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ANALOGY BETWEEN MICROPOLAR CONTINUUM AND 
GRID FRAMEWORKS UNDER INITIAL STRESS 

Z. P. BAZANTt and M. CHRISTENSENt 

Department of Civil Engineering, Northwestern University, Evanston, Illinois 60201 

Abstract-It is shown that the micropolar medium is a continuum approximation to large grid frameworks 
under initial axial forces. The strain energy, equilibrium conditions and boundary conditions are formulated, 
and some inconsistencies in the previous attempts of derivation of the micropolar analogy for gridworks are 
pointed out. The finite difference method, which is one possible means for the analysis of the overall behavior 
of a large framework, is investigated and found, by means of numerical examples, to give rather accurate results 
using much fewer unknowns than the exact analysis. The method is also applicable to problems of overall buckling. 
It is shown further that the so-called substitute frame in general does not exist, although the finite difference 
method serves the same purpose. Finally, it is demonstrated that in micropolar continua there exist certain 
boundary disturbances which rapidly decay with distance from the boundary. A simplified treatment of such 
disturbances is proposed. 

1. INTRODUCTION 

WHEN the methods of frame analysis are applied to the spatial analysis of the tallest build­
ings presently constructed, a system of over 100,000 algebraic equations with a band width 
of over 3000 is obtained. With systems of such a large size the capacity of computers 
presently available is obviously overtaxed. If the fields of dynamics, stability and non­
linear behavior are entered, the size of the system poses difficulties even in the case of 
plane frameworks. 

As a rule, large frames have a regular structure with constant or smoothly variable ~ 
properties of members. Experience with the exact solutions of the overall behavior of 
such frames indicates that the displacements of joints vary smoothly from joint to joint. 
Consequently, the unknown displacements may be grouped together and characterized 
with a much smaller number of parameters, e.g. by the displacement values in every fifth 
or tenth joint, assuming that the values at the intermediate joints may be determined 
with sufficient accuracy by interpolation. This is one method of reducing the size of the 
system. 

In certain cases, especially when the structure is of simple shape, even simpler solutions 
are possible if the structure is approached as a field problem. This can be done in two ways. 

One possibility is to apply the finite difference calculus and obtain exact solutions. 
This path has been explored for certain cases by many authors, beginning with Bleich 
and Melan [3]. A detailed survey of this approach can be found in the book by Wah and 
Calcote [9]; for recent advances along this line consult, e.g. [4]. 

An alternative possibility is to make a continuous approximation. Generally such an 
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idea is quite old; plates and shells have long been used as a model for out-of-plane bending 
of grillages and lattice shells. However, the theory of a continuum which is suitable as an 
approximation to the in-plane behavior of a grid framework has been developed only 
recently. Eringen [5J termed such a continuum micro polar. It represents an extension 
of the classical Cosserat continuum [7J and a special case of the more general theories 
of structured continua [5,8]. Its characteristic features are the existence of couple stresses 
and asymmetric shear stresses, and the independence of micro rotation from the displace­
ment field. The possibility of applying these theories to lattice structures and frames was 
discussed by Wozniak [l1J in rather general terms but apparently nothing specific has 
been presented prior to the paper by Banks and Sokolowski [2]. Their model is not adequate, 
however, because it represents a Cosserat continuum in which the microrotation and 
macrorotation are equal, while the corresponding quantities in a frame, that is, the joint 
rotations and member rotations, are in general unequal. The micropolar continuum as a 
model for a rectangular gridwork with diagonals was studied by Askar and Cakmak [1]. 
However, as will be shown later [see equation (9) belowJ, their analogy also appears to be 
unsatisfactory because all the important terms in the continuous approximation of poten­
tial energy have not been included. A similar spatial cubic gridwork with diagonals was 
investigated by Tauchert [9aJ who assumed, similarly as Banks and Sokolowski [2J, that 
for a unit step of grid the couple stresses approximate the couples presented by lattice 
bars at midspans, in the intersections with the sides of a unit cube centered about the 
grid point. But this assumption, although seemingly obvious, is not correct, as equation 
(19) below will demonstrate. The effect of initial stress and buckling of micropolar bodies 
probably has not yet been treated. 

The purpose of this paper is to formulate the analogy between a micropolar medium 
and a planar uniform rectangular grid framework under initial stress, and to substantiate 
its applicability by some numerical results. 

It must be admitted that an endeavor to formulate a continuum approximation of a 
discrete system is counter to the current trend. Nevertheless, there exist various cases in 
which such an approximation is useful. Although the applications will have to be left to 
a separate paper, a brief mention of the advantages is pertinent. In many high rise buildings, 
for instance, large grid frameworks interact with continuous bodies, such as stiffening 
walls, floor slabs or foundations. When the bodies are of rectangular shape, Fourier 
analysis is evidently the simplest method of solution and can be similarly implemented as 
in the case of folded plates. For this purpose, the frame must be modelled as a continuum. 
This approach appears to be much simpler than the alternative of breaking the wall into 
a discrete system of finite elements and using, for instance, the methods of finite difference 
calculus for the frame. Even when the frame does not interact with continuous bodies, the 
continuum approximation of it is advantageous because the finite difference solutions, 
while being exact and completely analogous to the continuous solutions, lead to more 
complex expressions. Also, there exist certain cases which admit a simple analytical 
solution for a continuum while the analogous, discrete, finite difference solution does not 
satisfy the boundary conditions. Yet another advantage to approximating a frame as a 
continuum is that the more sophisticated analytical solutions obtained recently for various 
bodies with couple stresses can then be applied, even if the discrete counterparts of the 
solutions are not available. Finally, the continuous approximation may be used as a 
means of transition to a coarser discrete system with a lower number of unknowns. It 
will be shown that this approach gives an answer to the problem of a substitute frame. 
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2. FRAMEWORK UNDER INITIAL STRESS 

Consider an isolated elastic member of a framework as shown in Fig_ 1 which in an 
unstressed state is parallel to axis x of cartesian axes x and y. Let the member be in equi­
librium under an initial axial force pO of any magnitude (positive for compression) and 

FIG. 1. Positive incremental forces and deformations of a member (assuming the member is parallel 
to the x-axis in its initial stressed state). 

initial bending moments and shear forces, M~, Mg, V~, vg, acting at the ends a, b. Assume 
that the initial longitudinal and lateral displacements, u~, ug, v~, vg and the initial end 
rotations qJ~, qJg are small. Further, assume that the member subsequently undergoes an 
infinitesimal, incremental deformation characterized by small increments in the longitudinal 
and lateral displacements, Ua, Ub' Va' Vb and small increments in the end rotations, qJa' qJb' 
The corresponding infinitesimal increments of axial force, bending moments and shear 
force will be denoted by P, M a , Mb and V, assuming also that there are no incremental 
loads between the extremities of the member. The following linearized relationship then 
holds between the small incremental end reactions and displacements [6] : 

ksc 

ks 

o 

0] 1 qJa-I/! 1 o qJb-I/! 

E' Ua-Ub 

(1 ) 

where I/! = (vb-va)/L = the counterclockwise rotation of the line ab joining the member 
ends; L = the length of the member in its unstressed state; k = EI/L; E' = EA/ L; I and 
A = the moment of inertia and area of the cross-section; E = Young's modulus of the 
material and sand c are the well-known stability functions of the initial axial load pO. 
If the cross-section of the member is constant, sand c are expressed as follows [6J: 

lX(sin IX -IX cos IX) IX-sin IX 
(po > 0) (2a) 

s = 2-2 cos IX-IX sin IX' c= 
sm IX-IX cos IX 

IX(IX ch IX-sh IX) shlX-1X 
(pO < 0) (2b) s- c= 

- 2-2 ch IX+IX sh IX' IX chIX-sh IX 
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where il( = n.J(lpol/PE) = .J(lpoIL/k) and PE = n2EI/L2. For pO = 0, s = 4, c = !. If the 
cross-section is variable, the functions sand c may be determined by integrating the 
differential equation for bending numerically. 

The incremental shear force V can be determined from the difference in the moment 
equilibrium conditions of the member before and after the incremental deformation. 
When higher order terms are dropped, this leads to the relation 

V = -(Ma+Mb)/L-p°rjJ. (3) 

Combining this with equation (1) yields: 

Ma ks ksc -ks'/L 0 qJa 

Mb ksc ks -ks'/L 0 qJb 

V -ks'/L -ks'/L ks"/L2 0 Vb-Va 
(4) 

P 0 0 0 E' Ua-Ub 

where 

s' = s(1 +c), (4a) 

Consider now a regular rectangular grid framework with members parallel to the 
cartesian axes x and y. In general, the stiffnesses vary from member to member, either 
because of a change in cross-section or a change in initial axial force. Each joint will be 
characterized by two numbers, i and j (Fig. 2), increasing in the x- and y-directions, 
respectively. The conditions of equilibrium of joint (i,j) may be expressed using equation 
(4) to determine the end reactions for each of the four members meeting in the joint. After 
algebraic rearrangements, the conditions of equilibrium of horizontal forces, vertical 

FIG. 2. Numbering of joints and forces acting on a joint. 
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forces and moments, can be brought into the following form: 

, kys~ 
Ex(ui+ l,j- 2Ui,j+ Ui-l)+T(<{Ji,j+ 1 - «Ji,j-I) 

y 

k~ 1 ' + L2 (Ui,j+I- 2Ui,j+Ui,j-d+ 2 L1 x(Ex)(Ui+l,j-Ui-l) 
y 

k " 
+ £~X(vi+l,j-2Vi,j+Vi_I,j)+ 1L1iE~)(Vi,j+l-Vi,j-d 

x 

+1~x(kxsxcx)(<{Ji+ l,j- <{Ji-l,j)-1L1x( k~~}(Vi+ l,j- 2Vi,j+ vi- d 

(5a) 

(5b) 

+1L1y(kysyC)(<{Ji,j+ 1 - <{Ji,j- d+1L1y ( i:~}(Ui,j+ 1- 2Ui,j+ Ui,j- d - mi,j = O. (5c) 

Here u, v = joint displacements in the x- and y-directions, respectively and <(J = joint 
rotation; the subscripts i andj, as in Ui,j refer to the numbers ofthe line of vertical members 
and horizontal members, respectively; subscripts x, y imply quantities which pertain to 
the members parallel to x or y; fx, fy and m denote small incremental horizontal load, 
vertical load and moment applied at the joint and positive in the same sense as the corre­
sponding displacement; and finally, kx , sx' etc. and ky , Sy, etc. represent the average value 
at joint (i,j) of the corresponding quantity between two adjacent members of the same 
direction, and L1A .. . ), L1l .. ) represent the differences of the corresponding quantity 
between two adjacent members. 

Thus, in equations (5aH5c) the properties of the members (k, L, E, A) as well as their 
initial axial loads (i.e. c, s, s', s") are considered as variable from member to member in 
both directions. 

3. CONTINUOUS APPROXIMATION 

The finite difference expressions in equations (5a}-(5c) are obviously the well-known 
second order finite difference approximations to the first and second derivatives in a 
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rectangular grid whose steps are L", and L y , respectively [9]. Equations (5a)--{5c) may thus 
be approximated by the partial differential equations: 

L;(E~u,,,,),,,, + 2(kyS~qJ ),y + (kyS;u,y),y + ; (kyS~),yqJ,yy + I", = 0 

L;(E~v,y),y-2(k",s~qJ),,,,+(k,,,s~v,,,,),,,,- ~;(k",S~),,,,qJ,,,,,,,+ Iy = 0 

2k",s~(v,,,, - qJ) - 2kyS~(u,y + qJ) - L;(kxS",c",qJ,,,,),,,, - L;(kySycyqJ),y 

L;(k ') L;(k ') 0 +2 ",s", ,,,,v,xx-2 ySy ,yU,yy+m = . 

(6a) 

(6b) 

(6c) 

Here u, v, qJ,f",,fy and m represent continuous and sufficiently smooth functions of x and y 
whose values at points (Xi' Yj) approximate the values of Ui,j, Vi,j, etc.;t subscripts X or Y 

following a comma denote partial derivatives, e.g. v,,,, = ov/ox, qJ,,,,,,, = 02qJ/OX2; k"" S"" 
s~, c"" E~, etc., are also understood as continuous and smooth functions whose values at 
the midspans of the members approximate the actual member properties. (Introduction 
of these continuous functions is meaningful only if member properties and initial axial 
forces vary gradually from member to member.~) 

An alternative approach to obtaining equations (6aH6c) can be based on potential 
energy. The expression for the second order approximation to the incremental strain 
energy U 1 for a single member is 

(7) 

plus linear terms -pO(Ub-Ua), M2(qJa-l/I) and M~(qJb-I/I). As is well known, such terms 
need not be taken into account since they would yield conditions of equilibrium in the 
initial stressed state which are assumed to be satisfied. The value (LI/I 2/2) represents, with 
an error 0(1/14

), the axial extension of the member due to small lateral displacements Va' Vb' 

If Ma, Mb and P are expressed according to (I), it follows on rearrangement that 

U 1 = !E'(Ub - Ua)2 +!kS(qJb - qJa)2 + ks'(qJa -1/I)(qJb _1/1) _ pO L;2 . (8) 

The incremental strain energy U'" contained in a pair of horizontal members at joint 
(i,j) is a sum of two expressions of form (8). To avoid lengthy discussion, the properties 
and initial axial forces of members whose longitudinal axes are in the same line will now 
be considered as constant. Then, expanding the value of u, V and qJ in joints (i + I,j) and 
(i-I,j) in a Taylor's series about the point (i,j) leads to the continuum approximation, 

In equation (9), only the terms with first derivatives of u, V and qJ have been retained with 
the exception of those higher order terms which can be converted on integration by parts 

t The continuous functions u, v, cp may be rigorously defined as the limits of the exact solutions ui,i' vi,i' CPi,i' 
for given boundary conditions, as Lx and Ly in equations (5aH5c) are considered to tend to zero while the numbers 
of joints tend to infinity and the coefficients of equations (6aH6c) are kept constant. 

t Equations (6), (12), (15) and (19) for constant member properties have already been presented in [13]. 
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to terms containing only first order derivatives.t The term q>q>,xx is of this type since in the 
expression for the total energy ilIt of the structure it can be converted, upon integration 
by parts, to the term - q>~x' 

The incremental strain energy U y stored in a pair of vertical members meeting in the 
joint (i,j) can be similarly obtained. The element of the continuum approximation as shown 
in Fig. 3 is periodically repeated in both directions. From this it can be seen that the strain 
energy corresponding to the area LxLy of the frame is 1< U x + U y). 

~ I~::::::I ~I ==::::::1 L 

] [ 
] [ 
II II Ii 

FIG. 3. Internal forces at the member midspans and their intuitive analogy with the stresses acting on 
an element of micropolar continuum. 

The total incremental potential energy of the structure, ilIt, is approximated by the 
expreSSIOn 

(10) 

where WB = the work of the incremental loads applied at the boundary of the structured 
body. Integrating the terms involving the products q>q>,xx and q>q>,yy by parts (or applying 
Green's theorem [9J), the integral (10) takes on the form 

where 

ilIt=f f UdXdy-f f (fxu+fyv+mq»~~y-WB 
(x) (y) (x) (y) x y 

U = {L~E~u~x + L;E~v~y- L~kxsxcxq>~x - L;kysyCyq>~y+ 2kxs~(q> - V,x)2 

+ 2kys~( q> + U)2 - P~Lxv~x - P~ Lyu~y} /(2LxLy) 

(11) 

(12) 

and W B = WB plus a certain contour integral of terms involving products q>q>,x and q>q>,y. 
Obviously, U can be regarded as the second order terms of the specific incremental strain 
energy of the continuum approximating the frame.t 

t Terms of this type were not considered by Askar and Cakmak [1]. It can be verified that without these 
terms an agreement with the equilibrium equations based on forces acting on a joint cannot be reached. 

t The presence of negative terms involving -<t>~x and -<t>~y in equation (12) or terms such as <t><t>.xx and <t><t>.yy 
in equation (9) that can also become negative raises questions regarding the conditions for positive definiteness 
of the total potential energy. Such conditions must always be met if P~ = P~ = O. That this is indeed so follows 
from the positive definiteness of expression (8) for P~ = P~ = O. 
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The differential equilibrium equations may be derived from the first variation of the 
incremental potential r.l/i. This is (without first order terms) given by 

(jr.l/i = L i {L;E~u,x(ju,x+L;E~v,y(jv,y-L;kxsxcx<p,x(j<p,x 
- L;kySyCy<p,y(j<p,y+ 2kxs~(<p - v,x)((j<p - (jv,x) 

+ 2kyS~(<p + u)((j<p + (ju) - P~Lxv,x(jv,x - P~Lyu,y(ju,y 

dxdy 
- fx(ju - fy(jv - m(j<p} L L 

x y 

(13) 

plus a certain contour integral which is relevant only for the boundary conditions. If the 
terms containing derivatives of the variations are integrated by parts (or the Green's 
theorem is used) and the equilibrium condition that (jr.l/i = 0 for any (ju, (jv, (j<p is applied, 
one obtains the differential equations of equilibrium which are identical with equations 
(6aH6c) for constant member properties, as expected. 

If the incremental properties of members and initial axial forces are variables from 
member to member, additional terms must be included in the strain energy density. 

-t Proceeding in the same manner as from equation (11) to equations (13) and (6aH6c), 
it can be verified that in order to obtain the equilibrium equations (6) for the case of variable 
properties, the strain energy density must be given by the expression (12) plus the termt 

[L;(kxs~),x<P,xv,x - L;(kA),y<p,yu,y]/(2LxLy)' (14) 

4. RELATION OF THE DISCRETE AND CONTINUOUS MODEL AND 
BOUNDARY CONDITIONS 

A micropolar continuum was defined by Eringen [5] as a continuum whose potential 
energy density depends, in the plane case, on six independent variables u,x, v,y, y, (w-<p), 
<P,x' <P,y where y = 2exy = v,x+u,y and w = !<v,x-U,y)' Alternatively, y and (w-<p) can be 
replaced by variables rx = !y+(w-<p) = v,x-<P and ry = !y-(w-<p) = U,y+<p. Thus it 
is seen that U(u,x, V,Y' rx, ry, <P,x, <P,y) as given by equation (12) for constant member stiff­
nesses represents a micropolar continuum. This continuum is obviously orthotropic. 

The stresses axx , ayy , axy , ayx and the couple stresses mxz , myz in the micro polar con­
tinuum of constant properties are defined and expressed from equation (12) as follows: 

o - '" 0, axx+axx = au/uu,x = axx+Exu,xLx/Ly 
o - 0, ayy+ayy = au/aV,y = ayy+Eyv,yLy/Lx 

axy = aD/arx = aD/av,x = (kxs~v,x-2kxs~<p)/(LxLy) 

ayx = aD/ary = aD/au,y = (kyS;u,y+2kyS~<p)/(LxLy) 

mxz = aD/a<p,x = -kxsxcx<p,xLx/Ly 

myz = aD/a<p,y = -kySycy<p,,Ly/Lx 

(15) 

t The continuous functions for kx' sx' etc. in equations (6aH6c) were assumed to approximate the actual 
values for the member by their values in the midspan points. However, to obtain expression (14) from (8), the 
actual values would have to be approximated by certain average values of continuous functions for kx' ... within 
the interval between the ends of the member. 
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where D = U +u~xu,x+u~yV,y = the total strain energy density and u~x = -P~/Ly, 
U~y = - P~/ Lx are the initial stresses. [The symmetric part u(xy) and the antisymmetric 
part u[xy) of the stress tensor uxy can also be expressed directly as u(xy) = !oU/Of,Xy, u[xy) = 
!oU/o(m-q».] 

It is also necessary to define the continuum counterparts of the internal forces. These 
are characterized by the incremental internal forces in the frame members at midspan 
(Fig. 3) and include axial force N, shear force Tand bending moment M which will be taken, 
for reasons of convenience, about the point on the straight line connecting the ends of 
the member in the deformed position (and not about the point on the deformed neutral 
axis). According to (4), 

N = E'(Ub-Ua) = -P } 

V = k[s"(vb-va)/L-s'(q>a+q>b)]/L . 

M = (Mb-Ma)/2 = !ks(l-c)(q>b-q>a) 

(16) 

The end moments M a and M b are related to M, N, V by the following: 

(17) 

If the member properties are constant in the framework, the continuous approxima­
tions of equations (16) in the x- and y-directions are straightforward and given by: 

Ny = LyE~v,y } 

1', : ~kyS;U,y+~kyS~q»/Ly 
My - zLykys,(1 cy)q>,y 

(18) 

where N x' Ny, Tx, Ty, M x' My are continuous functions whose values at midspan approxi­
mate the internal forces (16), and where 1', was taken as - v" so that its positive direction 
would correspond to the usual continuum convention. 

Expressions (15) for the stresses and couple stresses are simply related to the con­
tinuous approximations (18) of the internal forces at the midspans, 

uxx = NJLy 

uxy = TJLy 

2cxMx 
mxz = - L,(I-cx) 

Uyy = Ny/Lx 

uyx = 1',/Lx 

2cyMy 
myz = - Li1-cy) 

(19) 

It is interesting to note that, while the normal and shear forces are expressed as resultants 
of normal and shear stresses over lengths Ly and Lx, the bending moments are not equal 
to the resultants Lyfflxz, Lxmyz of couple stresses mxz and myz ' (For a zero axial force M x = 
-Lymxz/2 and My = -Lxmyz/2, so that even the sign of Mx and mxz is opposite.) The 
analogy which some authors [2,9a] based intuitively on the assumption that the midspan 
bending moments are expressed as resultants of couple stresses, i.e. Mx = Lyfflxz and 
My = Lxmyz , is thus unrealistic. The reason for the inequality of Mx and Lymxz consists, 
roughly speaking, in the fact that the bending moment varies along the member, while 
Nx and Tx are constant along the member. Also, the strain energy of the member due to 
q>,x equals !mxzq>,x rather than t{Mx/Ly}q>,x, whereas the energies due to Nx and Yx equal 
t{Nx/Ly)u,x, and t{TJLy)(v,x-q». 
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Finally, the boundary conditions must be defined. At each boundary joint of the frame­
work, one quantity of each of the pairs (u, Ix), (v, Iy), (q>, m), must be given. In the case of a 
continuum approximation, the expressions (18) have an error of higher than second 
order only if the functions u, v, q> and their derivatives are evaluated at the midspan of the 
beam. Therefore, when the applied loads Ix, Iy , or m at the boundary joint are prescribed, 
the simplest formulation of the boundary conditions may be achieved in a manner similar 
to that used in the solution of continuous boundary value problems by the finite difference 
method. The gridwork is imagined to be extended beyond the boundary and the hypothetical 
values in the nodes outside the physical boundary are used in such a way that the internal 
forces at the midspan of the imagined members crossing the boundary transmit the pre­
scribed forces into the actual boundary joints (Fig. 4). Thus, using equations (16) and (17), 
the conditions on the left vertical and top horizontal boundaries of the framework are, 

Ny = -P: 

T. = - VB y y 

j = m -I + --~h"J~""""~~",,*,,"" 
Mx 

oif I 
Px + ~ , .. ~ r-V,.{~I!"""'-H1'h4~~""".w; 

'- , 
1 

i =0 i z 3 

FIG. 4. Fictitious extension of the grid beyond its boundary for the formulation of the free boundary 
conditions. 

(20) 

where pB, VB, MB denote the prescribed incremental normal load, tangential load and 
moment, respectively, at the actual boundary joint of the frame. Substituting relations 
(18), the respective conditions for the left vertical and top horizontal boundaries of the 
continuum are obtained as follows: 

LxE~u,x = - P~ 

kxs~v,x - 2kxs~q> = V~Lx 

Lxkxsx(1- cx)q>,x = 2M~ + (V~ + P~v,x)Lx 
LyE~v,y = - P: 

kys;u,y+2kys~q> = - V:Ly 

Lykysy(l-cy)q>,y = -2M:-(V:-P~u)Ly. 

(21) 
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These conditions are imposed all along the line connecting the midspans of the imagined 
members crossing the boundary. The continuum boundary can thus be imagined as 
located beyond the boundary joints of the frame by L)2 and L/2, respectively. 

5. FINITE DIFFERENCE METHOD AND THE PROBLEM OF A 
SUBSTITUTE FRAME 

One possibility for solving the field problem of a continuum is the finite difference 
method. The form of the finite difference approximations to equations (6aH6c) as well 
as the boundary conditions is obvious and will not be written out. The problem is thus 
converted back to a discrete one. However, by choosing the steps L\x, L\y of the rectangular 
grid to be much larger than the distances between the joints, e.g. L\x = 5Lx, L\y = 5Ly, the 
number of unknowns is considerably reduced. 

Structural analysts [12] have been seeking this objective intuitively, trying to find 
a substitute frame with greater distances between the joints which would approximate 
the actual frame. The substitute frame was usually determined from the requirement 
of equal deflections in a certain typical problem. However, a rational definition of a sub­
stitute frame must be based on a requirement that i~s continuum approximation be the 
same as for the actual frame. Labeling the quantities for a substitute frame by bars, the 
condition that the coefficients of all terms of equations (6aH6c) and the similar finite 
difference equations with larger steps L\x = Ix, L\y = Iy be equal (or proportional) leads 
to the relations (in the case of constant properties of all members): 

E~L; = {3E~I; 

kxs~ = {3kxs~ 

E' 1 2 = {3E' f.2 r"y y y 

kyS~ = {3kyS~ 
k s" = {3k~" y y y-y 

kySycyL; = {3kySi yI; 

(22) 

where {3 is an arbitrary parameter. This is a system of eight equations which, however, 
involve only five unknowns, namely, kx , E~, ky , E~ and {3. Therefore a substitute frame in 
general does not exist.t 

It should be noted, however, that the finite difference equations approximating the 
differential equations (6aH6c) in fact serve the same purpose as a substitute frame. In 
addition, the finite difference equations have the same form as the equations of a dis­
placement method for a frame would have, and therefore, the existing programs for frames 
may be easily generalized to include the finite difference solution with steps L\x, L\y greater 
than Lx, Ly. When one substitutes L\x = Lx, L\y = Ly into such a program, the exact 
solution is obtained, while for L\x > Lx, L\y > Ly an approximate solution is obtained. 

In tall building frames one has to account for the fact that axial forces and member 
cross sections gradually decrease in the upward direction. Thus, the finite difference 
equations with L\x > Lx and L\y > Lv for a frame with smoothly variable properties of 
members (k, s, c) are needed. These may be obtained directly from equations (5) when the 

t It should not be inferred from this conclusion that the safety of the existing tall buildings, which all have 
been analyzed with the help of some substitute frame, is in doubt. Design experience, engineering judgment and 
intuition has certainly allowed safe designs to be reached even with this approach. 
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following replacements are made in them: 

Ui,j+l -Ui,j-l -+ (Ui,j+l -Ui,j-l)Ly/l1y, ) 

Ui,j+l -2ui,j+Ui,j-l -+ (Ui,j+l -2ui,j+Ui,j_l)L;/l1yz, 

I1y(E~) -+ I1y(E~)Ly/l1y, etc. 

6. BOUNDARY DISTURBANCES 

(22a) 

To achieve good accuracy by the finite difference method, especially if the frame is 
not too large, attention must be paid to certain boundary effects typical for structured 
media. To elucidate these effects, consider a half-plane y ~ 0 filled by a framework in 
which, in order to avoid complex expressions, it is assumed that Lx = Ly = L, kx = 
ky = k, P~ = P~ = O. Solutions possessing a translational symmetry along axis x will be 
investigated. Equation (5b) in this case becomes independent and the difference equations 
(5a), (5c) simplify as follows: 

L(cpj+ 1 -CPj-l)+ 2(Uj+ 1 -2uj+Uj_ d+ IxLz/(6k) = 0 
(23) 

3(Uj+ 1 -Uj-l)+ 12Lcpj+ L(cpj+ 1 - 2cpj+ CPj_ d -mL/(2k) = 0 

where the subscripts i have been omitted. Equations (23) represent a system of two linear 
ordinary second order difference equations with constant coefficients for the vectors Uj 
and CPj [10J. The solution of the homogeneous equation (i.e. Ix = m = 0) may be assumed 
as CPj = Crj, Uj = Crj where r, C, C are certain constants. Substitution into (23) for Ix = 
m = 0) leads to a characteristic equation whose roots are found to be r = 0·0717, 13·93 and 
double root 1·0. Including also the particular solution for constant loads Ix and m in every 
joint, the following general solution of equations (23) is obtained: 

CPi,j = C10·0717 j + Czn93i + C3 + IxLj/(12k)+m/(24k) 

Ui,j = 1·156C1LO·0717j -2C3Lj+ C4 -0·578CzLn93j - IxLzl/(12k) 
(24) 

where C l' Cz , C3 , C4 are arbitrary constants. 
As boundary conditions consider first that the joints at the base are fixed against 

displacement, i.e. Uj = 0 atj = 0, and the joint rotation is prescribed, i.e. cP = CPB atj = 0, 
while at infinity (j -+ (0) the internal forces are zero [Fig. 5(a)J. The solution (for Ix = 
m = 0) then becomes 

(25) 

If both rotations and displacements are fixed at the base but at infinity shear force T 
per joint is applied, the solution is: 

CPi,j = (0·0717j -1)LT/(12k), 

Finally, consider that there is a free surface at the base, with half-length vertical members 
overlapping below the row of joints number one (j = 1), each of which is loaded by a 
moment M B and horizontal force TB [Fig. 5(b)]. At infinity (j -+ (0) assume a homogeneous 



Analogy between micropolar continuum and grid frameworks under initial stress 339 

a 

j = 2 

j = 1 

j =0 

b 

c 

p 

h 

li 

j = 3 

j = 2 
x 

j = 1-· 
~~~J--~-V 
- - i - - - t - Me ~ - - - t- - - -;- - j = 0 

FIG. 5. Boundary conditions (a), (b) giving rise to boundary disturbance and modification (c) of (a) to 
remove the disturbance. 

state of deformation. Note that T, = - Vy and t/ly = -(ub-ua)/L. Then, according to 
equation (16), 

(27) 

For these boundary conditions, the solution is found to be 

<fJi,j = -1·078MBO·0717j
- TBL/(12k) 

Ui,j = -1·246MBLO·0717j + TBL2j/(6k)+C 
(28) 

where C is an undetermined constant which requires an additional boundary condition 
for its evaluation. 

An important property of equations (25), (26) and (28) is the rapid decay ofthe exponen­
tial terms with the distance from the boundary. For instance at the second row of joints 
from the boundary, the exponential terms diminish to 7·2 per cent, at the third row to 
0·5 per cent (cf. Fig. 13). For a rectangular gridwork and non-zero axial loads P~, P~ 
the solution can be obtained analogously, and rapid decay from the boundary is again 
found. 

If the finite difference method is used, steps longer than ~y = L near the boundary 
would obviously lead to an error of the order of displacement difference between the 
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surface and the first row of joints. With the exception of extra large gridworks, such an 
error should not be committed. Therefore, the first two or three steps L\y of the grid near 
the boundary should be selected equal to L. This is not necessary, however, for certain 
boundary conditions for which the boundary disturbance is absent. From equation (28) 
it is seen that the boundary disturbance in a half-space under a translationally symmetric 
deformation disappears if the midspan moment M B is zero, which happens, according to 
(27), if 

({Jl = ({Jo (29) 

is prescribed as the boundary condition (Fig. 5). In the absence of translational symmetry, 
or for other shapes of the boundary (near corners), the condition for zero disturbance 
is, of course, somewhat different. 

The cumbersome need of using a small step L\y equal to L near the boundary may be 
circumvented by a supe;"position technique which is similar to the handling of the edge 
effects in bending theory of shells. The sharply decaying disturbance is first removed by 
modifying the boundary conditions. In this case for instance, this may be achieved by 
imposing the condition of equality for the rotation in the first and the second nodal point 
from the boundary. The finite difference solution is then obtained using a large grid step 
throughout, such as L\y = 5L. Subsequently, on the solution thus obtained, the solution 
of the boundary disturbance alone, due to the mismatch in MB or ({JB' is superimposed. 
For an approximate calculation of the disturbance, equations (25) or (28) for a half-space 
can be used, except in the vicinity of corners. In a general case, the boundary disturbance 
could be obtained without the use of finite difference calculus by writing the finite difference 
equilibrium equations (5aH5c) for only a small region near the surface and solving them 
as a system of algebraic equations (the interior of the frame being considered as perfectly 
rigid). 

It should be mentioned that the exact solution ofthe corresponding continuum problem 
for the boundary disturbance is not a good approximation. The differential equations 
analogous to difference equations (23) are solved only by trigonometric functions of 
wavelength 2·57 L and not any decaying exponentials. 

7. NUMERICAL EXAMPLES 

To explore the accuracy obtainable by the finite difference method with steps L\x, L\y 
greater than Lx, L" an analysis of a large rectangular plane frame was programmed for 
computer and the efficiency of various types of solution grid, shown in Figs. 6 and 7, was 
investigated. One grid was chosen with constant step size; in other grids a reduction of the 
step size near boundaries was considered. To achieve an accurate representation of the 
boundary conditions, all of the grids were chosen so as to make the stress boundary of the 
continuum (the midspan of imaginary members crossing the boundary) coincide with the 
middle of the grid step. The finite difference approximation of equations (6aH6c) for 
varying step size was determined by means of Taylor series expansions. For the sake of 
simplicity, the properties of members as well as the initial vertical axial loads P~ were 
considered as constant. The frame was assumed to have 52 floors, 12 column lines, Lx = 18 ft, 
L, = 12 ft. The horizontal beams were considered as 16 WF 40 standard sections, and 
the columns as 14 WF 320 sections with 2 cover plates 18 x 1 in. (In an exact analysis, this 
plane frame leads to 1872 equilibrium equations for joints with a band width of 75.) 
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FIG. 7. Grids with a variation in y-spacing used for the numerical solution of the finite difference problem 
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The solution was carried out for various values of the vertical initial load. The incre­
mental load was considered as a constant horizontal distributed load on the left boundary, 
p x = 30Lx lb/ft. The results of the analyses obtained with various grids are shown in 
Figs. 8 and 9. It is seen that grids with a coarse step within the frame give quite accurate 
results, provided that the first three rows of nodal points near the vertical boundaries are 
chosen to coincide with the joints of the frame. The results are sufficiently accurate for 
small as well as large initial axial loads, so that this method may also be used for determina­
tion of the buckling of the frame as a whole. 

In addition to the frame rigidly supported at the base, analyses have also been carried 
out for a frame whose boundary condition at the base was modified by releasing the rota­
tion restraint but prescribing equal rotations with the second row of grid joints [equation 
(29)]. For this boundary condition the boundary disturbance at the base is minimized, 
and, away from the base, a grid with a large step throughout (grid 5, Fig. 7) does indeed 
give results very close to the exact solution, as is seen in Fig. 13. The solution for the rigid­
base boundary condition may then be approximately obtained by superimposing the 
solution for the boundary disturbance in a half-space obtained by finite difference cal­
culus, equation (25). 

It should be noted that in the typical case when the axial forces and member properties 
vary in the vertical direction, substitution (22a) yields finite difference equations which 
are only slightly more complicated than in the above case and can be solved with almost 
equal ease. 
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8. CONCLUSIONS 

1. Large grid frameworks under initial axial forces can be approximated by a micro­
polar continuum. The incremental equations of equilibrium in terms of displacements 
are given by equations (6aH6c), the incremental strain energy density is expressed by 
equations (12) and (14), the stresses and couple stresses are defined by equations (15) 
and (19), and the boundary conditions for prescribed forces are given by equation (21). 
The continuous approximation is formulated even for the case of variable member properties 
and variable initial axial forces. 

2. The finite difference method with grid steps larger than the distances between the 
joints of a frame may be used as an approximate method of solution, substantially reducing 
the number of unknowns. This has been demonstrated by numerical examples. 

3. A substitute frame in general does not exist, but the finite difference method serves 
the same purpose. 

4. In grid frameworks, as well as in micropolar continua, displacements and rotations, 
in general, vary sharply near the boundary. To obtain accurate results, such boundary 
disturbances may not be disregarded. Therefore, the first two or three rows of nodal 
points near the boundary ought to coincide with the joints of the frame. However, by 
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lodifying the boundary conditions [e.g. according to (29)], the boundary disturbance can 
e made small so that the grid step may be kept large throughout the whole body. The 
)cal effect of a change in boundary conditions must then be approximately evaluated 
nd superimposed. 

5. The couple stresses do not approximate the midspan bending moments in a gridwork 
'ith members of unit length but a more complex relation [equation (19)] applies. 

6. The continuum approximation of the potential energy of individual members 
lUst be expressed exactly up to terms with second order derivatives of joint rotation 
ven if these derivatives are not needed for the expression of potential energy of the micro­
olar continuum. 
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A6cTpaKT- nOKa3aHo, 'iTO MHKpOnOJIlipnaJl cpe)l.a IIBJIlleTCJl npH6JI1flKeHHeM B CMbICJIe CnJIOllIHoii: Cpe)l.bI 
)l.JIli 60JIbllIHX CeT'iaTbIX KapKacOB, no)l. BJIHIIHHeM Ha'iaJIbHbIX oceBblX YCHJIHii:. CIlOPMYJIHPYIOTCli 3HeprHII 
)l.e<jJopMal\HH, YCJIOBHII paBHOBeCHJI H KpaeBble yCJIOBHII . .z:t:aIOTCJl B3rJIJI)I. Ha HeKOTopble npOTHBOpe'iHII 
B npe)l.bl)l.yll\HX IIOIIblTKax BbIBO)l.JI MHKPOIIOJIJlPHOil: aHaJIOrHH )l.JIJI CeT'iaTbiX KOHCTPYKllHii:. I1ccJIe)l.yeTcli 
MeTO)l. KOHe'iHbIX pa3HocTeil:, KOTOPblil:, KaK e)l.HIICTBeHHbIiI:, B03MOlKeH )l.JIJI aHaJIH3a IIOJIHOrO nOBe)l.eHHII 
60JIBllIOil: paMbI. Ha OCHOBe 'iHCJIOBbIX npHMepOB, 3TOT MeTO)l. )l.aeT KOHe'iHO Ha)I.JIelKalllHe pa3YJIbTaTbl, 
npH HCnOJIb30BaHHH, 60JIee MeHee, HeH3BeCTHbIX, 110 cpaBHeHHIO C TO'iHbIM aHaJIH30M. MeTo)l. MOlKHO, 
TaKlKe, IIpHMeHHTb K 3a)l.a'iaM IIOJIHOrO BbIIIY'iHBaHHII. .z:t:aJIee YKa3aHO, 'iTO TaK Ha3bIBaeMali 3KBH BaJIeHTHali 
paMa Bo061l1e He CYllIecTByeT, HecMOTPli Ha TO, 'iTO MeTO)l. KOHe'iHbIX pa3HocTeii: OTBe'iaeT 3TOii: lKe caMoii: 
CeJIH. Ha Konel\, npHBO)l.HTCII, 'iTO B MHKPOIIOJIllPHblX cnrrOllIHbIX cpe)l.ax CYlllecTBYIOT neKoTopble KpaeBble 
B03MYllIeHHII, KOTopble 6bICTPO YMeHbllIalOTCli IlpH OT)l.aJIeHHH OT Kpall. npe)l.JIaraeTCli ynpollleHHoe 
paCCMOTpeHHe TaKHX TO B03MYllleHHlI:. 


