BaZant, ZP., and Le, Jia-Liang (2009). " Size effect on strength and lifetime distributions of quasibrittle structures.” Proc, ASME 2009
Int. Mech. Engrg. Congress (IMECE2009), Lake Buena Vista, Florida, pp. t-9.

Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition

IMECE2009
November 13-19, Lake Buena Vista, Florida, USA

IMECE2009-11824

SIZE EFFECT ON STRENGTH AND LIFETIME DISTRIBUTIONS
OF QUASIBRITTLE STRUCTURES

Zdenék P. BaZant
Department of Civil Engineering and Materials Science
Northwestern University
Evanston, lilinois, 60208
Email: z-bazant@northwestern.edu

ABSTRACT

Engineering structures such as aircraft, bridges, dams, nu-
clear containments and ships, as well as computer circuits, chips
and MEMS, should be designed for failure probability < 1076—
1077 per lifetime. The safety fuctors required to ensure it are
still determined empirically, even though they represent much
larger and much more uncertain corrections to deterministic cal-
culations than do the typical errors of modern computer analysis
of structures. The empirical approach is sufficient for perfectly
brittle and perfectly ductile structures since the cumulative dis-
tribution function (cdf) of random strength is known, making it
possible to extrapolate to the tail from the mean and variance.
However, the empirical approach does not apply to structures
consisting of quasibrittle materials, which are brittle materials
with inhomogeneities that are not negligible compared to struc-
ture size. This paper presents a refined theory on the strength dis-
tribution of quasibrittle structures, which is based on the fracture
mechanics of nanocracks propagating by activation energy con-
trolled small jumps through the atomic lattice and an analytical
model for the multi-scale transition of sirength statistics. Based
on the power law for creep crack growth rate and the cdf of ma-
terial strength, the lifetime distribution of quasibrittle structures
under constant loads is derived. Both the strength and lifetime
cdf’s are shown to be size- and geometry- dependent. The theory
predicts intricate size effects on both the mean structural strength
and lifetime, the latter being much stronger. The theory is shown
to match the experimentally observed systematic deviations of
strength and lifetime histograms of industrial ceramics from the
Weibull distribution.
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INTRODUCTION

In the design of various engineering structures, it is of
paramount importance to understand and ascertain the types of
probability distributions of structural strength since an experi-
mental verification of design strength and lifetime for the toler-
able failure probability Py < 10~ [19, 33, 35] is virtually im-
possible. For perfectly brittle structures failing at initiation of
a macro-crack from one representative volume element (RVE)
with a negligible size, the strength distribution is known to be
‘Weibullian, based on the infinite weakest link model. For per-
fectly ductile structures, the failure load is the weighted sum of
the strengths of the RVEs along the failure surface. According
to the Central Limit Theorem of the theory of probability, the
strength distribution must follow the Gaussian (or normal) dis-
tribution. It has been shown that the failure behavior of quasib-
rittle structures varies from quasi-plastic to perfectly brittle as
the structure size increases [1,2,12]. Consequently, it must be
expected that the type of probabilistic distribution of strength of
quasibrittle structures will vary with the structure size and geom-
etry.

This study deals with quasibrittle structures of positive ge-
ometry which fail at the macro-crack initiation from one RVE.
Extensive experimental data showed that the strength histograms
of various quasibrittle materials, such as concrete [52], indus-
trial and dental ceramics [31, 34, 43, 44, 48], and fiber com-
posites [50, 51], consistently deviate from the two-parameter
Weibull distribution. Recently, the three-parameter Weibull dis-
tribution with a non-zero threshold has been adopted as a rem-
edy [20,25,46].
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It is observed, however, that the three-parameter Weibull
distribution still shows a systematic deviation from sufficiently
broad experimental histograms in the high probability regime
(Fig. 10 in [11]). Furthermore, the three-parameter Weibull dis-
tribution implies a vanishing size effect on the mean strength for
large size structures, which does not agree with the experimental
observations [29, 36]. In fact, the experimental size effect curve
on concrete and fiber composites [14, 16] at large size limit im-
plies that the threshold must be zero.

Recent studies [10, 11] showed that the problem actually lies
in the assumption of infinite weakest-link model which under-
lies the Weibull statistics of strength. One must consider a fi-
nite weakest-link model because of the fact that the size of one
RVE is not negligible compared to the structure size, which is
the salient feature of all quasibrittle structures. A probabilistic
theory was recently developed to model the strength distribution
of quasibrittle structures (5, 10,11].

The theory is derived from the strength statistics of a nano-
structure considered as a nano-scale block of either a regular lat-
tice or a disordered nano-structure, and is based on the prob-
abilistic fracture mechanics of random jumps of the crack tip
propagating through the nano-structure (4, 5]. The transition of
strength statistics from the nano-scale to the RVE scale can be
mechanically represented by a hierarchical model consisting of
bundles and chains [10, 11]. Based on the asymptotic properties
of strength cdf’s of bundles and chains, it has been shown that
the strength cdf of one RVE can be approximately modeled as
a Gaussian distribution onto which a power-law tail is grafted at
the failure probability of about Py & 10~4-102.

With the crack growth rate law, the theory is further ex-
tended to model the lifetime cdf of quasibrittle structures un-
der constant loads [5, 6,30]. The model agrees well with the
strength and lifetime histograms of various quasibrittle materials
such as concrete, industrial and dental ceramics, and fiber com-
posites [11,29,36].

This paper, representing both a digest and an extension of
[5], reviews the recently developed theory, and derives some
key asymptotic properties of strength distribution of bundles
with softening stress-strain behavior, which further validates the
grafted distribution of RVE strength underlying the weakest-link
model of structural failure. The theory is then verified by opti-
mum fits of some recent tests of the strength and lifetime his-
tograms of industrial ceramics.

Failure Statistics of Nano-Structure

The failure of a structure originates from the failure of
its nano-structures, either atomic lattice blocks or disordered
nano-structures. Naturally, the statistics of structural failure at
macro-scale must be related to the statistics of breakage of nano-
structures. In the present theory, a nano-crack is considered
to propagate by random jumps through either an atomic lattice

block or through a disordered nano-structure. These jumps are
governed by the activation energy barriers separating a series of
metastable states on the surface of the free energy potential of the
nano-structure. When the nano-crack advances by one atomic
spacing or one nano-inhomogeneity, the energy release due to
fracture must correspond to the change of activation energy bar-
rier. Based on the equivalent linear elastic fracture mechanics,
the energy release can be explicitly related to the remote stress
applied on the nano-structure [4, 5].

Since the interatomic separation across the crack line in-
creases by only a small fraction of the atomic spacing during
each jump, the activation energy barrier for the forward jump dif-
fers very little from the backward jump. Therefore, the jumps of
the state of nano-structure must be happening in both directions,
though with slightly different frequencies. By transition rate the-
ory [27,37], the first-passage time for each transition can be cal-
culated by Kramer’s formula [42], which gives the net frequency
of the propagation of nano-crack. After a number of jumps of
the nano-crack tip, the crack loses its stability and propagates
dynamically, which leads to the break of nano-structure. It may
reasonably be assumed that each jump of the nano-crack tip is
history independent [28]. Therefore, the failure probability of the
nano-structure is proportional to the sum of frequencies of all the
jumps needed to reach a certain critical crack length. The failure
probability has thus been found to follow a power-law function
of the remote stress with a zero threshold (e.g. [4] and [S]).

Multi-scale Transition of Strength Statistics

To relate the strength cdf of an RVE at the macro-scale to the
strength cdf of a nano-structure, a certain statistical multiscale
transition framework is needed. Though various stochastic multi-
scale numerical approaches have been proposed [24,49, 53], the
capability of these approaches is always limited due to incom-
plete knowledge of the uncertainties in the information across all
the scales. Instead, for the sole purpose of statistics, the multi-
scale transition of strength statistics has been characterized by a
hierarchical model, which consists of bundles and chains shown
in Fig. 1 [10,11].

For a chain of n elements where all of the elements have a
strength cdf with a power-law tail of exponent p, the strength cdf
of the entire chain has also a power-law tail and its exponent is
also p. If the tail exponents for different elements in the chain
are different, then the smallest one is the tail exponent of the cdf
of strength.

For a bundle of n elements (or fibers) of random strength, the
cdf of bundle strength depends on the load-sharing mechanism of
the bundle. Various load sharing rules have been discussed in the
literatures [18,32,38-40]. A more realistic model is to derive the
load redistribution rule based on a mechanical model. Consider
that all the elements (fibers) have the same elastic stiffness and
are subjected to the same displacement. Two limiting cases are
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Figure 1. Hierarchical model for multiscale transition of strength statis-
tics.

now well understood: 1) the brittle failure, in which the stress in
the fiber suddenly drops to zero once it reaches the peak stress,
and 2) the plastic failure, in which, after the fiber rcaches the peak
stress, the stress remains constant as the displacement increases.
Two asymptotic properties are of interests here: the tail behavior
of strength cdf of a bundle and the type of strength cdf for a large
bundle.

For a bundle of # fibers, if the strength cdf of each fiber has
a power-law tail of exponent p;(i = 1,...,n), then the strength
cdf of the bundle has also a power-law tail, its exponent be-
ing p= Y7 pi. For the plastic bundle, this property can be
simply proven by asymptotic expansion of cdf [11] or through
Laplace transform of cdf. For the brittle bundle, this property
was proven by induction based on the set theory [26,41]. A sim-
pler proof was presented in [11] based on asymptotic expansion
of the recursive equation for the strength cdf of brittle bundle by
Daniels [18], who also showed that the cdf of a brittle bundle
approaches Gaussian distribution as n — oo. For a plastic bun-
dle, such a convergence is obvious by virtue of the Central Limit
Theorem. However, the actual behavior of a fiber may exhibit
gradual post-peak softening. For this intermediate case, the proof
of additivity of tail exponents and the convergence to Gaussian
distribution for a large bundle is still lacking. Here we present a
simple proof.

For the tail behavior, we first consider a bundle with two
fibers of the same cross section area, though the concept applies
to bundles with any number of fibers. Assume that each element
has a bi-linear stress-strain curve (Fig. 2a), which has an elas-
tic modulus F and softening modulus E; (E; = aF). The only
random variable in the model is the peak strength o; (i = 1,2).
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Figure 2. a) Mechanical behavior of softening fiber, b) Feasible region

of strength of fibers for & < 1, ¢) Feasible region of strength of fibers for
a> 1

Then the peak stress of the bundle can be written as: o, =
0.5max,{F| (€) + F2(€)], where € = strain in the fiber, and F} and
F, are the stresses in fibers 1 and 2, respectively. We number the
two fibers in the order of their strengths, i.e., 61 < 62. Then we
can write the peak stress of the bundle, 6, as follows:

Case1: 0<a<1

if (1+a)oi />0 op =0.5[(1+a)o+ (1 —a)orf (1)
if(l1+a)o;/a<oy: 6, =050, 2

Case2: o> 1

if (1+a)o;/0> 05
if (1+a)o/a< oo

Gy = 01 (3)
o, = max(cy,0.507) )

Obviously the foregoing result covers both the plastic and
brittle bundles. When o = 0, the element exhibits a plastic be-
havior and the peak stress of the bundle is 0.5(c; + 02) [11].
When o = co, the element exhibits a brittle behavior and the peak
stress of the bundle is max(c1,0.562) [18].

If the strength of bundle is smaller than some prescribed
value S, i.e. 0, < §, then, based on Egs. 1-4, the strength of
each fiber must lie in the domain ,(S), shown in Figs. 2b and
¢. Since the strengths of these two fibers are independent random
variables, the joint probability theorem indicates that the strength
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cdf of the bundle is:
Gy(S) = / fi(o1)f2(c2)do do, (5)
0(8)

where f; = probability density function (pdf) of strength of ith
element (i = 1,2). Here we assume that each fiber has a strength
cdf with a power-law tail, i.e. P;(0) = (o/sg)?i. Considering the
transformation: y; = o;/S, the strength cdf of the bundle can be
written as:

pP1p2 - -
Gals) =5 [ gl e ©

where (1) is the feasible region Q3 (S) normalized by . Since
the integral in the Eq. 6 yields a constant, the strength cdf of the
bundle has a power-law tail with an exponent equal to p; + p2.
The same analysis can be applied to the bundle with n fibers,
where the strength cdf can be written as:

Gu(S) = /n "(s)iI:'[l fi(6,)do,do;...doy, Q)

2l
—5— | dyi1dyz...dy, (8)
=1 S0

- Sm+m+---+pn/
(1)

Here Q,(S) is the feasible region of stresses in all the fibers,
which defines an n-dimensional space, and Q,(1) = is the corre-
sponding normalized region.

Therefore, it may be concluded that, regardless of the post-
peak behavior of each fiber, il each fiber has a strength cdf with
a power-law tail, then the strength cdf of the bundle will also
have a power-law tail whose exponent is equal to the sum of the
exponents of the cdf tails of all the fibers.

The reach of the power-law tail of strength cdf of a soften-
ing bundle can be estimated on the basis of Eq. 8. However, for
large bundles, it is difficult to handle the integral of Eq. 8 numer-
ically. Previous studies [10, 11] showed that the reach of power-
law tail gets drastically shortened with an increasing number #
of elements as P, ~ (P /n)" — (F1/3n)" for a brittle bundle, or
(P,1/n)" for a plastic bundle. Since the behavior of softening
bundles is bounded between these two extreme cases, the rate
of shortening of power-law tail of strength cdf of the softening
bundles is expected to lie between Py, ~ (P /n)" — (P /3n)".

To determine the type of cdf of a large bundle, one may con-
sider a bundle of 2 fibers. The force capacity of a bundle is given
by Finax = ):,%i, ok(e*)A, where A = cross section area of each
fiber, oy = stress in kth element, and €* = critical strain of the
bundle, which leads to the maximum value of F. We arrange the
elements according to their breaking order, k = 1,2,...n, and di-
vide these n elements into two groups: Fa(€) = Y3, 6i(€)A, k=

12 - n
Stress distribution in the bundle

P

Stress distribution in Stress distribution in
sub-bundle A sub-bundle B

Figure 3. Stress distribution of fibers within a large bundle.

1,2,..., and Fp(€) = Y31+ Oi{€)A,k = 1,2,.... Therefore, the
maximum force of the bundle is:

Foax = FA(E') + FB(E*) ()]

If n is large, then the stress distribution of elements in these two
groups will be similar to that in the bundle (Fig. 3). It follows that
the cdf of Fyqx and the cdf’s of F5(€*) and Fp(e*) are of the same
type. Since Fx(€") # Fg(e*), to satisfy Eq. 9, the only possible
distribution of Fpqy is the Gaussian distribution. However, the
rate of convergence depends on the mechanical behavior of each
element. For the brittle bundles, the convergence is the slowest,
with the error O(n~'/?(logn)?) [45]. Plastic bundles have the
fastest convergence rate, with the error O(n~1/2) (according to
the Central Limit Theorem) [11].

To calculate the strength cdf of one RVE by the hierarchi-
cal model shown in Fig. 1, one must specify the mechanical
behavior of the bundles. In this model, the following assump-
tion is introduced: for the bundles at the lowest scale, the fibers
(or elements) span two rigid plates; hence they are subjected to
the same deformation. For the bundles at higher scales, since
there can be only two fibers in such bundles, we may assume the
simplest load-sharing rule, that is, the equal-load sharing mecha-
nism. The support for such an assumption is that, if we consider
that all the bundles consist of rigid plates, then the failure of one
element in a sub-bundle would cause the load redistribution in all
other sub-bundles.

Such a mechanism implies that the hierarchical model is
equivalent to a bundle of many sub-chains. Based on the previ-
ous analytical result [11], such a model will lead, for the strength
of one RVE, to a power-law tail so short that the Weibull cdf
of structural strength at macro-scale would never be observed
in practice. Yet it is. Therefore, such a model is unacceptable.
The equal-load sharing mechanism of the bundles at higher scale

Copyright © 2009 by ASME
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Figure 4. a) Calculated cdf of strength of one RVE on the Weibull scale,
b)—d) Calculated cdf of strength of one RVE on the normal distribution

paper.

implies that the load is re-distributed only locally in the bundle
itself, and the elements in the other bundles are not affected.

As an example, we calculate the strength cdf of the hierar-
chical model shown in Fig. 1. Every element in the hierarchi-
cal model represents one nano-structure, which has a power-law
strength cdf. Three cases are considered:

1) each element exhibits a brittle behavior;

2) each element exhibits a linear-softening behavior, where
the softening modulus is 40% of its elastic modulus; and

3) each element exhibits a plastic behavior.

Fig. 4a shows the resulting cdf’s of the strength of the hier-
archical model for these three cases, on the Weibul! scale. For all
the cases, the lower portion of the strength cdf is a straight line on
the Weibull plot which indicates that it follows the Weibull distri-
bution (a power-law tail). Such a property is expected since the
power-law tail of strength cdf is indestructible in the chain and
bundle models. For the upper portion, the strength cdf deviates
from the straight line. Among the three cases, case 1 (elements
with brittle behavior) has the shortest Weibull tail, which termi-
nates at the probability of about 5 x 107, while case 3 (elements
with plastic behavior) has the longest Weibull tail, which termi-
nates at the probability of about 7 x 1074,

To identify the type of distribution for the upper portion of
the cdf, we plot the strength cdf’s in the normal distribution pa-
per shown as Figs. 4b-d. The upper portion of the cdf’s can be
approximately fitted by a straight line. Such an approximation is
not too close for the case 1 where the cdf beyond Py = 0.8 can-
not be fitted. For the cases 2 and 3, such an approximation can
closely fit the calculated cdf’s where the deviation occurs for the

cdf beyond Py = 0.99, which means that the upper portion of the
strength cdf can be approximated as the Gaussian distribution.

In general, the strength distribution of one RVE can be ap-
proximately described as Gaussian, with a Weibull tail grafted
on the left at the probability of about 1074~10~3. Mathemati-
cally, one may approximate the strength distribution of one RVE
as [10,11]:

Pi(on) = 1 —exp[—(on/s50)"] (on < o) (10)

e
"o iBad (ow > ogi)

rf
Pi(oN) = Ppr+ — =
(ow) & 86V21 Joy,

where Gy = nominal strength, which is a maximum load pa-
rameter of the dimension of stress. In general, Oy = Pig./bD
or Pm/DZ for two- or three-dimensional scaling (Ppqx = maxi-
mum load of the structure or parameter of load system, b = struc-
ture thickness in the third dimension, D = characteristic struc-
ture dimension or size). Furthermore, m (Weibull modulus) and
so are the shape and scale parameters of the Weibull tail, and
pc and 8¢ are the mean and standard deviation of the Gaussian
core if considered extended to —oo; ry is a scaling parameter re-
quired to normalize the grafted cdf such that Py (s0) = 1, and Py,
= grafting probability = 1 — exp[—(0g./s0)™]. Finally, continuity
of the probability density function at the grafting point requires
that (dPy/do)| 3, = (dPr/dow)ls; -

Lifetime Distribution of One RVE

1t has recently been shown [5, 6, 30] that one can derive the
lifetime cdf of one RVE by using the power law for creep crack
growth, which has been empirically described as [3, 12, 13,21,
22,34,47L:

a=Ce Q/¥T gn (12)

where C,n = empirical constant, Q¢ = activation energy, k =
Boltzmann’s constant, T’ = absolute temperature, K = stress in-
tensity factor Recent studies [5, 30] showed that, under certain
plausible assumptions, the power law for creep crack growth can
be physically justified on the basis of a multi-scale transition
framework of fracture kinetics.

Now consider one RVE undergoing strength and lifetime
tests, where a linearly ramped load is applied in the strength test
and a constant load is applied in the lifetime test. By applying
Eq. 12 to these two cases, one finds the relation between the
strength and lifetime of one RVE as:

oN= BGS/(HI)M/("H) 13)
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where 6y = nominal strength of RVE, 6o = applied nominal
stress in the lifetime test, A = lifetime of RVE, B = [r(n +
DJY D and r = rate of loading in the strength test. Since
the distribution of RVE strength is given by Eqs. 10 and 11, the
lifetime distribution of one RVE can be easily obtained by sub-
stituting Eq. 13 for oy of Eqs. 10 and 11:

for A <Ag: Pi(A) = 1 —exp[—(A/sy)™]; (14)

rf 'Y}‘]/("H)

- (V' —pG)? /283
+5Gm g e 6120 a%)

forA > hert Pi(A) = Pyr

where § = [303/(”') Aer = B‘("“)Ga”o’,(,fgl,, no=
sptIp~t+lo3”, and /= m/(n+1). Similar to the strength
distribution of one RVE, the lifetime cdf of one RVE also has a
Weibull tail (power-law tail). However, the rest of the lifetime
cdf of one RVE does not follow the Gaussian distribution. Note
that the grafting probability Py, for the lifetime distribution of
one RVE is the same as that for the strength cdf of one RVE.

Finite Weakest Link Model and Optimum Fits of His-
tograms

To analyze softening damage and failure, the RVE must be
defined as the smallest material volume whose failure triggers the
failure of entire structure [10, 1 1]. Therefore, the structure can be
statistically represented by a chain of RVEs. By virtue of the joint
probability theorem, and under the assumption of independence
of random strengths or lifetimes of the links in a finite weakest-
link model, one can calculate the strength or lifetime cdf of a
structure as:

N

Pr(x)=1-[]1 -~ ()] (16)

i=1

where x = oy for strength distribution and x = A for lifetime
distribution, P; = strength or lifetime cdf of one RVE given by
Egs. 10 and 11 or Eqs. 14 and 15. For large size structures,
what matters for Py is only the tail of the strength or lifetime cdf
of one RVE, i.e P| = (on/s0)™ or P, = {L/s3)™. By taking the
logarithm of Eq. 16 and setting In(1 — P;) = —P; for small Py,
one can easily show that the strength and lifetime distributions
for large size structure converge to the Weibull distribution:

Pr(on) = 1 —exp[~Neg,6(6/50)"] an
Pr(A) = 1= exp[—Nega(A/52)7] (18)

where Negg,Neqn is the equivalent numbers of RVEs for the
strength and lifetime distributions, which can be calculated based
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Figure 5. Optimum fits of strength and lifetime histograms of 99.9 %
AlLO3 [23].

on the elastic stress distribution in the structure [6, 11]. The
equivalent number of RVE physically means that a chain that
has Negs or N,g3 RVEs subjected to a uniform stress gives the
same strength or lifetime cdf as Eq. 16. The Weibull modulus of
lifetime distribution is much smaller than the Weibull modulus
of strength distribution. They are related by:

A=m/(n+1) (19)

Fig. 5 presents the optimum fits of the strength and life-
time histograms of 99.9 % Al,O3; beam under four point bend
test [23]. For each histogram, a total of 30 specimens were tested.
Obviously, on the Weibull scale, both histograms do not appear
to be straight lines. Instead, there is a kink separating the his-
togram into two parts where the lower part is a straight line and
the upper part is curved. Such a pattern cannot be explained by
the two-parameter Weibull distribution. Fig. 5 shows that the
present theory gives excellent fits of both the strength and life-
time histograms. The location of kink actually corresponds to
the grafting probability, which measures the degree of quasibrit-
tleness of the structure.

From the data fits, it is further observed that the grafting
probabilities of the strength and lifetime cdf’s are about the same.
This agrees well with the present theory, in which the grafting
probability can be calculated as: Py, =1—[1 — Pgnl]Nfﬂ. Since
the grafting probabilities Py, of strength and lifetime cdf’s for
one RVE is the same and the equivalent number of RVE for
strength cdf is almost identical to the equivalent number of RVE
for lifetime cdf, then the grafting probabilities for strength and
lifetime cdf’s must be approximately the same.

By optimum fitting, the Weibull moduli for strength and life-
time distributions are estimated to be about 30 and 1.1, respec-
tively. From Eq. 19 one can get exponent n of the power law for
creep crack growth for 99.9 % Al; O3, which is about 26.
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Size Effect on Mean Structural Strength and Lifetime

With the grafting probability distributions of strength and
lifetime of one RVE, Eq. 16 directly implies the size effects on
the strength and lifetime cdf’s. One can further compute the size
effects on the mean strength and lifetime. Though a close-form
expression is impossible, one can obtain the approximate form
for the mean strength and lifetime by asymptotic matching. It
has been proposed that the size effect on mean strength can be
approximated by [1,2,9]:

= Ny Np r/m
°~—[s+(3)

where parameters Ny, Np, r and m are to be determined by asymp-
totic properties of the size effect curve. It has been shown that
such a size effect curve agrees well with the predictions by other
mechanical models such as the nonlocal Weibull theory [7, 8], as
well as with the experimental observations on concrete [14] and
fiber composites [16]; m = Weibull modulus of the strength dis-
tribution, which can be determined by the slope of the left tail of
the strength histogram plotted on the Weibull scale, or more ac-
curately by size effect tests. The other three parameters, N,, N,
and r, can be determined by solving three simultaneous equations
based on three asymptotic conditions, [6x)p—1,, [d6n/dD]p_s,,
and [6xD"/™| p...., where ly = RVE size.

In the framework of the present theory, the strength and life-
time are simply related by Eq. 13. Therefore, based on Eq. 20,
the size effect on mean lifetime can be expressed as:

Ca+ G rim
D D

where m is the Weibull modulus of the cdf of strength, and n =
exponent of the power law for subcritical creep crack growth
rate. Similar to the size effect on mean strength, C,, Cp, and
r can be obtained from three asymptotic conditions: [A]p_,,
[dA/dD]p—jy, and ADE+N/m),_ Tt is obvious that the size
effect on the mean structural lifetime is much stronger than that
on the mean strength.

1/r
(20)

(nt1)/r

A= @21

Conclusion

The present theory shows that the types of strength and
lifetime distributions depend on the structure size and geome-
try. This has important implications for the safety factors to be
used in reliability assessment for the design of many engineering
structures, such as large prestressed concrete bridges, large air-
craft or ships made of fiber composites, and various micro- and
nano-electronic devices. The present theory indicates that the

safety factors guarding against the uncertainties in strength and
lifetime cannot be empirical, and cannot be constant. They must
be calculated as a function of the size and geometry of structures.
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