeds while the material is
in a strained state (i.c. a state in which the energy of chemical bonds differs from its
initial value at zero macroscopic strain). Thus, to ensure that D, >0 we must
have E',, < 0. So the dissipation inequality is violated if Eq. (2.66) is used (or if its
use is implied) for an ageing (solidifying, hardening) material.

Equations (2.65) and (2.66) can be also derived from the fact that the new bonds
formed in a solidification process must be in a stress-free state when they form
(e.g. due to hydration). By contrast, for dehydration the bonds are in a stressed

“state when they are lost (e.g. due to dehydration). (Section 2.4.4).

Various differential-type forms of the creep law are possible. One form can be
obtained by expanding the memory function L(t,t') into the Dirichlet series:

N
"N = ] —{t— 2.67
L@, ) “; o exp[—(t—1')/t,] (267
Substitution into Eq. (2.5) yields:
£= i e, +€%  gln)= I alt ,) exp[— (¢t —t')/r,]d¢ (2.68)
u=1 0 ”u(t )

By differentiating ¢,(¢} and denoting E,(t) = n,(t)/7,, one can readily verify that
&,(¢) satisfies the differential equation

o=E, (e, +n,(t)E, (2.69)
From this, the non-viscous part of stress g is g, = E,(t)¢,. Now we notice that this

represents an elastic relation that is admissible only for a disintegrating (melting,
dehydrating) material (Eq. 2.66). Thus, Eq. (2.67), which has been used as the
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basis of one large finite element program for creep of reactor vessels, tmplies
violation of the dissipation inequality by the internal variables. This puts the
practical applicability in question.

We may note that Eq. (2.69) along with ¢ = £ ¢, corresponds to a Kelvin (or
Kelvin—Voigt) chain'model (Bazant, 1979), the springs of which are, however,
governed by an incorrect equation (Eq. 2.66). If the correct equations for the
springs are used (6, = E,é,), then the Kelvin chain is characterized by second-
order rather than first-order differential equations (Eq. 2.26). The reason for
violation of the dissipation inequality by Eqgs (2.67) or (2.68) can be traced to the
fact that the equation for partial strains (Eq. 2.69) is of the first order. One can
show (BazZant, 1979) that even if a non-linear rate-type creep law is considered
such that e=ZX,¢, and £, = f,(0,¢,), Eq. (2.66), which violates the dissipation
inequality, is still implied as long as these equations are of the first order. This is
one inherent difficulty of using Kelvin chain-type models (i.e. decomposing ¢ into
partial strains ¢,) for ageing (hardening) materials. By contrast, the differential
equations for the ageing Maxwell chain are of the first order, which is an
advantageous property. (Remark: The model in the Addendum, discovered after
the completion of the committee’s work, however, shows that a non-ageing
Kelvin chain can be used for ageing creep if ageing is modelled by a separate
transformation of variables.)

From the physical viewpoint, ageing is not admissible as the property of a
substance in a thermodynamic system. Rather, ageing must be treated as an
increase of the ratio of mass of the solidified component (hydrated cement) to the
mass of the unsolidified components (water and unhydrous cement grains), each
of which undergoes no ageing (see Section 2.4.4 and the Addendum).

Ageing Kelvin chain models have another interesting property. Consider the
degenerate creep compliance in Eq. (2.14). We calculate 82J/¢t 0t and substitute

C,(0)=[CE)—E()1y,(¢) and C,(t")=n,{)y.(t)
according to Eq. (2.27) for the Kelvin chain. This yields

AJt) X oy EL)
ooy E13) In, ()7
Here we must always have y, > 0 and E, > 0. Consequently, thermodynamically
admissible Kelvin chain models always yield a compliance function such th:
At t)

ctor

exp[y,(t') — y.(9)] (2.70)

=20 (2.71)

Now, what is the meaning of this inequality? Geometrically, it means that the
slope of a unit creep curve would become greater as t’ increases, which means that
two creep curves for different ¢/, plotted versus time ¢ (not ¢t — t') would never
diverge as t increases. Is this property borne out by experiment? Due to the large
scatter of creep data we cannot answer this question with complete certainty. A
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few test data exhibit slight divergence of adjacent creep curves beginning with a
certain creep duration t — ¢’ (Bazant and Kim, 1978; Bazant, 1979), but most data
do not. As for the creep formulas, the double power law, Eq. (2.72), as well as the
ACI formulation, aiways exhibit divergence after a certain value of t — t', whereas
the improved Dischinger model (CEB-FIP 1978 formulation) does not. (Neither
does the new model in the Addendum.)

So the ageing Kelvin chain models cannot closely approximate a compliance
function with divergence without violating the thermodynamic restrictions
E,>0,7,>0, E, >0. Indeed, the previously described algorithms for determin-
ing E,(¢) yield negative E, for some u and some (albeit short) time intervals
whenever J(t,t') with divergent creep curves is fitted.

For ageing Maxwell chain models, by contrast, it has been demonstrated
(Bazant, 1979) that it is possible to violate inequality (2.71) without violating any
of the thermodynamic restrictions. Therefore, the ageing Maxwell chain models
are more general in the range of ageing creep forms that they can describe. The
equivalence of Maxwell and Kelvin chains to each other as well as to any other
rheologic model (Roscoe, 1950) does not quite apply in the case of ageing.

The ageing Maxwell chain model, however, is not entirely trouble-free either.
As numerical experience with the fitting of long-time creep data indicates, the
condition E, > 0 can be easily satisfied but it has not been possible to identify
the condmon that E 20 for all g and all t. The violations, though, were found to
occur only for short time periods and for those Maxwell units which are inactive
at the time, i.e. have not started relaxing as yet or have already fully relaxed.

Note.that we merely evade the question if we restrict ourselves to an integral-
type creep law, for without its conversion to a differential-type form we cannot
know whether our formulation of ageing is thermodynamically admissible. We
also evade the answer by introducing a differential-type model without recourse
to a rheologic spring-dashpot model. (Every differential-type model can be
associated with some such rheologic model.)

It should be noted that the rheologic model correspondmg to a given
compliance function is not unique (Roscoe, Meixner). If we find that a certain
creep function J{(t,t') leads to one unsatifactory differential-type model, we are
not sure whether the same creep function might also be represented by some
other differential-type model that is satisfactory.

To summarize, we have two kinds of differential-type formulations based on
ageing rheologic models: (a) those whose form is fundamentally questionable (e.g.
Eq. 2.66) because it always violates the dissipation inequality for the internal
variables; and (b) those which are of correct form (e.g. Eq. 2.65) and can represent
the ageing creep curves for various ¢’ over a limited time range but cannot do so
for a broad time range without numerically violating some thermodynamic
restrictions (E, > 0 or E,‘ = 0) for some period of time. Although for the second
kind of models the problems are less severe, no rheologic model with age-
dependent E,(t) and #,(¢) is entirely satisfactory. (Remark: Recognition of this fact
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has led to a new model described in the Addendum, which describes ageing creep
on the basis of a non-ageing rheologic model.)

2.4.5 Thermodynamics of creep mechanism

Valuable information on the form of the constitutive equation for creep and
shrinkage can be obtained from mathematical modeling of the processes in the
microstructure. This approach, however, is hampered by the fact that knowledge
of the microstructural processes is still quite limited at present.

To illuminate the nature of the ageing effect in creep, an attempt was made to
deduce the constitutive equation from an idealized micromechanics model of the
solidification process in a porous material. describing the increase in stiffness due
to the volume growth of the solidified component (Bazant, 1977). This approach
led to a certain form of the compliance function, of which the triple-power law
(Bazant, 1977; Bazant and Chern, 1985d) is one possible special case. (For a
successful application of this approach, see the Addendum to this chapter.)

Thermodynamics has also helped understanding of the equilibrium of various
phases of water in concrete and their possible role in creep. This aspect was
discussed in Section 2.3.3 in relation to the humidity-rate dependence of creep
viscosities and the stress-induced shrinkage.

2.5 FORMULATION OF COMPLIANCE FUNCTION AND
SHRINKAGE

2.5.1 Separation of instantaneous deformation and creep

Separation of the stress-produced strain (mechanical strain) into the instanta-
neous or elastic strain & and the creep strain &c is, unfortunately, ambiguous
because significant creep exists even for extremely short load durations; see the
typical curves at constant stress plotted in Fig. 2.1 in the log-time scale, in which
the left-hand-side horizontal asymptote represents the truc instantaneous
deformation (since log0 = — o). This asymptotic value is difficult to determine
experimentally, and it corresponds to load durations that are too short for
practical use. Therefore, the deformation which corresponds to some load
duration between Imin and ! day (Fig. 2.23) is usually considered as the
instantaneous or elastic strain.

Regretfully, there is no general agreement as to the definition of the
conventional elastic strain. The conventional elastic modulus obtained from the
formulas of ACI or CEB-FIP recommendations (¢.g. E = 57 OOO\/'f'C) represents
approximately one-half of the true instantaneous modulus and corresponds to a
load duration of approximately two hours. (The reason for this choice seems to be
that it gives good deflection predictions for the load test of a bridge or other
structure, which usually takes about two hours.) On the other hand, some
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“/(,1 fl) A‘/(fa fl) 1/3 //

1 day log{(r-1")

Figure 2.23  Ambiguity in the definition of elastic deformation 1'E or 1/E (left and right), and fits of
creep data by power curves corresponding to various values adopted for initial elastic deformation

experimentalists use or tacitly imply the instantaneous deformation to be that for
1-10 min duration (the typical duration of a static strength test in the laboratory),
while others use 0.001 sec (rapid loading achicved, e.g., by gas released from an
accumulator tank by a valve). '
Practically, there would be no problem if one would always base the analysis on
the experimentally determined (or predicted) values of the total deformation, i.e.
the compliance function J{(¢,t'), because the subdivision of J{z,¢') into the elastic
and creep parts is artificial and only the total J (¢, ¢')-values matter for structural
analysis. Much confusion and error, however, has been caused by carelessly

. combining incompatible values of the elastic modulus E(z') and the creep

coefficient ¢(z, t') (e.g. combining a with b" or b with a’ in Fig. 2.23). Such practice
ought to be avoided, if not outlawed.

There is, of course, no objection to characterizing creep by the creep coefficient
¢(t,t'); however, the creep coefficient and the elastic modulus must both be
determined from the same compliance function J(t,t’), using the same load
duration A for the initial ‘elastic’ deformation. This is done by using the relations

Ery=1J@ +A ) and o )y=[Ju.t')J@ +A 1)) -1

Of course, A cannot be chosen longer than the shortest creep duration of interest
(usually one day) or longer than about 0.3 of the smallest concrete age considered,
but otherwise its choice is arbitrary.

2.5.2 Influencing factors

A number of factors influence creep and shrinkage. They may be divided into
intrinsic factors and extrinsic factors. The intrinsic ones are those which are fixed
once for all when the concrete is cast. They include the design strength, the elastic
modulus of aggregate, the volume fraction of aggregate in the concrete mix, the
maximum aggregate size, the water—cement ratio. the grading and mineralogical
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properties of aggregate, the type of cement, etc. The extrinsic factors are those
which can be changed after casting; they include temperature, specific pore water
content, age at loading, etc.

Among the extrinsic factors, one must distinguish those which represent state
variables and those which do not. The former ones are those which can be treated
as a point property of a continuum, and they are the only ones which can
legitimately appear in a constitutive equation. The temperature, age, degree of
hydration, pore humidity (or pore-water content), and stress represent state
variables. On the other hand, the size and shape of cross-section and the
environmental humidity are not admissible as state variables in a constitutive
equation, even though they have a great effect on creep of a concrete specimen.
Properly, the latter variables must be expressed through the boundary conditions
for the partial differential equation governing pore humidity. Creep depends
directly on the pore humidity, not on the environmental one. These two values
are normally quite different because moisture diffusion in concrete is a very
slow process.

The effects of state variables, documented by many experimental studies
(Neville 1973, 1981; L’'Hermite eral. 1965; 1968a, b, Wagner, 1958; Lambotte
et al., 1976, Hanson, 1953; Hanson and Harboe, 1958; Troxell et al., 1958; Neville
et al., 1983; Neville and Dilger, 1970) are as follows. Creep decreases as the age of
concrete at the instant of loading increases, which is actually the effect of an
increased degree of hydration, and increases as the temperature increases,
although this effect is to some extent offset by the acceleration of hydration
caused by heating, which tends to'reduce creep. The lower the pore-water
content, the smaller is creep (see the tests of Ruetz, 1968; Wittmann, 1974; BaZant
et al., 1976; Cilosani, 1964 (above 100" C, BaZant and Prasannan, 1987).-In most
practical situations, however, this local effect is overwhelmed by the effect of the
changes in environmental humidity (an extrinsic factor) upon the overall creep of
the specimen or structural member. This effect is usually opposite—the creep of a
specimen is usually increased, not decreased, by a decrease of environmental
humidity (Troxell et al, 1958; L'Hermite, 1965; L’Hermite and Mamillan,
1968a, b). Another extrinsic factor which is not a state variable is the specimen
size. The larger the size, the slower the drying process, and the smaller the creep
increase due to simultaneous drying (Hansen and Mattock, 1966).

2.5.3 Constitutive properties

The compliance function may be defined by a table of values directly based on
experimental data. An interpolation subroutine may then be used to yield any
desired value of the compliance function in a computer program. It is, however,
more convenient to define the compliance function by a formula. This has the
beneficial effect of smoothing rough and randomly scattered test data.
Among simple formulas, the creep of concrete at constant moisture and
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thermal state (also called the basic creep) may be well described by power curves
ofload durations t — ¢, and by inverse power curves of age ¢’ at loading. This leads
to the double power law (Bazant, 1975; Bazant and Osman, 1976; Bazant and
Panula, 1978)

PR N T .

Jt,t) = E + Eo(t +a)t—1t") (2.72)
Approximately, n ~§,m ~4,2~0.05,¢, ~3to6(ift'and t are in days), and Eq =
asymptotic modulus (for log(t — )= — x). E, > L5 times the conventional
elastic modulus for concrete 28 days old. These coefficients can be relatively
simply determined from test data. For example, by using the foregoing estimates
for E,, m,and 2, and plotting y = log [(EJ — 1)/(t' ™™ + )] versus log (t — t'), one
gets a straight-line plot whose slope is n and y-intercept is ¢, . Comparisons with
test data are exemplified in Bazant and Panula (1978, 1980).

Since (t — t')" = "™ where x = In(t — '), the power curves of (¢ — t')appear ona
log-time scale as curves of ever-increasing slope and with no bounded final value
(Fig. 2.1). The question whether there exists a bounded final value of creep (at
t — o) has been debated for a long time and no consensus has yet been reached. It
is nevertheless clear that if a final value exists it would be reached at times far
beyond those of lifetimes of structures. All measurements of creep of sealed or
immersed specimens indicate, except for what appears to be statistical scatter, a
non-decreasing slope on a log-time scale for the entire test duration. There is no
evidence of a final value.

For design purposes, however, the question of existence of a bounded final
value is not too important because the creep increase from 50 to 100 years is,
according to extrapolations of test data (or Eq. 2.72), relatively insignificant
(since at very long times the creep curve is approximately a straight line in
log(t — t')). Most structures are being designed for 40- or 50-year service lives.

The power law of load duration, first proposed by Straub (1930) and Shank
(1935), follows theoretically from certain reasonable hypotheses about the micro-
structural creep mechanism, e.g. the rate process theory (Wittmann, 1971b,
1974) as well as a statistical model of creep mechanism (Cinlar et al., 1977)
or some micromechanics models (BaZant, 1979). Until recently the power
law had been used in conjunction with the conventional elastic modulus for the
elastic term (I/E instead of 1/E, in Eq. 2.72; see Section 2.5.1). However, this
definition of the elastic term greatly restricts the range of applicability. Namely,
by choosing the left-hand-side horizontal asymptote to be too high (Fig. 2.23),a
higher curvature of the power curve, i.c. a higher exponent (about n ~1), is
required in order to fit the creep data for durations from 3 to 100 days. Then the
excessively large curvature due to too high an exponent (} instead of Lycauses the
curve to pass well above the creep data for longer creep durations (over 100 days);
see Fig. 2.23. It was for this reason that in the older works the power law was
deemed to be applicable only for relatively short times. (For extremely long times,
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though, a logarithmic law is no doubt more realistic than a power law; see
Eq. 2.75)

To be able to fit the creep test data with a power law up to many years of
duration, the elastic term (1/E, in Eq. 2.72) must be taken as the true
instantaneous value, i.e. as the left-hand-side horizontal asymptote on the log-
scale, and the exponent then turns out to be around 1. The double power layv thus
acquires a rather broad range of applicability. It agrees reasonab!y Wf:ll w1th.the
known data for creep up to 30 years of duration, and at the same time it describes
quite well the test data for load durations under 1 day apd as short as 1 sec. It
even gives approximately correct values for the dynamic modulus I:_“dyn when
one substitutes as the load duration the typical duration of acoustic period,
t—t' ~1077 day. o

The conventional elastic modulus, along with its age depende.nce, may be
considered as the value of 1/J(t,t') for t — ¢’ = 0.001 day, for which Eq. (2.72)

yields:
EO
T+ T +a)

However, the value obtained by substituting ¢t — t' = 0.1 day agrees better w1§h
the ACI formula (E = 57 000 \/ f+). Note that since four parameters (E9, m,a, ¢)
are needed to describe the age dependence of the elastic modulus, there is only one
additional parameter, namely the exponent n, which suffices to describe creep.

Many other expressions for the compliance function have been proposed
(Wittmann, 1971b; Bazant et al., 1976). Ross (1937) and Lorman (1940) proposed

a hyperbolic expression
Ctt)=tla+bt), t=t—1t

which is convenient for fitting of test data but unfortunately dpes .not e}pply to
long creep durations (Bazant and Chern, 1982). Neither does Dlschlr}ger s (1937)
formula, 1 —exp[—a(t—t)]. Hanson (1953) proposed a logarithmic l.aw,
C(t,t') = ¢(t')log(l + 1), which does not approach any final value and gives
good predictions for rather long creep durations, (S(?.e Eq. 2.75) but for short
durations is not as good as the double power law. Morsch (1947) proposed the

expression

E(t') ¢y =10""¢, (2.73)

Ct,t')= ¢ {1 —exp[—(br) 2]}

and Branson et al. (1970a, b, 1971) proposed the expression 9[1 + 10/
(t—¢)°5]~1; these exhibits a final value. The expressions of Ross and Morsch work
somewhat better for creep at drying (see Section 2.5.4). McHenry (1943), Maslov
(1941), Arutyunian (1952), Bresler and Selna (1964), Selna (_1967, 1969)’, apd
Mukaddam and Bresler (1972, 1974), used a sum of exponentials of t — ¢’ with
coefficients depending on ¢'. Such a sum can be closely adapted to any test data(as
discussed in Section 2.2.3) if there are at least four exponential terms in the sum.
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Various expressions have been introduced with the particular purpose of
enabling a certain simplified method of creep structural analysis. These include
the expressions of Whitney (1932), Glanville (1930), Dischinger (1937, 1939),
England and Illston (1965), and Nielsen (1970, 1977), which all lead to the
rate-of-creep (Dischinger’s) and rate-of-flow methods for structural analysis
and will be mentioned later, and other expressions (Chiorino and Levi, 1967,
Arutyunian, 1952; Levi and Pizzeti, 1951).

The double power law exhibits a certain questionable property which was
recently discussed in the literature (Bazant and Kim, 1978; Bazant, 1979). It is
the property that the creep curves for different ages ¢ at loading diverge after a
certain creep duration, i.e. there exists a time t — ¢’ = ¢, (function of t') after which
the difference between these curves increases while up to this time it decreases (of
Section 2.4.1). This property, which is shared with the ACI recommendation
(1971, 1982) but not with the CEB~FIP Model Code (1978), is equivalent to the
condition that 82J(z,+')/dt ot’ changes its sign from positive to negative (it is non-
negative if there is no divergence). One objection was that the creep recovery
curves obtained by the principle of superposition do not have a decreasing slope
at all times if the creep curves exhibit the divergence property. This argument,
however, is not quite realistic because the principle of superposition does not
apply to creep recovery anyway. Further it was thought that the divergence
property might violate the second law of thermodynamics but it was proven that
this is not so (Bazant and Kim, 1978, 1979b) (see Section 2.4.4). So, whether the
divergence property is real depends strictly on experimental observations. The
evidence from test data is not without ambiguity; some data do exhibit the
divergence, but most do not. It could be that the observed instances of divergence

- property are due to random scatter or to some non-linear effect. If so, divergence

would not belong to function J(z,t'). (See also Eq. 2.108.)

Careful examination shows that the double power law exhibits certain
deviations from experimental data which seem to be systematic rather than
random. In particular, for a short age at loading and a very long load duration,
the final slope of the creep curve obtained from the power law is too high. The
measured creep curves appear to approach in the log(t — t') scale a constant slope
for very long t — ¢'. An improvement can be obtained by the recently proposed
triple power law (BaZant and Chern, 1985d), which specifies the unit creep rate,
Le. the time derivative of the compliance function, as follows:

QY)Y . W Tt
o IO =g Ty

This formula contains one more constant, i/, than the double power law. Some
optimunm fits of test data from the literature obtained with the triple power law in
BaZant and Chern (1985d) are exhibited in F ig. 2.24.

For short load durations, t — ¢ « ¢, we may substitute ¢/t = {, upon which
Eq.(2.74) becomes identical to the derivative of the double power law. For load

(2.74)
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Figure 2.24 Triple power law fits (solid lines) of principal existing measured data for basic creep (Bazant and Chern, 1985d)
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durations that are long compared to the age at loading, f—t >, we may
approximately replace t — t' in Eq. (2.74) with ¢, and upon integration Eq. (2.74)
then yields

J,)=Eg [1+ ¢ (' "™+ 0)t"In t + fo(t)] (2.75)

This equation represents the logarithmic law, initially proposed by Hanson
(1953); it is represented by an inclined straight line in the log: scale. The
compliance function corresponding to the triple power law is obtained by
integrating Eq. (2.74):

J(, )= EL + %(t’ M)t — )Y - B(t,t';n)]
0 0

t—t I, n
B(t,t';n) = - —— ErolgE, E=t—t 2.77
( n) nJ‘;=o|: <t'+g> :lC S G ( )

Function B(t,t'; n), representing the deviation from the double power law, is a
binomial integral, which cannot be expressed in a closed form for realistic values
of exponent n. Nevertheless, this integral may be easily evaluated in terms of a
convergent power series, or by step-by-step integration in log ¢ scale. A table of
values of this integral as well as a graph have also been presented (Bazant and
Chern, 1985d).

The triple power law represents a smooth transition from the double power
law, applicable for short load durations, to the logarithmic law, applicable for
long load durations. The higher the age at loading, the longer is the load duration
at which the transition is centred.

Although numerical evaluation of the binomial integral is easy, its use may be
avoided by another formula which also represents a smooth transition from the
double power law to the logarithmic law and is called the log-double power law
(Bazant and Chern, 1985b):

1 ¥

J(t, t')=E—0 + E—;ln[l +y (" + )t —1t)]

(2.76)
in which

(2.78)

in which 4 = ¢, /if ;. Compared to the triple power law, however, Eq. (2.78) has
the disadvantage that it is not applicable for very short loading times (below
about 0.1 day). Especially, it is not applicable for the dynamic range, because the
plot in the log-time scale has initially much too high a curvature, thus yielding too
high compliance values.

This last drawback may be avoided, still without the use of binomial integral,
by a two-part formula with discontinuous curvature (but continuous slope).
This formula uses the double power law for t — ¢ > 6, where (Bazant and

Chern, 1984b)
b )w.
0 bl B RSP —
(ot

(2.79)
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and after this transition time it uses the logarithmic law given by the expression

t—t 1
”—(EL—ln + )
EO BL EO

Jit.t')y= (2.80)
This expression yields the same compliance value and slope at transition time
t—1' =0, as does the double power law (Eq. 2.72) (Bazant and Chern, 1984b).

Compared to the double power law, the triple power law, as well as Eqs (2.78)—
(2.80), offers only a relatively modest improvement, as measured by the reduction
of the coefficient of variation of the deviations from the bulk of experimental data
in the literature. However, this is partly due to the fact that very long loading
periods are scant among the existing data. Statistics of the final slope of long-time
creep curves compared to the existing observations indicate a significant
improvement. Thus, the use of the triple power law is recommended particularly
when short-time data are to be extrapolated to long times. (Remark: The creep law
in the Addendum, however, found after the completion of the committee’s work,
is superior to triple-power and log-double power laws.)

For extrapolating short-time creep data to long durations, Ross’s hyperbola
C(t,t') = t(a + bt) (Ross, 1937) has been popular since it makes it possible to
obtain the ‘final’ creep value by linear regression in the plot of {/C versus 7. It has
been shown, however, that such extrapolation greatly underestimates the long-
time value (Bazant and Chern, 1982). Worse yet, due to transformation of

variables, the type of regression plot used here obscures the errors and deceives |

the analyst by an illusion of a good fit.
Consider now the temperature effect. Although it is best introduced only after
the compliance function is converted into a differential-type form (Section 2.3.2),

the effect of various values of a constant temperature may be also represented in

the double power law or the triple power law. The double power law is
generalized as

no 1 ¢r

J(t,t)-E0+EO
in which ¢, = { B.(r')dt’ represents the age corrected for the effect of temperature
on the rate of hydration and is called the reduced age or the equivalent hydration
period (or maturity). Coefficients ¢, ny, and f, are empirical functions of
temperature (Bazant et al, 1976; Gamble and Parrott, 1978) introduced such
that, at reference (room) temperature Ty, ¢y =¢,,np=n, and f,=1. For
temperature history that equals T, up to time ¢, and then jumps to another
constant value T, we have t, =ty + B(t — t,).

2.5.4 Mean cross-section behavior at drying

The best way to represent creep at variable humidity and temperature is to first
obtain a differential-type creep law from the compliance function at constant

™+ o)t — )T 2.81)-
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humidity and temperature, and then to introduce the effect of variable humidity
and temperature into the differential-type creep law as well as the boundary
conditions. Nevertheless, for many practical applications it is desirable, and
probably sufficient for crude calculations, to use a compliance function J{t, 1)
which describes the mean properties of the cross-section of a structural member
exposed to drying environment (h < 1). The mean compliance function at drying,
of course, does not represent a constitutive property of the material; rather, it
represents a property of the cross-section as a whole. This property is not really
applicable to cross-sections of different sizes or shapes, or other structures. Of
course, strictly speaking, different mean compliance functions should be consi-
dered for different loading modes, e.g. axial compression, tension, bending,
compression combined with bending, torsion, etc.

Since drying is a process governed by diffusion theory, some fundamental laws
which result from the diffusion theory must be obeyed by the expressions for
shrinkage and the mean compliance function. The first such law concerns the size
effect. The diffusion theory (linear as well as non-linear) indicates that the drying
times are proportional to the square of the size when geometrically similar
specimens or bodies are compared (Fig. 2.25). This same type of size dependence

la
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Drying creep
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Figure 2.25 Horizontal shift of shrinkage curves due to change of thickness D (top left), vertical

scaling of shrinkage curves due to change in environmental humidity h, (top right), errors in

shrinkage prediction when thickness effect is not treated as a horizontal shift in log-time (bottom
left), and mean compliance with drying creep for various thicknesses D (bottom right)
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must apply to shrinkage since the free shrinkage strain is a function of the pore-
water content, which in turn is a function of the pore humidity. In practice, the
size-square dependence is not exact, being spoiled by the effects of continuing
hydration and microcracking, but it agrees with measurements reasonably well. [t
also satisfies the obvious limiting conditions due to diffusion theory, namely that
if the size of the cross-section tends to infinity the shrinkage must tend to zero
(autogenous shrinkage excluded), and so must the additional creep due to the
lowered environmental humidity. (Carbonation shrinkage is also a diffusion-type
phenomenon, but in good-quality concrete it affects only a thin surface layer.)
For shrinkage, in particular, we have

&t 1) = &4, k,S(0) (2.82)

where ,
t—t, (kD)
0= — T = Cq c (2.83)

Here 1, is the shrinkage square half-time (i.e. the drying time needed for the
square of shrinkage strain to reach about 1/2 of its final value); ¢, is a para-
meter characterizing the final shrinkage which depends on the mix ratios and the
strength (typically 0.0005-0.0013). Parameter k, is a function of environmental
humidity h,; empirically k, = 1 — h? for h, < 0.99, while for h = 1.00, k, = — 0.2
may be used to describe swelling. According to Jonasson, k, should be larger than
this when h, < 0.4, and Bazant suggests for the entire range 0 < h, <0.99 the
expression h, = 1 — h} + ¢, (1 — h,)® with ¢, =~ 1. Function S gives the evolution of
shrinkage in non-dimensional time 6; t, is the age at the start of drying; C, is the
drying diffusivity of concrete at the start of drying (10 mm? /day, as the order of
magnitude); k, is the shape parameter, which can be calculated from the diffusion
theory (k, = | for slab, 1.15 cylinder, 1.25 square prism, 1.30 sphere, 1.55 cube); D
is the effective thickness of cross-section (in mm), defined as D = 2u/s, where v is
the volume and s the surface area exposed to drying (for a slab, D represents the
actual thickness); and ¢, is an empirical constant (taken as 0.267 mm?).

The second physical law, which results from the diffusion theory, linear as well
as non-linear (Bazant, Wittmann, Kim and Alou, 1977), concerns the initial shape
of the shrinkage curves:

en~D71/(t—t,) for smallt—¢, (2.84)

where ~ is the proportionality sign. This law, which is confirmed by careful
measurements very well (ibid.), restricts the choice of empirical expressions for the
shrinkage curve.

The two physical restrictions in Eqs (2.83) and (2.84) are satisfied by the formula
(Bazant, 1986; Wittmann, Bazant, Kim and Alou, 1987):

T r]—-1,2r
S(0) =[1 +< S“) ] (2.85)
t—' to
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where r is a constant. The original BP model used r = 1. Tt seems, however, that
values of r between 0.75 and 0.95 are slightly better.

A further consequence of the diffusion theory is that the effects of temperature T
and of the age at the start of drying on shrinkage may be described by means of
diffusivity, C,, and have the form C, = Cyk7k,, where C, is a constant, k, is an
empirical function of age f,; and k% is a function of temperature,
which may be based on the activation energy theory.

Examples of a comparison between calculated shrinkage curves (for different
cylinder diameters and different environmental humidities) and test data from the
literature are given in Fig. 2.17. Figure 2.25 illustrates the effect of a change in
environmental humidity, h,, which causes a vertical scaling of the shrinkage
ordinates, and the effect of changing the size from D, to D, which does not cause a
vertical scaling but a horizontal shift of the shrinkage curve in the log-time
scale; the shift is by the distance 2log(D/D,), because log0=log(t —t,)+
2log D + constant (see Fig. 2.25).

In some other practical formulae (Branson et al., 1970a, b, Branson, 1971; ACI,
1971; Ali and Kesler, 1963), the size effect on shrinkage is handled by scaling the
ordinates. This disagrees, however, with the diffusion theory, is not supported by
measurements, and leads to under-prediction of long-time shrinkage for thick
structural members (Fig. 2.25). The size-square dependence of shrinkage times is
the simplest and the most essential property of shrinkage.

The mean compliance function J{(t,t') of the cross-section in the presence of
drying may be expressed approximately as (Bazant et al., 1976; Bazant and
Panula, 1978, 1980, 1982).

J(t,t)=Jt, )+ Cylt,t) (2.86)

where J(t,t') is the compliance function for basic creep, i.e. for constant pore
humidity (e.g. Eqs 2.72 or 2.76), and Cy(t,t') is the mean additional compliance
due to drying (including the indirect effect of simultaneous shrinkage).

For a lower humidity, the drying is more severe, and thus the drying creep
magnitude is larger when the environmental humidity is lower. When the size
tends to infinite, there is no drying in the limit. So the drying creep term C, must
decrease with increasing size and approach zero as the size tends to infinity. Yet,
some practical models (ACI, 1971, 1982; Branson et al, 1970a; Branson and
Christianson, 1971) disregard this condition.

Since drying follows the size-square dependence, the same should be expected
of the drying creep term. So we may write, in analogy to Eqs (2.82) and (2.83) for
shrinkage,

Clt, ') = -’gt') KS@, ="' (2.87)

where 1, is the shrinkage-square half-time (same as in Eq. 2.83), t —t’ is the
duration of load; k, is an empirical function of environmental humidity
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(k, ~ 1 — ht-3), S(0)isanempirical functionof Usimilarto S(#);and f,{r')isadecreas-
ing empirical function of age at loading ¢ (Bazant et al., 1976; Bazant and Panula,
1978). An important property of Eq. (2.87) is that the drying creep term actually
represents a shrinkage influence, thus reflecting the fact that shrinkage affects
creep and is not simply additive to creep, as the experimentalists have always
been emphasizing.

An essential feature is that the size-square dependence is again embodied in
Eq. (2.87). A change in size causes a horizontal shift of the curve for the drying
creep term in the log-time scale. Thus, superimposing this term on the basic creep,
J(t,t'), we may imagine the drying term curve to slide on top of the basic creep
curve as shown in Fig. 2.25. A change of environmental humidity, on the other
hand, causes a vertical scaling of the ordinates of this term. In this manner, many
different shapes of the creep curves can be generated. This property is not
reflected in the older formulae in which both the humidity and size effects are
handled by a multiplicative factor, i.e. vertical scaling of the creep curve. This then
leads to underprediction of long-time creep for very thick structural members,
and overprediction for very thin ones (as in Fig. 2.25).

The fact that in log-time the slope of the creep curves for a drying environment
begins to decline after a certain time period (which depends on the size) appears to
be due to the drying creep term. From this decline, however, we may not infer that
the creep curves approach a final value since the basic creep term does not
approach one.

It must be emphasized that the drying term Cg is strictly a cross-section
property. No such term is admissible in the constitutive equation or as part of the
compliance function characterizing the behaviour at a point of the continuum
that approximates concrete.

2.5.5 Rate-of-creep method and related formulations

Until step-by-step computer methods enabled solution of ageing creep problems
using a general constitutive law given by any compliance function, it had been
necessary to impose upon the compliance function a form that permits a simple
analytical solution of typical creep and shrinkage problems. Several such
formulations were conceived before the computer era.

One of them uses the compliance function due to Whitney (1930) (Eq. 2.88) for
which the stress—strain relation can be reduced to a first-order differential
equation corresponding to a Maxwell solid with age-dependent viscosity and
elastic modulus. This differential equation, introduced by Glanville {1930) and
first extensively applied in structural creep analysis by Dischinger (1937, 1939),
was widely used by German, Central European, and Russian engineers. At the
same time, US and British engineers favoured the effective modulus method,
based on the effective modulus E . = 1/J(t,t") proposed by McMillan (1915) and
Faber (1927-1928). The structural analysis is simpler for the effective modulus
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method since the stress—strain relation is algebraic (quasi-elastic) and no
differential equations in time need to be solved, while the rate-of-creep method
leads to differential equations in time.

The rate-of-creep method, also called the Dischinger method, gives better
predictions for loads applied at a young age, and the effective modulus for loads
applied at old age. Generally the errors of both approaches can be quite large, and
are overall about equally large for both methods. These errors tend to be on the
opposite sides of the exact solution of linear ageing viscoelasticity. So a
practically sensible way is to carry out the structural analysis by both methods
and then make sure that the design satisfies both of them.

The compliance function used in the rate-of-crecp method, which corresponds
to an ageing Maxwell solid, has the form
L Y-y

TRALALE S (2.88)

I =5 P

in which E_ is a constant, and y/(¢) is a function of one variable, chosen such that
w(t)=o(t,1,), t, being the age at first loading. Obviously, the creep curves for
various ages at loading, as defined by Eq. (2.88), are of the same shape and are
vertically shifted relative to each other (Fig. 2.1). This property is acceptable for
small ages at loading but very poor for old ages at loading.

The advantage of Eq. (2.88) is that when it is substituted into the superposition
integral (Eq. 2.6), the integral equation reduces to the differential equation

a(t) -

&)= L 6(t) + Pt) (2.89)

E(@) E,

according to which the creep rate is independent of the past stress history.
Structural analysis based on this equation is called the rate-of-creep method
or Dischinger method. Structural analysis problems may then be reduced to
differential equations which can be solved particularly easily if the elastic
modulus E(t) is replaced by a constant. It is now known, however, that the error
due to the rate-of-creep method can be quite large (Bazant and Najjar, 1973) and
exceed even 50 per cent of the exact results, although in many situations useful
results can still be obtained.

Under stress relaxation regimes (declining stress), the solutions based on
Eq. (2.89) overestimate the stress changes due to creep, and under increasing
stress regimes (e.g. creep buckling), they underestimate the changes due to creep.
These errors are opposite to the errors of the effective modulus method. A
particularly severe limitation is the fact that Eq. (2.88) yields almost no creep
for loads applied at very high ages. Nevertheless, when the stress change from
ty to t is small, the results of both methods are good.

To remedy the aforementioned problems, a certain combination of the
rate-of-creep method and effective modulus method, known as the improved
Dischinger method, was proposed by Fuglsang Nielsen (1970), Riisch et al. (1973),
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and others on the basis of England and Iliston’s (1965) rate-of-flow method.
These formulations introduce the compliance function in the form

S =t Yo —yi)

e 290
EW) E%E 20

[

in which E¢ is assumed to represent an additional elastic deformation imagined
as delayed. Properly, this additional deformation is a function of t — ¢'. For the
sake of simplification, however. this dependence is neglected in computations and
E4, is treated as the effective modulus for the delayed elastic deformation.

This treatment of the delayed elastic deformation would have a smallerror if its
final value were independent of the age at loading, . and if the delayed elastic
deformation reached its final value in a relatively short time (about 100 days was
assumed). Subsequent comparisons with extensive test data, however, indicated
that these assumptions are not very close to reality. According to many data
(Jessop, 1969, 1971; England and Illston, 1965; Roll, 1964; Jordan and Illston,
1971; Hanson, 1953; Ross, 1958a; Glucklich, 1959; Ishai, 1964; Kimishima and
Kitahara, 1964), the strains identified as delayed elastic deformations are in fact
strongly dependent on the age at loading, representing from 15 to 90 per cent of
the initial elastic strain after a period of a few months (Bazant and Osman,
1975). Moreover, the recovery curves tend to be essentially straight lines in
the logarithmic time-scale for a long period of time (Bazant and Osman, 1975),
indicating that the final value of the delayed elastic strain is not reached very
soon. :

From the thermodynamic viewpoint, the separation of the total creep strain
into a reversible component (delayed elasticity) and an irreversible component
(flow, corresponding to the dashpot of the Maxwell model) is not justified if the
material undergoes ageing. In the presence of ageing, separation of irreversible
and reversible strains is in a strict sense possible only for the strain increments,
but not for the total strains (see Addendum to this chapter).

Nevertheless, the rate-of-flow method or improved Dischinger method
(Eq. 2.90) represented in the 1960s a great improvement compared to the
previously used rate-of-creep method (Dischinger method) or the effective
modulus method. It significantly reduced the error of creep calculations
compared to these two previous methods. However, the age-adjusted effective
modulus method, which was in approximate terms proposed by Trost (1967) and
was rigorously formulated by Bazant (1970d, 1972b) based on his proof of a
mathematical theorem (see Chapter 3), has an even smaller error compared to the
exact solutions according to the principle of superposition if an arbitrary form of
J(t,t') is used (this principle is assumed or implied in all the existing practical
simplified methods of creep analysis). When J(,t') is given in the special form of
Eq. (2.90), then of course the error of neither method is large. The age-adjusted
effective modulus is applicable to any experimentally determined form of the
compliance function, and does not force the analyst to describe his creep data by
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any particular formula, such as Eq.(2.90). Thus, although the rate-of-flow
method or improved Dischinger method was a historically important develop-
ment, the subsequently developed age-adjusted effective modulus method can
now give overall better results compared to the exact solutions of linear ageing
viscoelasticity (Bazant and Najjar, 1973).

Various expressions for the compliance function, including Eq. (2.90), have
been thoroughly evaluated in comparison to the numerous creep data existing in
the literature (BaZant and Osman, 1975 Bazant and Thonguthai, 1976;
Bazant and Panula, 1978, 1980: Bazant er al., 1983). It was found that Eq. (2.90)
does not permit close approximation of long-time creep curves for the data that
involve a wide range of the ages at loading, especially not for the basic creep
(constant humidity and temperature). The main reason is that Eq. (2.90) can be
fully calibrated according to the creep curve for one small age at loading and one
creep recovery test, the creep curves for other (higher) ages at loading
representing superfluous information. It has often been argued that one is
rewarded with a better description of the creep recovery. This is, however, not
quite true for long-time recovery tests and recovery tests after very different
durations of the previous constant load and at very different ages at loading and
unloading. Moreover, it is of questionable merit to base the compliance function
on creep recovery tests, for two reasons: (1) most practical applications do not
involve sudden unloading; and (2) the principle of superposition is inapplicable to
unloading anyway; see Addendum. (This does not exclude stress relaxation at
which the strain is constant, although the stress decreases; for stress relaxation the
principle of superposition applies very well.) '

2.5.6 Practical creep prediction models

Since experimental data on creep and shrinkage for the particular structure to be
designed are often lacking and are at best only limited, the creep and shrinkage
characteristics must be predicted from various influencing factors known in
advance, such as the design strength, water—cement ratio, temperature, etc. Two
types of prediction must be distinguished.

1. Prediction of constitutive properties for creep and shrinkage

This is the type of prediction that needs to be used as the input for finite element
computer programs. The practical prediction models contained in the re-
commendations of engineering societies (ACI, 1971, 1982; CEB-FIP, 1978) do
not predict constitutive properties but mean cross-section properties when
environmental humidity or temperature changes are involved, as is usually the
case. Even for the case of constant humidity and temperature these prediction
models are inappropriate because they are intended to describe primarily
concrete structures exposed to moderate climatic conditions and do not work
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well for basic creep (i.e. creep at constant humidity and temperature, or creep of
mass concrete). Neither are these models intended for harsh climates (e.g.
tropical, desert, continental, or arctic); they have been calibrated for moderate
climates. These models from the current society recommendations, utilizing
among material parameters the environmental humidity rather than the pore
humidities inside concrete, are incapable of providing stress and strain distri-
butions throughout the cross-sections of beams and walls. Their purpose is the
calculation of the distribution of bending moments and deflections in structures.

A comprehensive creep and shrinkage prediction model which gives cross-
section properties as well as constitutive properties and can be used for finite
element programs has been developed by Bazant and Panula (1978) (with a later
extension to high strength concrete, Bazant and Panula, 1984; and to cyclic
humidity, BaZzant and Wang, 1985a). Only that part of the model which gives the
compliance function for constant humidity and temperature (basic creep) and the
final shrinkage coefficient with drying diffusivity, may be used for the prediction
of constitutive properties. The compliance function is then converted by a special
input subroutine (Bazant, 1982; Bazant et al., 1981; Ha et al., 1984; Section 2.5.7)
to a differential-type form. The effect of variable pore humidity and temperature
is then brought in through the dependence of the viscosities of the rate-type
model on temperature and humidity and through the stress-induced parts of
shrinkage and thermal expansion, as described in Sections 2.3.2 and 2.3.3.

It is impossible to characterize the constitutive properties for variable pore
humidity and temperature in terms of the compliance function, because the
differential-type stress—strain relation cannot be explicitly integrated if the pore
humidity or temperature is arbitrarily variable. The integration is possible only
for specified temperature and humidity histories, but then a different compliance
function would be obtained for each different history. Moreover, the compliance
function would depend on the stress level because the humidity effect is non-
linear due to cracking.

2. Prediction of mean cross-section properties

This is the only type of prediction that is addressed by the engineering societies in
their current design recommendations. This type of prediction is intended main-
ly for the analysis of bending moments and deflections of beam structures for
which the stress distributions within the cross-section are not particularly needed.
The objective of describing the cross-section creep and shrinkage properties as a
whole introduces inevitably a large additional error, and also restricts the
applicability of the prediction model to a narrow range of conditions (e.g. narrow
range of cross-section sizes, of temperature, of climates, etc.). Furthermore, the
prediction of cross-section properties in the mean is usually designed to work for
axial compression (since it is based on test data for compression creep) and does
not apply very well to bending or combinations of axial force and bending
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moment because for each different combination a different set of prediction
formulas would be needed, which is ignored for practical reasons. If a greater
range of applicability is intended, as in the BP model, a considerably more
complex set of formulas inevitably results.

Although a reasonable prediction of creep and shrinkage properties for a
certain range of typical conditions is intended, the committees of engineering
societies have required that their prediction models must be relatively easy to
evaluate from the available empirical data, and that their formulas must be
simple so as to make the numerical evaluations straightforward. The requirement
of simplicity should, however, be viewed in proper perspective. Generally, the
effort spent on determination of the material properties should be commensurate
to that devoted to the structural analysis itself. Since inaccuracies in material
characterization usually cause by far the most serious errors in the results of
structural analysis, it makes no sense if the analyst spends, say, only four hours on
predicting the compliance function and shrinkage formula, and then spends one
week to carry out the structural analysis. He should spend equal time on both
tasks. In this perspective, the widespread desire to keep the prediction of material
properties trivially simple appears to be misguided. No doubt this tendency is due
mainly to the fact that the task is handled by structural analysts who are well
trained to carry out structural analysis (and do not mind spending much time for
this purpose), rather than materials engineers. (Perhaps if this task were handled
by material scientists, they would wish to spend only one hour on structural
analysis and would not mind devoting a week to material parameter determin-
ation; simply, the bias due to narrow professional training is part of the problem.)

The error of the current prediction models by the committees of engineering
societies is enormous; the 95 per cent confidence limits are around + 80 per cent!
(Bazant and Panula, 1978, 1980; BaZant and Zebich, 1983). This magnitude of
error in fact makes computer analysis meaningless. Even a substitution of the
simple portal frame analysis formulas for a statically indeterminate analysis of a
frame structure involves much less error than do these current prediction models
of engineering societies. Without drastic improvement, computer analysis of
creep and shrinkage hardly makes sense for these prediction models.

Several practical models for predicting mean cross-section creep and shrinkage
exist at present. They differ in their degree of accuracy and simplicity, and
naturally one of these must be traded for the other. These models are:

1. Model of ACI Committee 209 (1971, 1982), and Branson et al. (1970a, b,
Branson, 1971).

2. Model of CEB-FIP Model Code (1978), and Riisch et al. (1973).

3. BP Model, either its complete version or its simplified version (Bazant and
Panula, 1978, 1980), with extensions in Bazant and Panula (1984) and Bazant
and Wang (1985a).

The ACI Model is the simplest one, while the BP model is the most
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comprehensive one, being applicable over the broadest time range (of r, ', and t,,)
and covering a number of influencing factors neglected by the other two models.
[t should be remembered that all three models are at least partially empirical,
albeit to various extents, and are all based on the fitting of data obtained in
laboratory controlled tests. Attempts at verification by measurements on
structures in the field have so far been inconclusive, for three reasons: (1) the
difficulties in sorting out various influencing factors, which are much more
numerous than in laboratory tests: (2) the large statistical scatter due to outdoor
environment; and (3) the fact that many important influencing factors were not
reported or not even determined.

ACI model. Based on the works of Branson et al. (1970a, b, 1971), the ACI
Committee 209 (1971, 1982) recommended the expressions:

+ no_ 1 ([__t/)()ﬁ = 8 I_to
J([,[)—E([,)(l-*'W)CU, Es(f,to)—bum (291)

in which ¢ is the age at loading in days, ¢ is the current age in days, t, is the age of
concrete in days at the completion of curing; f, is a constant: C, 1s the ultimate
creep coefficient defined as the ratio of the (assumed) creep strain at infinite time

to the initial strain at loading; and & is the ultimate shrinkage strain after infinite -

time. Coefficients C, and &} are defined as functions of six factors: environmental
humidity, minimum thickness of structural member, slump, cement content, per
cent fines, and air content.

CEB-FIP model (1978). According to th_e CEB-FIP Model Code (1978, Annexe
e; see also Riisch et al., 1973, with corrections in CEB, 1981, and Chiorino et al.,
1984, Appendix B):

T(t.0)= ') + ‘f’d/”g(f~ ) +¢f[ﬁf(2 — Bilr')]

(2.92)

c28’

E(t o) = &, [B(1) — Bi(t,)] (2.93)

in which E_,, is the elastic modulus of concrete at age 28 days; ¢y =0.4; ¢, is a
coefficient depending on the environmental humidity and the effective thickness
of member; f, and B, are functions of the age and the effective thickness; B, is a
function of the load duration t — t,; F,(¢') (representing the sum of instantaneous
strain and initial creep strain over a period of several days) is a function of the age
at loading. These functions are defined by graphs consisting of sixteen curves.
Formulas approximating these graphs were published in Appendix D of
Chiorino et al. (1984).
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BP model. This model utilizes Eqs (2.72) and (2.82)—(2.87), whose basic forms
ensue from diffusion theory and activation energy theory, as already explained.
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The coefficients in these equations are expressed by empirical formulas deter-
mined from test results. For the case of drying, these formulas are relatively
complicated. This is, however, at least partly due to consideration of many
influencing factors and to a broad range of applicability. A program for computer
evaluation of the BP model and its fitting to given data is available; see the full
program listing in Bazant (1982) and its improvement with a manual by Ha et al.
(1984). Extensions of the BP model were later developed for high-strength
concretes (Bazant and Panula, 1984) and cyclic humidity (Bazant and Wang,
1985a). The long-time creep predictions of the BP Model may be improved by
replacing in the basic creep term the double power law with the triple power law
(Bazant and Chern, 1985d).

Comparison of existing models

For basic creep, the BP model and the ACI model have in common the
product form of the compliance function, in which a function of the age at
loading multiples a function of the stress duration. In the ACT model, however,
the multiplicative factor C, introduces not only the effect of age at load-
ing but also the effect of humidity and size. This is very simple but not quite
realistic. As stressed in Section 2.5.4, the diffusion theory leads to a different
form of the size effect, which amounts to translation in log-time rather than
vertical scaling of the ordinates. The same deficiency characterizes the ACI
shrinkage formula (Eq. 2.91).

Likewise, the CEB-FIP model (1978) does not follow ‘the size effect of the
diffusion theory. In this model, the basic form of J(z, t') is based on the idea of

reversibility of deformation. The second term in Eq.(2.92) is considered to

represent the so-called reversible (or delayed elastic) creep, and the last term the
so-called irreversible creep. [t must be noted, however, that in the case of ageing
the concept of a reversible creep component lacks theoretical (thermodynamic)
Justification because this component cannot be defined uniquely (only reversible
creep increments can, BaZant, 1979).

The fact that in the CEB-FIP model the so-called ‘reversible’ component of
J(t,t') was calibrated by fitting the creep recovery curves obtained from the
superposition principle to recovery test data has been questioned (BaZant and
Osman, 1975; Bazant and Thonguthai, 1976; BaZant and Panula, 1980). The
reason was that linear superposition does not hold in the case of unloading, as has
been conclusively demonstrated by tests. The domain of approximate validity of
the principle of superposition includes only non-decreasing strain histories
within the service stress range. Thus, only the creep curves for various ages at
loading and the relaxation curves, which belong to this domain, appear to be
suitable for calibrating the compliance function.

The fact that the second term in Eq. (2.92) is assumed to be independent of ¢
and the last one independent of t — ¢’ is also questionable in regard to test data
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(Bazant and Osman, 1975; Bazant, 1979). Another aspect which was criticized
on the basis of test data is that the humidity and size influences in Eq. (2.92)
appear only in the irreversible term (Bazant and Panula, 1982), and that the size
effect in the shrinkage term does not agree with the observations, whereas the
prediction of a model based on the diffusion theory is in agreement.

It has often been claimed that for structures exposed to outdoor environment
the creep prediction formulas need not fit the basic creep data (sealed specimens)
and need to be calibrated only according to the creep data for standard cylinders
(15cm diameter) exposed to about 65 per cent relative humidity. This view,
however, is unjustified, because structures often involve walls over 30 cm thick,
whose creep is actually closer to the creep of sealed specimens (basic creep) then to
the creep of drying standard specimens; see the reply to the discussion of BaZant
and Zebich (1983).

The BP model is the only one which involves the influence of temperature. It
describes this influence for shrinkage, basic creep, and drying creep. It also gives
the effect of the load cycling {pulsation), cyclic variation of environmental
humidity (BaZant and Wang, 1985a), the effects of the delay of the start of
loading after the start of drying, the time-lag of loading after heating, the
decrease of creep after drying, swelling in water, autogenous shrinkage of sealed
concrete (Honk etal., 1969), etc. The price paid for this broader range of
applicability is greater complexity.

The BP model differs from the ACI and CEB—FIP models also by the absence
of a final (asymptotic) value of creep, as it has already been commented upon.

The BP model was obtained by computer analysis and fitting of 80 different
data sets on different concretes from different laboratories (over 800 creep and
shrinkage curves involving about 10000 data points). Based on this quite
complete, computerized data bank (Bazant and Zebich, 1983), the 95 per cent
confidence limits (i.e. the relative deviations from the mean that are exceeded with
a probability of 2.5 per cent on the plus side and 2.5 per cent on the minus side)
were found for the BP Model to be wys = + 37 per cent. For the ACI model,
comparisons with the same data indicated wg5 = + 77 per cent, and for the CEB—
FIP model wqs = 92 per cent (BaZant and Panula, 1980). The effects which are
ignored by the ACI and CEB-FIP models, such as temperature effects, could not
be included in the calculation of these statistics, although the BP model describes
them quite well.

The majority of the existing test data that could be used for these comparisons
pertained to small-size specimens and to a limited time range, i.e. t — ¢’ ranging
from one week to one year and t' from one week to six months. The ACI and
CEB-FIP models describe this limited range better than the data for large
specimens or long times. For very long creep durations (> 10 years), for very high
or very small ages at loading (> 10 years, < 10 days), for thick specimens
(> 30 cm), and for the final slopes of creep curves (which matter for extrapolation),
the comparison is even more favourable to the BP model.
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For drying creep alone, however, the confidence limits of the BP model (045 =
+ 35 per cent) are only slightly better than those of CEB-FIP model ( + 39 per
cent) and not much better than those of ACI model ( & 51 per cent). These two
models are of course intended mainly for not too massive (average size) structures
in a moderate climate.

Although the foregoing error statistics are probably the best that can be
inferred from the presently available test data, it should be recognized that
corrections to these numbers should be made to eliminate the errors due to the
conduct of tests, e.g. to unreliable load control, zero drift over long times, gauge
instability, inadequate environmental control, etc. These measurement errors
(which are, of course, not ‘felt’ by structures), could possibly be quite large, but it is
difficult to estimate their magnitudes, especially retroactively, after the tests. So
these corrections to the error values given above cannot be determined at present.
On the other hand, noting that the total coefficient of variation w can be
approximately written as w = (w3 + w2)'"% we have w, > [l —(w/w,)* ]
(where @ and o, are the coefficients of variation due to the material and to the
measurement), we can see that even measurement errors as large as @, =0.25w
(ie. about 11 per cent of mean strain when o for the ACI model is considered)
would reduce w only by 3 per cent, ie. to wgs =097 (for v, =01w, wy=
0.995w). Simply, the coefficients of variation of errors are not added linearly;
only the largest errors matter. Thus, the measurement errors have little effect
unless their magnitudes were comparable to the magnitude of material scatter,
which is unlikely. Moreover, the hand-smoothing of raw test data, made before
the aforementioned statistics were calculated, eliminates a part of the measure-
ment error which is of a randomly fluctuating nature. Hence, the aforementioned
confidence limits are probably reasonably good estimates.

The foregoing statistics were determined from laboratory data. For structures
in outdoor environment, further errors due to the random fluctuations of
environmental humidity and temperature would have to be added, making the
uncertainties even larger (cf. Chapter 5, and Bazant and Wang, 1984a).

In view of the large magnitude of error of the existing models, there is no
doubt much room for improvement. The greatest part of the error results from
the effects of composition of concrete. This is documented by the fact that the
prediction errors can be greatly reduced when the initial elastic deformation or
one short-time shrinkage value is measured (Bazant and Panula, 1980; Bazant
et al., 1987), provided that a correct theory is used (e.g. size effect agreeing with the
diffusion theory). Finite element analysis hardly makes sense if the errorin J(, 1)
exceeds 20 per cent, and so availability of some short-time tests is a requirement
for practical applications, in addition to the use of a physically correct theory.
Also preferable are such creep and shrinkage prediction formulas which are easily
amenable to statistical extrapolation from given short-time values by regression
{BaZant and Panula, 1980; Bazant et al., 1987; Bazant and Zebich, 1983).

At present no consensus on the proper form of the compliance function J{t.t)
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or J(t,¢') has yet been reached. Much of the disagreement is due to the great
statistical scatter of the available test data, which obscures the underlying mean
trend. But it may be also due to the fact that a linear theory is used for a
phenomenon which is not really linear, i.e. necessitates a non-linear theory. A
linear theory can be adequate only within a limited range, and specialists still
disagree as to what is this range, in particular what is the type of tests to be used
for determining the compliance function for a linear theory. Some include only
creep or relaxation tests for all ages at loading, which alone define the compliance
function completely, while others include information from creep recovery tests
(without analysing them by a non-linear theory) at the cost of sacrificing a good fit
of the measured creep curves for high ages at loading and long times. Because a
non-linear theory is not at present considered appropriate for building codes,
the question is which form of the compliance function can give the best results
in practical problems over the broadest possible range.

Since prediction of the long-time creep is of main interest, efforts have been
made to compare the creep prediction models with the final creep values deduced
directly from creep measurements. Such comparisons, however, suffer by the
error which inevitably occurs in deducing such final values from the test data.
This error may be just as large as the error of the creep model that is supposed to
be checked. .

For example, it has become almost traditional for the experimentalists to use
the Ross hyperbola (Ross, 1937; Neville, 1973, 1981; Neville and Dilger, 1970,
Nevile et al., 1983); C = t/(a + bt), where =t —t' and C = J(1,t') — 1/E(¢'). This
relation may be written as t/C = a + bt. So, if one plots the measured data as t/C
versus 7 and approximates this plot by a straight regression line, the slope of the

line is b, its intercept with the vertical axis is 4, and the value of inverse slope 1/b is

the extrapolated ‘final’ value of creep t — o). Alternatively, one may also write
1/C = b + a/r and plot 1/C versus 1/, in which case the slope of the regression line
is a and its vertical intercept is b. Either of these plots looks very satisfactory if the
creep data span over a limited time period such as from t = 1 week to 1 year, and
consequently one is induced to believe that the “final’ creep value obtained from
this plot is good. Only such limited data were available in the early investigations
in the 1930s, and so the use of Ross’s hyperbola appeared adequate and became
standard practice.

At present, however, long-range creep measurements of basic creep are
available, and then gross deviations from Ross’s hyperbola are found (BaZzant
and Chern, 1982). Worse yet, regression plots of Ross’s hyperbola have the
property of concealing errors. Even when the errors are blatant in the plot of
J(t,t') versus log T, they are barely noticeable in the plot of t/C versus t. In the plot
of 1/C versus 1/t, the inverse scales of 1/C and 1/ obscure the errors for long
times by crowding together the points for large C and large t. The plot of C/t and
1/f is dominated by the deterministic dependence of 1/t on 1/t, and is little
influenced by the scatter of C. Still another element of error and ambiguity was

Material Models for Structural Analysis 177

already discussed, namely the value to be used for E(t), which must be decided
before the regression plot can be constructed. To sum up, the use of Ross’s
hyperbola for long-time creep extrapolation ought to be abandoned.

The extrapolated final values of certain creep tests obtained from creep test
data on the basis of Ross’s hyperbola were recently compared by a CEB
committee with various models for creep prediction. The committee concluded
that the agreement was best for the CEB-FIP 1978 Model Code. From the
preceding analysis (Bazant and Chern, 1982), however, it is clear that such a
method of comparison of various models is questionable. The final value found
by extrapolating the test data strongly depends on the choice of the expression for
the creep curve, in this case the Ross hyperbola, and the error of the long-time
values of Ross’s hyperbola compared to more realistic expressions, such as the
double power law, is easily 50 per cent.

2.5.7 Input of material parameters for structural analysis computer programs

Different characterizations of creep and shrinkage may be appropriate in various
situations. For the input of material properties, subroutine MATPAR, used in
finite element program CREEP 80 (Bazant and Rossow, 1981; Bazant et al,
1981) and listed in full.in BaZant (1982a) is very effective. This subroutine was
further improved and is available form Ontario Hydro (Ha et ul., 1984). The
subroutine has the following options:

L. J(t,t') is specified as an array of values; no drying.

2. J(t,t') and ¢.t,t,) are specified as an array. Drying.

3. J(t,t') is given by the double power law, for which all parameters are given;
no drying.

4. Same as (3) but all double power law parameters except E
from the given strength and composition parameters.

5. Same as (4) except that E__ is also predicted from the strength and
composition parameters.

6. J(¢,t') is defined by the double power law plus the drying term Cy(t,t'} and
shrinkage is given by a formula. All parameters are given.

7. Same as (6) but all parameters except E_,, and &, are predicted from the
strength and composition.

8. Sameas (6) but all parameters except E,, are predicted from the strength and
composition.

9. Same as (6) but all parameters are predicted from the strength and
composition.

10. The double power law parameters E, and ¢, are determined by the best fit of
the given array of values J(¢, t') which may be of limited range; m, n, o are
given. No drying. Coefficient of variation for the deviations from given J (¢, t')
is computed and printed.

are generated

€28
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11. Same as (10) but m, n, o are predicted from the given strength and
composition.

12. Same as (10) but drying is included.

13. Same as (11) but drying is included.

The subroutine for evaluating the compliance function has the following
options (BaZant, 1982a; Ha et al., 1984):

1. J(z,t') is evaluated by interpolation or extrapolation from a given array of
values.

2. J{t,t') is evaluated from a formula without the drying term.,

3. J(t,t') is evaluated from a formula with the drying term.

Subroutine for Dirichlet series expansion (BaZant, 1982a)

The coefficients E, (¢') of Dirichlet series expansion of J(¢, t') or R(t, t') at various
discrete times are automatically generated from J(t,t'). Then, as a check, the
values of J(t,t') are calculated from the Dirichlet series expansion of J(t,t') or
R(t,t'), and the coefficient of variation of their deviations from the originally
given J(t,t') is computed and printed.

In the case that the Dirichlet series expansion of R(t, t') is used, this subroutine

(BaZzant, 1982a) consists of subroutine RELAX which computes the discrete.
values R(t,t') from J(t,¢'), subroutine MAXW which computes discrete values

of the moduli E,(t') of the Maxwell chain, and subroutine CRCURV which

computes for a check the discrete values of the creep curves back from the discrete

values of E,(¢') and evaluates the coefficient of variation of the deviations.
The subroutine for the shrinkage function has the following options:

L. &(t,t,) is evaluated by interpolation or extrapolation from a given array of
values;

2. £(t,t,) is evaluated from a formula.

The subroutine for the Dirichlet series coefficients or Maxwell chain moduli
E,(t) calculates their values at any time by interpolation from the values of E,
previously generated for the given discrete times.

The foregoing program (BaZant, 1982a) can be improved by replacing in it the
double power law with the triple power law or log-double power law (or even
better, with the model in the Addendum).

2.6 CONCLUSION

A comprehensive and detailed mathematical model for the constitutive pro-
perties of creep and shrinkage in concrete is now usable with the existing com-
puter programs, and is needed to make the results obtained with these programs
practically useful. Considerable development has taken place during recent years
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and a constitutive relation which reasonably agrees with the test data in existence
has emerged.

The principal difficulty and challenge for further improvements consists of the
effect of variable humidity and temperature, as well as the non-linear and triaxial
aspects and the ageing of concrete. The predictions with the models described in
this chapter appear to compare well with carefully controlled laboratory data.
However, good comparisons with structural observations do not exist and are
probably impossible. One reason is the inevitable large random scatter whose
statistical properties were not determined, and another reason is that some of the
essential data on the structure, its concrete and its environmental history went
usually unreported.

It is now becoming increasingly clear that the material models described in this
chapter must be supplemented by a probabilistic and statistical treatment of
creep and shrinkage, both of the material properties and the structural effects.
Structures should be designed not for the mean behaviour described by
deterministic formulations expounded in this chapter, but for extreme behaviour
characterized by the upper and lower confidence limits of a certain specified
probability cut-off. These aspects will be treated in Chapter 5.
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2.7 ADDENDUM—NEW THEORY FOR AGING CREEP BASED
ON SOLIDIFICATION'

After the completion of the RILEM Committee’s work on the present state-of-
art-report, an improved basic creep formulation which takes ageing into account
in a more realistic and more effective manner has been found and will now be
briefly described. This formulation (whose basic mathematical form was
proposed by Z. P. Bazant, in a private communication to S. Prasannan in May
1986) has several important advantages:

1. It involves a Kelvin chain whose elastic moduli and viscosities are age-
independent, which greatly simplifies numerical analysis.

2. All the free material parameters can be identified from the given test data by
linear regression.

1 This addendum, which closely follows Bazant and Prasannan (1987), was prepared by Z. P. BaZant
in collaboration with Santosh Prasannan, graduate Research Assistant at Northwestern University
(after the committee’s work has been completed). Not reviewed by RILEM Committee TC69.
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3. All the viscoelastic behaviour of concrete, including the ageing, can be closely
described with only four free material parameters.

4. The model always satisfies the condition of non-divergence of the creep curves
for different ages at loading.

5. Thermodynamic restrictions for the elastic moduli and viscosities associated
with the rate-type form are always satisfied.

6. The non-linearity of creep consisting in deviations from the principle of
superposition is capable of describing the phenomenon of adaptation and
agrees with test data for the service stress range as well as higher stresses.

2.7.1 Volume fraction growth as a measure of aging

The new theory rests on the idea that the aging aspect of concrete creep is due to
growth of the volume fraction v(t) of the load-bearing portion of solidified matter
(i.e. hydrated cement), the properties of which are age-independent. Thermo-
dynamic analysis is generally impossible for systems of substances whose
properties vary with age. As known from chemical thermodynamics, time
dependence of any system’s properties must be treated as a consequence of a time-
varying composition of the system, which is in our case characterized by v(t).

In the most simple form, it may be assumed that the volume, v, of hydrated
cement grows by deposition of layers of solidified matter as shown in
Fig. 2.26 (4). Let o (v,7) be the stress at time ¢ in the layer which solidified
when the total volume of the solidified matter was . Now an essential point is
that, at the moment it solidifies, the layer (dv) must be stress-free, i.. og[v(t),t] =0.
It follows that the non-ageing viscoelastic stress—strain relation for the layer

’a - Strains

Elastic

Visco-
elastic

Creep

Viscou
(flow)

Shrinkage
+ thermal

+ cracking

Figure 2.26 --Model for the role of solidification in creep
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which solidified at time z is (Bazant, 1977)

g)—¢(r)= J‘I Ot —t')o,[v(r),dr'] (2.99)

in which a,[v(7),dt’) = O for ¢’ < 7; &' = viscoelastic strain due to solidified matter
(hydrated cement) and ®(t — t') = microscopic creep compliance function of the
solidified matter, representing the strain at age ¢ caused by a unit microstress
applied at age 7.

Since v(t) is the only variable which introduces ageing, a discrepancy might
seem to exist due to the fact that the change of creep curves with age ¢’ is known to
be strong up to very high ages exceeding ten years while the volume increase of
hydrated cement terminates as the age of about one month. However, one must
realize that further bonds continue to form even in the hydrated cement, as
evidenced by the phenomenon of polymerization of tricalcium silicate. What
matters for our purpose is the effective load-bearing volume in which the
solidified matter has enough bonds to be sufficiently stiff, while the matter in the
remaining volume, which has few bonds and is soft, must be discounted. The
salient property is that the new bonds can be assumed to be strees-free at the
time they form, and so this phenomenon can be included in Eq. (2.94) corres-
ponding to Fig. 2.26 (where v = load-bearing part of volume).

Now an important point is that the layer dv(t') must be stress-free at the
moment it solidifies, i.e. a,[v(7),7] =0. Using this fact, along with Eq. (2.94)
and the condition of equilibrium with the macroscopic applied stress o,
{5 0,[v(r), ]dv(z) = 6 (t), BaZant (1977) showed that 6, can be eliminated from
these equations, yielding a macroscopic stress—strain relation of the form:

t
oW, 0= j b(t—t)do(t) 299)

(1) 0
in which d(t — ') = d®(z — t')/dt. A generalization for non-linear behaviour is
introduced by inserting function F(o); y(t) can be regarded as the viscoelastic
microstrain.

The assumption that the material must solidify in a stress-free state,
a,[v(r),71 =0, is applicable only to solidification at a solid-solution interface,
as shown in Fig. 2.26. Conceivably, the solidification process could also take
place at a solid—solid interface, in which case we could have a pressure across
the interface, known as the crystal growth pressure. Consideration of such
phenomena, however, is not germane to the age-dependence of creep. In any case
it would require a model that is more complex than the simple parallel coupling
of elements dv(¢') in Fig. 2.26.

Analysis of test data has indicated that, in addition to &', concrete creep
includes another component, &, called flow, which is also affected by ageing but
is purely viscous (Fig. 2.26) rather than generally viscoelastic. It is described
by an equation similar to Eq. (2.95) in which ®(t—¢') is replaced by

&)=
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W(t—t')=(t—1t')/no where 1, = effective viscosity of the hydrated cement;
therefore [ ¥(¢ — ¢')da(t') = a(f)/n, and, in analogy to Eq. (2.95), we have

Fla(t)]
o(t)

&) = o(2) (2.96)

2.7.2 Constitutive relation for creep

The total strain of concrete may be expressed as

g
e=—+e+e% =g+ 297
E,
where ¢¢ = total creep strain, £° = shrinkage or thermal expansion, and E, =
instantaneous elastic modulus. Similarly to the previously justified double
power law (BaZant, 1975, 1982b; Bazant and Panula, 1978), modulus E, is
considered to represent the asymptotic elastic modulus for extremely fast
(instantaneous) loading. This definition makes it possible to consider E, to be
constant. The conventional static modulus, which depends on age, is then
obtained as the inverse of the compliance function value for loading duration
t—t ~0.001 to 0.1 day, which includes the rapid initial creep. One might question
that E, is considered to be independent of the age, ¢. However, as justified
previously for the double power law, the effect of age on E(t) seems to be
adequately included in the rapid initial creep contribution to the conventional
elastic modulus.
The empirical functions in Egs (2.95) and (2.96) are introduced in the form

Pt —1t)=q,In(1+&"), E=(—1t)/4o (2.98)
n(e)"  =qat™? (2.99)
o))" =(Ao/)" + (2.100)

1 2
Flo®l=1—o, 5= "f(" (2.101)

where q,, g4, @, n, m, 1, = empirical constants, and w = s'® = damage, which is
negligible for s < 0.7. Note that Eq. (2.99) implies ¥ (¢t —t') = g, In(t/t’).
Expressing the total strain rate for £° = 0 according to Eqgs (2.95)—(2.97), and
integrating, one finds that for a constant stress ¢ applied at age t/,
e(t)

—0_- = J(t’ t,, O') =4 + qu(G)Q(t, t’)

| A o
+q3F(o)ln[1 +(——t—) ]+q41n3, 2.102)
7o 7
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in which q,,...,q, are empirical constants, q, = 1/Eq, 45 = 0q3, and

o(t,t) = f, (it“—)m%dz (2.103)

J(t, t, 6) is the secant compliance function at constant stress g, and the functions
multiplying g,, 43, and g, represents the non-dimensionalized forms of the ageing
viscoelastic compliance, the non-ageing viscoelastic compliance, and the viscous
{flow) compliance respectively.

Experience with data fitting indicated that three material constants may be
fixed for all concretes, once for all:

n=01 m=05  A,=1day (2.104)

Thus there remain only four unknown material parameters, 4, 42, 3, and g, to
be determined from the test data for a given concrete.

It is an advantage of the present formulation that the compliance involves all
the unknown material parameters linearly. This makes it possible to determine all
the unknown material parameters by linear regression.

The integral in Eq. (2.103) cannot be expressed in a closed form, but it can easily
be evaluated and tabulated numerically; see Fig. 2.27. An approximate closed-

Values of @ (#")

log(r-#)
logt'| -2 -1 o 1 2 3 4 5 ®

0 10.4890 05826 06734 07352 07597 07684 07714 07724 07729
1 0.1547 01848 02185 02514 02724 02808 02838 02848 02853
2 lo.04892 005846 006929 008123 0.09276 01000 0.1029 01039 041044
3 |0.01547 001849 002192 0.02576 002994 003393 0.03641 003739 0.03789
4 |0.004892 0005846 0.006931 0.008149 0009494 0.01094 0.01230 0.01314 0.01363
0.8 7
t,¢'(days) g 7=0
0.7
0.6
-; 0.5
=
S 04}f
03¢
0.2
01
0.0

-2 -1 1 2
log(?-7%

Figure 227 Function that characterizes the ageing viscoelastic strain (¢ = current time,
t = age at loading)



184 Mathematical Modeling of Creep and Shrinkage

form expression for n=0.1, m= 0.5, and 4, = 1 day has been found:
r] -1y
Q@)= Qf[l + (%) ] (2.105)

Z=t""In[l+(E—t)] (2.106)

with

in which
(2.107)
r =17¢%12 48
see Fig. 2.27; t and ¢’ must be in days and log =log, o, In = In,; O represents the
final asymptotic values for ¢ = ¢’ — 0. The error of the formula for Q; is within
+ 0.09 per cent of Q¢ and the coefficient of variation of errorsis 0.01 per cent. For
0(t,t), the errors are within + 0.5 per cent, with the coefficient of variaton
0.2 per cent. ’

It may be checked that for t — ¢’ « ¢/, Eq. (2.102) approaches asymptotically the
double power law. For t—¢ >, the asymptotic form of Eq.(2.102) is a
logarithmic law of the form ¢ =A,Int + 4, (t).

Another important advantageous property is that, according to Eq. (2.102), the
condition

log Qs = — [0.1120 + 0.4308 log ¢’ + 0.0019(log t’)z]}

2 ’
0 J(t,t,a)>

> 2.108
ator (2.108)

is always satisfied. This means that the creep curves for various ages at loading
never diverge, according to Eq. (2.102). A further implication is that the creep
fecovery curves obtained by using the principle of superposition decrease always
monotonically.

By virtue of introducing the non-linearity in terms of the strain rate, rather than
the strain, and describing the instantaneous strain as linearly elastic, the
deviations from the principle of superposition accumulate with the load duration.
This agrees with test data (BaZant and Kim, 1979; BaZant et al., 1983) and
makes it possible to capture the phenomenon of adaptation non-linearity in the
service stress range. Making function F dependent only on the current stress o (f)
and not on the past stresses a(t') is a considerable simplification. However, the
resulting non-linearity of strain ¢ with respect to ¢ does depend on the past stress
history, not just on the current stress.

It is interesting to note that the present formulation represents a compromise
between the double power law and the improved Dischinger model used by CEB
(CEB-FIP, 1978). The double power law, which describes well the short-time
creep of concrete loaded at a young age and also both the short-time and long-
time creeps of concrete loaded at an old age, is the limit case of the terms with g,
and g,. The Dischinger model, which describes well the long-time creep of concrete
loaded at a young age; is characterized by a flow term of the type ¢(t) — ¢(t'),
which is here identical to the ‘term with g, if one sets ¢(t)=Int. The term
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with g, is similar to the delayed elastic term in the improved Dischinger model,
due to the fact tha