STOCHASTIC PROCESS FOR EXTRAPOLATING CONCRETE CREEP

By Erhan Çinlar, 1 Zdeněk P. Bažant, 2 M. ASCE, and ElMagd El-Mamoun Osman 3

NATURE OF PROBLEM AND OBJECTIVE

In the design of concrete structures for nuclear reactors, it has become standard practice to carry out creep tests of the particular concrete to be used. These tests are inevitably of limited duration, such as 6 months–12 months, and an extrapolation to the end of lifespan, usually 40 yr, is necessary (for an example of such a problem, see Fig. 3 of Ref. 7). Because of safety considerations, the designer is interested not merely in the expected value of 40-yr creep, but mainly in the extreme values that have a certain specified small probability (such as 5%) of being exceeded. Up until now, most of the research has been concerned with trying to predict creep using deterministic models that best fit the data available in the literature. This has its merits as far as predicting the average behavior over long periods of time, but an estimate of the expected statistical variation is lacking. Its qualitative estimate can be obtained only by statistical means and this is going to be the prime concern of this paper.

Literature on statistical treatment of creep of concrete is rather limited. Most of the work has dealt with creep in connection with long-term deflections of reinforced concrete beams (8,9,26,28). Certain statistical models have been suggested for deflection (26,28); however, the deflection problem is not equivalent to the problem of constitutive behavior of the material. Too many factors enter in the deflection problem and they are hard to isolate. This is in addition to the fact that the data analyzed pertain to beams tested in flexure without control.
of humidity conditions. As far as the prediction of long-term creep from short-time tests is concerned, Brooke and Neville (9) introduced statistical distribution of certain material parameters into an assumed deterministic law and looked for correlation between long-time and short-time creep, using regression analysis. They suggested a linear form for the relationship between long-time and short-time creep and they imposed both the mean and variance on the model. Properly, extrapolation of creep data should be treated by means of a stochastic process. The only work that dealt with creep as a stochastic process seems to be the pioneering paper by Benjamin, Cornell, and Gabrielson (8), whose innovative ideas the present study attempts to continue. In their model, however, deflection variation has been modeled as a Poisson process, which has certain limitations that will be indicated in the text. Consideration of some more general models, including nonhomogeneous process statistical analysis and general discrete-state Poisson processes, rather than just the Poisson process, was suggested in subsequent dissertations and reports (15,17,25).

Statistically tractable creep data are scarce in the literature and even those available do not follow a consistent statistical procedure, especially as far as reading times are concerned. This makes it hard to verify the choice of any stochastic model in the strict statistical sense. On the other hand, in recent years more light has been thrown on the physical mechanism of creep itself (1,4,5,6), and this will be used as basis for the choice of the stochastic model. At the same time, attention will be paid to the existing deterministic laws for concrete creep. For this purpose, a simple analytical formula is needed; deterministic creep functions that are given by a set of graphs are of little use for the statistical treatment. This is true, e.g., of the creep function which was recently proposed by Riesch et al. (24) for the Comite European de Beton (C.E.B.) International Recommendations, even if its disagreement with most test data (2) were deemed not to be serious. The deterministic formulation that appears to give the best overall fits of creep curves at constant stress and at various ages of loading is the double power law (1,2,3):

\[J_s = \frac{1}{E_0} + \beta \xi; \quad \xi = s; \quad \beta = \frac{\phi_1}{E_0} (t' - \alpha) \quad s = t - t' \]

in which \(J_s \) = creep function = strain at time \(s \) due to constant unit normal stress applied at time \(s = 0; t' = \) current age of concrete; \(t' = \) age of concrete when stress was applied; \(E_0, \phi_1, m, n, \alpha \) = parameters of double power law. According to Eq. 1, the unit creep rate \(\partial J_s / \partial s \) is not stationary, and so a stochastic process that would be used to model creep also could not be stationary. However, instead of actual time \(s \), it is possible to use \(\xi \) as the independent variable; then the rate \(\partial J_s / \partial \xi \) is constant. Thus, the stochastic process, \(J_s = Y_1 + Y_2 + \ldots + Y_n \), in which \(Y_n \) are the increments over time intervals \(\Delta s_n \), can be transformed to a stationary process. This fact, along with the hypothesis that increments \(Y_n \) are independent and gamma distributed, will be the crucial points of the stochastic model that follows. The distribution parameters will be estimated and, using simulation techniques, the model will be compared to the best data sets available in the literature.

Basic Assumptions.—A prismatic concrete specimen with the following idealized properties will be considered:

1. The length of the specimen is large compared to the maximum size of aggregate.
2. Concrete is macroscopically homogeneous, i.e., material properties do not change from one position to another.
3. The specimen is in a state of homogeneous uniaxial stress, \(\sigma \). Actually, the creep strain exhibits statistical variation that must cause statistical differences in lateral strains throughout the specimen and must, therefore, induce local three-dimensional stress states; these effects are neglected.
4. The stress, \(\sigma \), is sufficiently small, so that the expected deformation may be considered to be linearly dependent upon stress. This means that the compressive stress must be less than about 0.4 of the compression strength of the specimen.
5. Consideration is restricted to basic creep, i.e., creep that is not accompanied by moisture exchange, and to creep under time-constant stress and constant temperature.

In view of assumptions 1-4, creep may be characterized by the creep function, \(J_s \), which is here defined as

\[J_s = \frac{I_s - l}{l} \frac{w_s}{l}; \quad t \geq t' \]

in which \(s = \) current time; \(\sigma = \) constant normal stress acting since time 0; \(l = \) initial length of specimen just before loading; \(I_s = l + w_s \) = length observed at time \(s \); and \(w_s = \) displacement of end cross section of initial coordinate \(x = l \), the other end cross section \(x = 0 \) being fixed. Stress \(\sigma \) is negative for compression. The present notation differs from the usual notation \(J_s = J(t, t') \), in which \(t' = \) age of concrete at the instant when stress is applied; and \(t = t' + s \). Creep, per se, is usually understood as the difference \(C(t, t') = J(t, t') - J(t', t') \), but this is better avoided because the definition of the instantaneous strain, \(J(t', t') \), is rather ambiguous. Normally, the length change of a companion specimen without load would have to be also subtracted from \(w_s \) in Eq. 2, but this is not necessary here in view of assumption 5 and because the length change of sealed load-free specimens (called autogeneous shrinkage) is small and can be neglected.

Basic Hypothesis of Stochastic Model.—Creep of concrete represents a stochastic process, which is definitely not time-homogeneous. The present model rests mainly on two hypotheses:

- **Hypothesis A.**—The stochastic process, \(J_s \), is a pure jump increasing process with independent increments.

- **Hypothesis B.**—Creep is a local gamma process.

Hypothesis A is crucial, and three different justifications will be given for it. Hypothesis B is less important, and it will be based partly on a physical model, partly on practical need for simplicity and statistical tractability. The definition and rigorous mathematical theory for local gamma processes may be found in Ref. 13. The available data and experience support the hypotheses quite well and no evidence contrary to our model has been found. However, it must be pointed out that scarcity of good quality data prevents statistical tests on the hypotheses. At any rate, this is a first attempt at a consistent stochastic model; and since we give the considerations that lead us to this
Hypothesis A means that J_n is a sum of independent random variables. This condition will now be justified by showing that $J_n - J_{n-1}$ must be a sum of identically distributed random variables, so that the distribution law of any increment $J_n - J_{n-1}$ must be infinitely divisible.

Infinite Divisibility of Distribution of Creep

1. **Additivity of Deformations.**—Let σ_1 be 1 and let $w_i(x)$ denote the displacement of a cross section with coordinate x; then $J_n = w_i(1)$. Consider a specimen of length $l = 1$ subdivided at midlength in two halves. The deformations of the halves are $w_i(1/2)$ and $w_i(1) - w_i(1/2)$. According to assumption 3 both halves are subjected to the same stress, $\sigma_1 = 1$; according to assumption 2 they have the same material properties; and, according to assumption 1, each half remains macroscopically homogeneous. This implies that $w_i(1/2)$ and $w_i(1) - w_i(1/2)$ have the same variable distribution function, and because $J_n = w_i(1/2) + \ldots + w_i(1/2)$, it follows that J_n is a sum of two stochastically independent and identically distributed random variables. The same arguments still apply when the specimen is divided into n equal parts instead of just two, provided that $n \ll n_r$, in which n_r is the ratio of specimen length to average aggregate size. Thus, J_n is a sum of n independent identically distributed random variables. Therefore, if n_r were infinite, J_n would be infinitely divisible by definition (16). Since n_r is finite, an infinitely divisible distribution is only an approximation to the distribution of J_n. For large n_r, this approximation must be very good. Aside from that, it is practically impossible to find a distribution that is "not divisible" but not infinitely divisible. Consequently, the infinite divisibility of J_n is a reasonable hypothesis. All of the foregoing arguments apply when J_n is replaced by the increment $J_n - J_{n-1}$, and so the time increments of J_n are also infinitely divisible.

2. **Additivity of Stresses.**—Let $w_i(\sigma)$ be the deformation of a specimen of unit length under stress σ_1; then $J_n = w_i(1)$. In deterministic terms, $w_i(\sigma_1 + \sigma_2) = w_i(\sigma_1) + w_i(\sigma_2)$, and this is possible only if creep shows no randomness, which is not true. In random process terms, the correct interpretation is that the random variable $w_i(\sigma_1 + \sigma_2)$ has the same distribution as the sum of two independent random variables whose distributions are those of $w_i(\sigma_1)$ and $w_i(\sigma_2)$. By induction, since $J_n = w_i(\sigma_1 + \ldots + \sigma_n)$ with $\sigma_n = \ldots = \sigma_1 = 1/n$, this implies that J_n has the same distribution as the sum of n independent and identically distributed random variables. Thus, by definition, J_n is infinitely divisible, and the same holds for any increment $J_n - J_{n-1}$.

The preceding arguments, together with the known results on Laplace transforms of infinitely divisible random variables, imply the following. If $w_i(\lambda,\sigma)$ is the distribution for length l and stress σ, then (16):

$$E \left\{ \exp \left\{ - \lambda w_i(\lambda,\sigma) \right\} \right\} = \exp \left\{ - \lambda \left[c + \int_0^\infty \nu_i(dy)(1-e^{-y}) \right] \right\} \ldots \ldots$$

for any $\lambda \geq 0$; here c is a constant and ν_i is a measure on $(0,\infty)$ satisfying $\nu_i(dy) \leq 1$. The condition on ν_i is stronger than the usual ones because of the boundedness of J_n by 1. To completely specify the probability law of $w_i(\lambda,\sigma)$, we need to specify the constants c and the measures of ν_i for all $\lambda \geq 0$. Thus, without loss of generality, we may restrict ourselves to the stochastic process $J_n = w_i(1,1)$.

Micromechanism of Creep.—Further conclusions on the stochastic properties of concrete creep can be derived from consideration of its microscopic mechanism. Based on the present state of knowledge, the creep mechanism can be described as follows.

Concrete is made up of aggregate and sand embedded in a matrix of hardened cement paste. The main solid component of this matrix is the cement gel, which consists largely of sheets of colloidal dimensions with average thickness of 30Å and average gaps of 15Å between the sheets. These sheets are formed mostly of calcium silicate hydrates and are strongly hydrophilic. The hardened cement paste matrix contains interconnected pores of different sizes. The largest pores are called macropores, are of round shape, contain capillary water, and are interconnected by a system of thinner pores. The thinnest ones, called micropores or gel pores, represent the gaps between the sheets. They are essentially laminar and some of them possibly tubular in shape, and they are only one to several molecules in thickness. The micropores contain water strongly held by solid surfaces, which could be regarded as hindered absorption of water or interlayer water. The micropores also contain relatively weakly held and partially mobile particles of solids bridging the gap between the opposite surfaces of the pores. The water in laminar micropores can exert on the pore walls a significant transverse pressure, called disjoining pressure.

When the load is applied on concrete, most of the resulting compression across the laminar micropores is carried by the solid particles bridging the pores. Water in the micropores receives only a small portion of the applied load because it has undoubtedly much smaller stiffness than the solid particles. The stress across the micropores causes certain particles of solids, probably Ca-ions, to slowly migrate out of the compressed pores (1,5,6), in a direction normal to the compressive stress (i.e., along the pores). The solid particles that can possibly migrate under load are held by bonds of various strengths and are subjected to various stresses. Those that are held weakly or receive higher stress are most likely to lose their bond (i.e., jump over their activation energy barrier) and migrate to a stress-free location or one of lower stress. As the number of weakly held and highly stressed particles becomes exhausted, the rate of migrations diminishes, causing a decline of the creep rate. As the leaf leaves the micropores, the reverse pressure (disjoining pressure) is relaxed and the applied load is transferred partly onto the elastic aggregate, partly onto other micropores. This also causes a decline of the creep rate. In addition, simultaneous hydration, which fills available pores by additional cement paste opposing the deformation, causes further deceleration of creep.

Presence of water in the micropores is essential for the migration to be possible. Thus, without water in the pores, as in predried concrete, there is almost no creep. At constant water content of concrete, movements of water along the pores are rather limited and play no significant role in creep. This is the case of basic creep. When water content varies, e.g., because of external drying, a large amount of water diffuses along the micropores. The movement of water...
endows the solid particles with greater mobility (I) and causes an acceleration of the migration of solid particles along the micropores, thereby accelerating creep. This explains the phenomenon of drying creep. In this study, however, only the basic creep will be considered, and no attention need be paid to the movements of water.

When the applied stress is purely volumetric, it causes the solid particles to migrate along the micropores into the largest, round-shaped pores (macropores) whose walls do not receive any pressure as a result of applied load. When the applied stress is purely deviatoric (shear), it causes the particles to migrate from the laminar micropores normal to the direction of principal compressive stress, σ_1, into the laminar micropores normal to the direction of the principal tensile stress, $\sigma_2 = -\sigma_1$, and passage of the particles does not have to intersect any of the macropores. For a general state of applied stress, including the case of uniaxial stress, both types of migration happen simultaneously (I).

Justification 3: Consequences of Micromechanism of Creep.—It is clear from the foregoing exposition that creep involves local relaxations of pressure and transfer of the load on other macropores. Thus, while the transverse pressure averaged over all micropores decreases in time, due to transfer of load upon the aggregate, the pressure across any given micropore fluctuates randomly in time. A rigorous study should consider the pressure field throughout the cement paste as time varies, and relate the migration process to it. This, however, seems to be beyond the current capabilities. Therefore, only approximations that depend on the average pressure field will be made.

Considering the fluctuations of pressure at a fixed location, the time between two successive peaks is very large compared with the durations of the peak pressure. Therefore, all the migrations taking place during a high pressure period may be considered to be an instantaneous event. Accordingly, migrations at location x can be represented as a sequence of pairs (S_i, N_i), where S_i is the time of the ith peak for pressure and N_i is the number of particles migrating during the ith peak period. The migrations taking place at two different points of the same micropore are certainly not independent. However, supposing that a particle migrating out of one micropore is quite unlikely to pass into a parallel micropore, it becomes reasonable to assume that migrations taking place at two different locations, x and y, are conditionally independent upon the transverse pressure at those locations ($x \neq y$). But the pressures at x and y should be almost independent if the distance $\|x - y\|$ is large enough. The number of micropores intersecting even a very small line segment is extremely large; approximately, the spacing of micropores equals the average thickness of sheet, 30Å plus a gap of 15Å in between (1Å = 10⁻¹⁰ mm). Assuming the macropores to occupy about 50% of volume, the number of micropores per 1 mm length is about 0.5 (50 + 15) 10⁻¹⁰ = 100,000. Similar conclusions can be deduced from the internal surface area of cement gel, which is about 2×10^{10} cm²/cm³ to 6×10^{6} cm²/cm³ of paste. Consequently, the dependence of pressures at locations x and y should be negligible when $\|x - y\|$ exceeds 1 mm.

Accordingly, let the hardened cement paste within the specimen be subdivided into a great number of regions R_1, R_2, \ldots, which are small compared with specimen size but large enough to insure independence between migration processes within R_j and R_k whenever $j \neq k$. For any rectangle $A \times B$ in the plane $[0, \infty) \times [0, \infty)$, let $N_k(A \times B)$ be the number of all pairs (S_i, N_i) belonging to $A \times B$ as x varies over the region R_j. By the way R_j are chosen, the stochastic processes $N_k = \{N_k(A \times B): A \subset [0, \infty), B \subset [0, \infty)\}; k = 1, 2, \ldots$, are independent.

For fixed k, N_k is a random counting measure on $[0, \infty) \times [0, \infty)$, and the sum

$$N = \sum_{i=1}^{\infty} N_i$$

is again a random counting measure. Compared with the points of N, those contributed by N_i for fixed k are uniformly sparse (13). It now follows from theorems on the superposition of uniformly sparse processes (13) that the process N is approximately a Poisson random measure. A random measure M is Poisson with mean measure μ if $M(A_1), \ldots, M(A_n)$ are independent whenever the sets A_1, \ldots, A_n are disjoint and if the random variable $M(A)$ has the Poisson distribution with parameter $\mu(A)$ for every set A.

Let (S_i, X_i) be chosen such that

$$N(A \times B) = \sum_i I_{(S_i, X_i)}(A \times B),$$

in which $I_{(S_i, X_i)}(x) = 1 = 0$ according to whether $x \in A$ or $x \notin A$. Then, S_i are the times of migrations and X_i are the corresponding numbers of particles involved. Depending on the location at which migration takes place, the pressure and the local stiffness of microstructure, the contribution of X_i particles to creep strain will be some random variable Y_i. Supposing that Y_i is conditionally independent of all Y_j for $j \neq i$, the hypothesis that N is a Poisson random measure implies that the random measure

$$M(A \times B) = \sum_i I_{(S_i, X_i)}(A \times B),$$

is again a Poisson random measure (on $R_1 \times R_1$). In terms of M, the total creep strain from time 0 to time s is

$$J_s - J_0 = \sum_i Y_i 1_{[0,s]}(S_i) = \int_0^s \int_{-s}^s yM(du, dv).$$

If the number of jump times, S_i, during a finite interval $[0, t]$ were finite, then Eq. 7 would represent a compound Poisson process, i.e., a process whose jump times form a Poisson process and the sizes of the jumps (instead of being equal to 1s in a Poisson process) are independent random variables (p. 91 of Ref. 12). However, and this will be the case herein, every interval $(t, t + \varepsilon)$ will in general contain infinitely many jump times S_i no matter how small $\varepsilon > 0$ may be. Under the hypothesis that M is a Poisson random measure, Eq. 7 shows that the creep process J_s (on $s \in R_1$) has independent increments. This provides the desired justification. Conversely, given the representation in Eq. 7, J_s has independent increments only if the random measure M is Poisson.

Next it is necessary to consider the shape of the mean measure M of Poisson random measure M, i.e.,

$$m(C) = E[M(C)],$$

where C is a Borel subset belonging to $R_1 \times R_1$, in which E is expected value. Once m is known, Eq. 7 implies that
for any \(\lambda \geq 0 \) and \(0 \leq r < s \). (Note that the left-hand side of Eq. 8 represents the Laplace transformation.) Eq. 8 specifies the probability law of \(J \), completely in view of the hypothesis that \(J \) has independent increments. Comparing Eq 8 with Eq. 3, it is seen that \(c_m = 0 \) and \(\nu_s(dy) = \int_0^a m(du, dy) du \).

Creep as Local Gamma Process

According to Hypothesis B, creep is a local gamma process. This is a process that satisfies Eq. 8 with mean measure of the form (see Ref. 14 for rigorous definition)

\[
m(du, dy) = a'_u du e^{-b_u dy} / y
\]

in which \(b_u = b(u) \) represents the scale function \(b > 0 \); \(a'_u = da_u / du \); and \(a_u = a(u) \) represents the shape function of the local gamma process \(a'_u > 0 \). Incidentally, both \(a \) and \(b \) must depend on the fixed time \(t' \) of loading. Hypothesis B (i.e., Eq. 9) can be justified as follows.

Further Consequences of Micromechanism of Creep.—First, note that measure \(m \) must be continuous. Therefore

\[
m(du, dy) = g(u, y) dy
du
\]

for some positive measurable function \(g \) (on \(R_+ \times R_+ \)), in which \(R_+ = (0, \infty) \). Now \(g(u, y) \) may be interpreted as the expected rate of migrations whose contribution to creep rate (strain per unit of time) is \(y \). Next, consider this migration rate \(g(u, y) \) for fixed time \(u \) and fixed contribution \(y \) to creep rate. The important relevant factors are the average transverse pressure, \(p \), the length, \(q \), of the passages contributing to creep rate by the amount \(y \), the average micropore thickness, \(h \), and the expected number, \(n(u, y) \), of micropores contributing to creep by the amount \(y \) at time \(u \).

It is reasonable to assume that the effect of transverse pressure is linear on the migration rate, i.e., \(g(u, y) \) is proportional to \(p \). The effect of thickness \(h \) is to cause a sharp increase in the migration rate, perhaps of the order of \(h^3 \) as in viscous flow. So, \(g(u, y) \) is proportional to \(ph^3 \).

The effect of the length \(q \) of micropore passages is a little more involved. First, the longer the passage, the greater the number of particles having the potential to migrate, and so this particular effect is proportional to \(q \). On the other hand, the longer the passage, the smaller is the number of particles that accomplish moving out of it during a fixed time. Supposing that the motions of particles out of a micropore can be approximated by a one-dimensional random walk, it takes an average particle \(c_1 q^2 \) steps to move out of a passage of length \(q \), \(c_1 \) being some proportionality constant. Putting all the factors together, one has

\[
g(u, y) = k_p ph^3 \left(\frac{q}{q^2} \right) n(u, y)
\]

in which the proportionality constant, \(k_p \), may depend on \(u \).

Furthermore, \(p \) must depend on \(h \), and to estimate this dependence, one may assume \(p \) to be proportional to \(E_p / h \), \(E_p \) being the stiffness (elastic modulus) if the solid particle bridges across the micropore per unit segment of micropore thickness and per unit area of wall. From measurements as well as a statistical argument based on a discrete model of microstructure and joint probability (19), the elastic modulus of a porous material is known to be approximately proportional to \((1 - n_p) \), in which \(n_p \) is porosity; and \(1 - n_p \) is fraction of solids in the porous material. Here, \(1 - n_p \) may be associated with the fraction of solid particles in the micropore, and since the number of particles sticking out into the micropore should be constant for a given area of micropore wall, \(1 - n_p \) should be proportional to \(1 / h \). Thus, \(E_p \sim 1 / h \), \(E_p / h \sim 1 / h^4 \), and so \(g(u, y) \sim ph^3 \sim 1 / h \). This result agrees with the fact that \(g(u, y) \) must tend to 0 as \(h \to \infty \), since no migrations can be induced by load in very thick pores.

Finally, \(y \) should be proportional to the number of particles that potentially migrate, and this number should be proportional to the volume of micropore along which migration takes place, i.e., \(y = hq / c_o \), in which \(c_o \) is some constant and \(hq \) represents passage volume assuming a unit width of passage. Inserting these into Eq. 11 in the preceding, it follows that

\[
g(u, y) = k(u) \frac{n(u, y)}{y}
\]

in which \(k(u) \) is a proportionality constant equal to \(k_p / c_o \); and \(n(u, y) \) is the expected number of micropore passages of volume \(c_o y \) at time \(u \). Coefficient \(k(u) \) must decrease with time \(u \) because the number of migrating particles decreases with time as the local stress peaks within the micropore are getting exhausted, and also because \(p \) diminishes with time as the stress is being transferred on the aggregate.

The number \(n(u, y) \) decreases as volume \(c_o y \) increases. The total micropore volume, \(V \), is a sum of micropore volumes \(c_o y \) times their number, which is proportional to \(y \). Thus, the expected value of \(V \) is

\[
\bar{v} = \int_0^a k u n(u, y) dy
\]

in which \(k_1 \) is some constant. Volume \(V \) is a bounded random variable, with a bound \(V_o \) that is less than the volume of specimen. The simplest way to ensure that the integral in Eq. 13 be bounded is to choose

\[
n(u, y) = a_y e^{-by}
\]

in which \(b \) and \(a_y \) depend on \(u \) but not on \(y \). Because \(y \) is an indicator of the contribution of a micropore to creep rate, and because the creep rate decreases with time, \(n(u, y) \) must also decrease. So, \(b = b_y = b(u) \) should be an increasing function and \(a_y \) should be a decreasing function of time \(u \). Furthermore, noting that the number of migrations in a given micropore decreases with time as stress peaks in the microstructure become exhausted and the load becomes more uniformly distributed, coefficient \(a_y \) must be a decreasing function of time. Consequently
The creep rate would be essentially constant and equal to a. This is insignificant compared with a (e.g., for A must be very large. But a Poisson distribution with a large parameter A is a simplification, because the migration rate of particles across the micropore (1,4,5), as in a diffusion process. Nevertheless, if the out of a given micropore of length q under the same initial pressure p would also be proportional to q^2, same as in the random walk model.

The creep mechanism has been described in considerable detail, so as to have some reasonable, specific picture in mind. Yet, much of this description consists of logical conjectures that might be revised at a later time. Therefore, it is appropriate to list those characteristics of the present model of the creep mechanism that have been essential for obtaining the mathematical result (Eq. 15). These consist merely in the following:

1. The creep is the sum of a very large number of small contributions originating sparsely over time and space.
2. The mean rate of contributions of size y is proportional to a/y as $y \rightarrow 0$ and to ae^{-by} as $y \rightarrow \infty$ (see, for comparison, Eq. 15). Coefficients a and b are functions of time.

There may be different mechanisms leading to these essential characteristics 1 and 2. In the present work, characteristics 1 and 2 are shown to be justified merely on the basis that creep is due to migrations (diffusion) of some particles formed by the solid microstructure along some sort of micropore passages loaded to unloaded locations.

Practical Considerations.—In addition to the preceding physical justifications, it is worth adding some pragmatic ones in favor of Eq. 9. Namely, by Hypothesis A, the stochastic process is increasing, has independent increments, and is bounded. The only statistically tractable processes with independent increments are the Gaussian, stable, Poisson, and gamma processes.

Gaussian processes are excluded because creep is increasing. Stable processes are excluded because the only increasing ones have index less than 1 and stable processes with index less than 1 have infinite expectations.

Poisson processes must be excluded because creep should have a continuous distribution; if a Poisson distribution is to be the approximation, then its parameter must be very large. But a Poisson distribution with a large parameter λ is approximated closely by the normal distribution with mean λ and variance λ, so that its practical range is $\lambda \pm 3\sqrt{\lambda}$. But for large λ, the value of $\sqrt{\lambda}$ is insignificant compared with λ (e.g., for $\lambda = 10^4$, $\sqrt{\lambda} = 0.001 \lambda$), which means that the creep rate would be essentially constant and equal to λ. This is of course not true.

Incidentally, this argument also shows that the model from Ref. 8, which assumes creep, viewed to be caused by viscous flow of water, to be a constant multiple of a (nonstationary). Poisson process, cannot really explain the experimentally observed magnitude of the variation in creep, which can be as high as 30% of the mean. [However, in subsequent works (15,17), which were not levied specifically to concrete, consideration of stochastic models that are not limited to Poisson processes has been suggested.]

So, this elimination process leaves us with gamma related processes. Of course, an ordinary gamma process is excluded because of the obvious nonstationarity of creep, but happily, local gamma processes are capable of handling nonstationarity and yet are statistically tractable (14).

Also, among continuous distributions, after excluding the Gaussian and exponential distributions, the gamma distributions are the easiest to deal with and are also known to fit a wide range of experimental distributions. Thus, a priori, there are good reasons to try and reduce the problem to a form involving the gamma family of distributions.

Transformation of NonStationary Creep Process into Stationary Process

Substitution of Eq. 9 into Eq. 8 provides

$$-\ln E(e^{-s(J_s-J_0)}) = \int_{a_s}^{\infty} \frac{1}{y} e^{-b+y} (1 - e^{-b+y}) dy$$

$$= \int_{a_s}^{\infty} \ln \left[1 + \frac{\lambda}{b(u)} \right] du$$

Eq. 8 implies that J_s has independent non-negative increments and that the increments $J_s - J_t$ $(s > r)$ has the infinitely divisible distribution (Eq. 8 or 3) with the exponent given by Eq. 16. In the special case that $b(u) = \beta - \text{constant}$, Eq. 16 yields exponent $(a_s - a_r) \ln (1 + \lambda / \beta)$, and so the right-hand side of Eq. 8 becomes $[\beta / (\lambda + \beta)]^{a_s-a_r}$. This may be recognized to be the Laplace transform of the gamma distribution with shape parameter β and scale parameter $(a_s - a_r)$, i.e.: $$(\frac{\beta}{\lambda + \beta})^{a_s-a_r} = \int_0^{a_r} \frac{1}{\Gamma(a_s - a_r)} dx$$

Therefore, if $b(u) = \beta = \text{constant}$:

$$P \{ J_s - J_0 \leq z \} = \int_0^{a_r} \frac{1}{\Gamma(a_s - a_r)} dx$$

in which P denotes probability of the event in \ldots. If further $a_s = a = \text{constant}$, then $a_s - a_r = a(s - u)$, and one has the ordinary gamma process. However, if $b(u)$ is not a constant, then the distribution of the increments $J_s - J_t$ is not of any recognizable form. Therefore, it is of interest to find transformation of process J_s into some recognizable simple process.

The mean and the variance of any increment of the local gamma process can be expressed (14) as follows:
\[E[J, - J_t] = \int_0^\infty \int_y^\infty m(du, dy) y = \int_0^\infty a_0^2 du \int_0^\infty e^{-b u} \frac{dy}{y} \]

\[\text{Var}[J, - J_t] = \int_0^\infty \int_y^\infty m(du, dy) y^2 = \int_0^\infty a_0^2 du \int_0^\infty e^{-b u} \frac{dy}{y^2} \]

In the special case of ordinary gamma process (constant \(a'_0\) and \(b'_0\)), the mean and variance reduce to \((s-r)a'_0/b\) and \((s-r)a'_0/b^2\). The local gamma process can be shown to have infinitely many jumps in any finite interval, and so the jumps must be rather small to add up to a finite value.

The local gamma process can be transformed into a simple gamma process by changes of scale and of time, and this transformation is invertible. According to the results of Ref. 14, the following corollary may be stated. Let \(J^\prime\), represent a local gamma process with shape parameter \(a(u)\) and scale parameter \(b(u)\), and let \(a(u)\) be increasing and continuous. Define \(a(u) = \sup \{s: a(s) < u\}\) = value of \(s\) when \(a(s) = u\); and \(b(u) = 1/b(u)\) for \(s \in R_0 = (0, \infty)\).

Then \(X^\prime = T_{ab} J^\prime\), with \(T_{ab} J^\prime = \int_0^\alpha a(u) \frac{du}{b(s)} \)

in which \(T_{ab}\) denotes the transformation; and \(X^\prime\) is an ordinary gamma process with shape parameter \(\beta = 1\) and scale parameter \(\alpha = 1\), i.e., the distribution of \(X^{t', -} X^\prime\), has the derivative \(F'(x) = e^{-x}/T(x)\). The inverse transformation is \(J^\prime = T_{ab}^{-1} X^\prime\), i.e., it is of the same form except that the roles of \(a\), \(b\) and \(a\) and \(b\) are interchanged.

From fitting of extensive test data (1, 9, 10) it appeared that the average creep curves are quite satisfactorily described by the deterministic double power law in Eq. 1. Because of this fact, and in view of the scarcity of data usable for statistical analysis, functions \(a(u)\) and \(b(u)\) should be chosen so as to yield the expected value in the form of power law, \(s^\alpha\). One possible choice is

\[a(s) = \int_0^s a_0 u^{-\alpha} du = \frac{a_0}{n} s^\alpha; \quad b(s) = b_0 \]

in which \(a_0\), \(b_0\), and \(n\) are constants. Indeed, Eqs. 19 and 20 yield

\[E[J, = \frac{a_0}{b_0} z; \quad \text{Var}[J, = \frac{a_0}{b_0^2} z; \quad z = \frac{s^\alpha}{n} \]

According to Eq. 21 it follows that, if \(J\) has a jump of size \(s\) at \(s = a(u)\), then \(X\) has a jump of size \(y/b(s)\) at \(u\). Thus, \(X^\prime = J^\prime_{a(u)}\), in which \(a(u)\) = value of \(s\) when \(a(s) = u\) or \(a_0 s^\alpha/n = u\), which yields

\[a(u) = \left(\frac{nu}{a_0}\right)^{1/n} \]

This will transform \(J^\prime\) into an ordinary gamma process with shape parameter \(a_0\) and scale parameter \(b_0\).

STIMULATION OF MODEL PARAMETERS

Considering the ordinary gamma process \(X\) obtained by the transformation, we now describe the estimation of its two parameters, \(a_0\) and \(b_0\), which we simply denote by \(a\) and \(b\). Supposing the transformed times of observations were \(\bar{u}_1, \bar{u}_2, \ldots, \bar{u}_n\, we\ let \bar{u}_0 = 0\ and define

\[\bar{t}_i = \bar{u}_i - \bar{u}_{i-1}; \quad \bar{y}_i = X_{\bar{u}_i} - X_{\bar{u}_{i-1}}; \quad \bar{z}_i = \frac{\bar{y}_i}{b} \]

Then, the distribution of \(\bar{y}_i\) has the density \(be^{-b}\bar{y}_i^{s-1}/\Gamma(a)\), and the \(\bar{z}_i\) are independent.

Method of Moments.—For each \(i\), we have

\[E[\bar{Z}_i] = 0; \quad E[\bar{Z}_i^2] = \frac{a v_i}{b^2} \]

Furthermore, introducing the means \(\bar{y}_i = \Sigma y_i/\Sigma v_i\) and \(\bar{z}_i = \Sigma z_i/\Sigma v_i\), and \(\bar{y} = \bar{y}_i - \bar{a}/\bar{b}\), it follows that

\[E[\bar{Y}] = 0; \quad E[\bar{Z}_i] = \frac{1}{(\Sigma v_i)^2} \Sigma E[\bar{Z}_i] = \frac{1}{(\Sigma v_i)^2} \left(\frac{a}{b^2} \Sigma v_i\right) \]

Now one may calculate \(E[\bar{Y}] = 1/b\) and

\[\Sigma (\bar{Z}_i - \bar{Z}_i)^2 = \Sigma (\bar{Z}_i - \bar{Z}_i)^2 \]

\[= \Sigma (\bar{Z}_i - \bar{Z}_i)^2 = \Sigma (\bar{Z}_i - \bar{Z}_i)^2 \]

Considering the second term in the sum, one has

\[E[\bar{Z}_i] = \frac{E[\bar{Z}_i, \Sigma Z_i]}{\Sigma v_i} = \frac{1}{\Sigma v_i} \left[Z_i^2 + Z_i \Sigma Z_i \right] = \frac{E[\Sigma Z_i]}{\Sigma v_i} \]

since \(E[\Sigma Z_i] = 0\). From Eqs. 28 and 29 and the preceding results it follows that

\[E[\Sigma (\bar{Y}_i - \bar{Y}_i)^2] = \frac{a}{b^2} \left(\Sigma v_i - \Sigma v_i^2\right) \]

Finally, to get the first estimates for \(a\) and \(b\) by the method of moments, one obtains

\[a/b = \bar{y}; \quad a/b^2 = \left(\Sigma v_i - \Sigma v_i\right) = \bar{y}_i \Sigma y_i^2 \]
Method of Maximum Likelihood.—The parameters pertaining to \(Y \), are \(a \) and \(b \), and since the increments \(Y \) are assumed to be independent, the likelihood function is given by \(L(a, b) = \Pi f_i(Y_i) \), in which \(f \) is the distribution of \(Y \). Estimates are obtained by solving the equations

\[
\frac{\partial}{\partial a} L(a, b) = 0; \quad \frac{\partial}{\partial b} L(a, b) = 0
\]

for \(a \) and \(b \). The solution will give two values \(a \) and \(b \) in terms of \(Y \) and \(\nu_i \).

For gamma distribution, \(L(a, b) = \sum_i be^{-\nu_i b} (\nu_i)^{a-1}/\Gamma(a) \), and because maximizing \(L \) is the same as maximizing \(\log L \), one may first take logarithms and then derivatives. Thus, \(\ln L = \sum_i [-b\nu_i + a\nu_i \ln b + (a\nu_i - 1) \ln \nu_i] = \ln \Gamma(a\nu_i) \). The partial derivatives are

\[
\frac{\partial}{\partial a} \ln L = \sum_i [\nu_i \ln b + \nu_i \ln \nu_i - \frac{u_i \Gamma'(a\nu_i)}{\Gamma(a\nu_i)}] \\
\frac{\partial}{\partial b} \ln L = \sum_i [-\nu_i + \frac{a\nu_i}{b}]
\]

in which \(\Gamma(x) \) is the known gamma function and \(\Gamma'(x) = d\Gamma(x)/dx \). Equating these to zero, one obtains the following equations for the optimal values \(\hat{a} \), \(\hat{b} \) (maximum likelihood estimates) for \(a \) and \(b \):

\[
\frac{\hat{a}}{\hat{b}} \Sigma \nu_i = \Sigma Y_i; \quad \log \hat{b} \Sigma \nu_i + \Sigma \nu_i \log \nu_i = \Sigma \nu_i \frac{\Gamma'(\hat{a}\nu_i)}{\Gamma(\hat{a}\nu_i)}
\]

Note that the first of these equations is the same as the first equation in the method of moment estimation.

A standard library subroutine was used to determine \(\hat{a} \) and \(\hat{b} \) from the preceding equations. This subroutine uses Brown's method, which is at least quadratically convergent, and a root is accepted if two successive approximations to a given root agree in the first five significant digits. For more details see Refs. 10 and 11. The gamma function was approximated by a fifth-degree polynomial and the error in the approximation was less than \(5 \times 10^{-5} \). Initial estimates for \(\hat{a} \) and \(\hat{b} \) were provided by the method of moments and from this the final estimate was obtained.

Analysis of Data and Results

From the basic laws of thermodynamics it is known that creep is an ever increasing process in time, which implies that creep increments are strictly positive. The available data, however, do not show this trend all the time. This is more pronounced at short times from loading, which suggests the experimental error to be the reason. However, trying to take into account that error would yield a model that would be far from simple. On the other hand, some of the data sets exhibit positive increments only. This does not necessarily rule out experimental error. Nevertheless, on the overall, such data should be more reliable. In the present study all data points that represent negative creep increments have been omitted. This introduces, of course, an added error.
All the data used here (Fig. 1) are restricted to specimens that are loaded uniaxially, although some statistically usable data for multiaxially loaded specimens (27) are available. These data have not been considered, since converting them to a uniaxial case would require knowledge of Poisson’s ratio, whose value is uncertain. The best data set available appeared to be that for Dworshak Dam (23).

A computer program has been written for the data analysis. For each age at loading, the values of \(J_x = J(t, t') \) are read and the corresponding values of \(x_i, J_i \) are noted. Then, the transformed values \(u_i = (1/n) x_i \), \(v_i = u_i - u_{i-1} \), and the increments \(y_i = J_i - J_{i-1} \) are computed. Using the method of moment estimates for \(\hat{a} \) and \(\hat{b} \) are obtained according to Eq. 31. A subroutine is written to evaluate the functions \(F(\hat{a}, \hat{b}) = 0 \) according to Eqs. 33 and 34.

Table 1. Dependence of Statistical Parameters on Age at Loading

<table>
<thead>
<tr>
<th>(t'), in days (1)</th>
<th>(\hat{a}) (2)</th>
<th>(\hat{b} \times 10^4) psi (3)</th>
<th>(\hat{a}/\hat{b} \times 10^4) psi (4)</th>
<th>(\hat{a}/\hat{b}) (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Canyon Ferry Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.27</td>
<td>1.11</td>
<td>3.86</td>
<td>3.47</td>
</tr>
<tr>
<td>7</td>
<td>3.59</td>
<td>1.04</td>
<td>3.45</td>
<td>3.32</td>
</tr>
<tr>
<td>28</td>
<td>3.80</td>
<td>2.03</td>
<td>1.88</td>
<td>0.93</td>
</tr>
<tr>
<td>90</td>
<td>4.08</td>
<td>3.48</td>
<td>1.17</td>
<td>0.34</td>
</tr>
<tr>
<td>365</td>
<td>2.97</td>
<td>3.08</td>
<td>0.96</td>
<td>0.31</td>
</tr>
<tr>
<td>(b) Dworshak Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.37</td>
<td>1.64</td>
<td>6.33</td>
<td>3.86</td>
</tr>
<tr>
<td>3</td>
<td>41.49</td>
<td>4.90</td>
<td>8.35</td>
<td>1.73</td>
</tr>
<tr>
<td>7</td>
<td>34.24</td>
<td>4.88</td>
<td>7.02</td>
<td>1.44</td>
</tr>
<tr>
<td>28</td>
<td>27.20</td>
<td>8.30</td>
<td>3.27</td>
<td>0.39</td>
</tr>
<tr>
<td>90</td>
<td>3.50</td>
<td>1.41</td>
<td>2.48</td>
<td>1.76</td>
</tr>
<tr>
<td>(c) Shasta Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.92</td>
<td>8.33</td>
<td>0.23</td>
<td>0.03</td>
</tr>
<tr>
<td>91</td>
<td>8.41</td>
<td>0.29</td>
<td>29.00</td>
<td>100.00</td>
</tr>
<tr>
<td>2,645</td>
<td>0.93</td>
<td>1.92</td>
<td>0.48</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: 1 psi = 6.89 kN/m².

and using \(\hat{a} \) and \(\hat{b} \) obtained from the method of moments as the initial estimate, the final values for \(\hat{a} \) and \(\hat{b} \) are obtained.

A standard library subroutine (21,22) is then called to generate the moment vectors of gamma (\(\hat{A}, \hat{B} \)) deviates, which are distributed as \(x^{-1} \exp (-x/B) / B^\hat{B} \Gamma(A) \), in which \(x, \hat{A}, \) and \(\hat{B} \) are all positive. In the present case \(\hat{A} = \hat{a} \) and \(\hat{B} = 1/\hat{b} \). The subroutine uses the rejection technique. This subroutine requires more machine time than other subroutines, but the test results seem to allow more reliance on the deviates distributorial form.

The simulated values for \(x_i \) are again transformed back to \(y_i \) and \(\tilde{y}_i \), corresponding to each increment \(\tilde{w} \), are evaluated. Starting from the last value of \(J_n \), \(J_n = J(t, t') \), the process \(\tilde{y}_n \) can be plotted as shown in Fig. 1, using the output values \(J(t, t') - \Sigma_{k=0}^{\infty} \tilde{y}_k(M = N - i + 1) \), and \(J(t, t') = 1/t_0 + C(t, t') \). These values have been plotted for each vector value of \(t' \) and \(\tilde{y}_n \) and using \(\hat{a} \) and \(\hat{b} \) obtained from the method of moments as the initial estimate, the final values for \(\hat{a} \) and \(\hat{b} \) are obtained.

Many of the test data in the literature cannot be analyzed as a stochastic process in time because the creep values have not been measured in sufficiently close time intervals and in properly spaced intervals. It would be beneficial if the experimentalists were taking readings that are optimal for statistical analysis. This can be achieved in such a way that the creep increments are identified, distributed, i.e., by taking creep readings at times such that the intervals of transformed time \(z \) (Eq. 23) are constant. For this purpose one needs to have an estimate for the value of \(n \), which can be taken as \(n = 1/8 \) on the average.

Conclusions

1. Creep of concrete can be considered as a nonstationary stochastic process

...
with independent increments of local gamma distribution. This process can be transformed to a stationary gamma process. The transformation accounts for the deceleration of creep rate with creep deviation. The mean prediction agrees with the deterministic creep law in the form of a power law, amply justified previously.

2. Stochastic independence of increments and infinite divisibility of their distribution is assumed. This is justified by the requirement of distribution preservation when a homogeneous specimen is split into smaller ones and when the stress is considered as a sum of stresses. An even stronger justification is provided by considering the micromechanism of creep.

3. By treating creep as a stochastic process, some statistical information can be extracted merely from one specimen, by analyzing the time series of measured specimens are scarce. (However, it is of course always better to use many specimens as possible.)

4. With regard to considering creep at the same time as a stochastic process in the age at loading, \(t \), no adequate time series of measurement in \(t \) is available at the time being, one has to be contented with identifying or even assuming a deterministic (mean) dependence on \(t \) for the statistical parameters of the stochastic process in load duration at fixed \(t \).

5. To make statistical analysis of the time series of creep measurements more accurate, the readings must be taken in sufficiently close time intervals of \(z \), thus. For the main use of the present model is in extrapolating short-time creep measurements (e.g., of 6-month duration) to long times (such as 40 yr).

6. The model allows predicting for long-time creep the confidence limits of the stochastic process. It was found that the distribution is assumed. This is justified by the requirement of distribution of stochastic processes, with independent increments of local gamma distribution. This process can be transformed to a stationary gamma process. The transformation accounts for the deceleration of creep rate with creep deviation. The mean prediction agrees with the deterministic creep law in the form of a power law, amply justified previously.

7. The model allows predicting for long-time creep the confidence limits of the stochastic process. It was found that the distribution is assumed. This is justified by the requirement of distribution of stochastic processes, with independent increments of local gamma distribution. This process can be transformed to a stationary gamma process. The transformation accounts for the deceleration of creep rate with creep deviation. The mean prediction agrees with the deterministic creep law in the form of a power law, amply justified previously.

Acknowledgment

Support of the work of Zdeněk P. Bažant and ElMamoun Osman by the National Science Foundation under Grants No. GK-26030 and ENG75-14848, and of Erhan Çınlar by the Air Force Office of Scientific Research, U.S. Air Force, under grant No. AFOSR-74-2733, is gratefully acknowledged.

Reference

26. “Variability of Deflection of Simply Supported Reinforced Concrete Beams,” ACI
Simulations demonstrate reasonable agreement with test data. Approximate confidence limits can be derived from measurements on the specimen, although a greater number of tests would be necessary to obtain results with a higher degree of confidence. These limits are used to check the accuracy of an extrapolation procedure. References to previous studies are noted.

The authors have presented an interesting and complex paper on a problem that is of practical importance. Creep of concrete is in certain respects a complicated phenomenon but the writer feels that the problem of stochastic variation of creep may be looked at in a much simpler light than that proposed by the authors. Very often seemingly complicated problems have simple solutions.

The writer’s hypothesis is merely the following. For a specimen of macroscopic dimensions, creep is not a stochastic process, in the sense that the variation of an individual creep curve about its mean is negligible, given stable environmental conditions of constant temperature and humidity. However, there are variations in scale, which the writer ascribes (30) principally to gage length effects (e.g., Ref. 29). The variations in scale persist, i.e., one creep curve remains in effect a constant multiple of another. Creep curves obtained in experiments often exhibit scatter about their means but the writer attributes these to: (1) Gage variations; and (2) other experimental factors, such as small differences in temperature between the creep specimen and companion (shrinkage) specimens.

Thus the writer would question the principal result of the authors’ investigation, i.e., the simulation as shown in Fig. 1. The variation along each curve, including curves crossing over each other, is simply not found in experiments in which gage and other variation have been eliminated. As noted, the writer considers the scatter of data along a particular curve to be the result of gage and experimental variation, and considers that it should not be modeled as a consequence of the micromechanism of creep.

In order to support these observations some of the writer’s data are included (Table 2). The values presented are three realizations from an extensive set which show similar features to those illustrated. Deviatoric strains are given as these, are independent of volumetric strains, and therefore problems induced in correcting for shrinkage are absent.

The writer’s hypothesis, as noted herein, stems from the simple observation that each increment in creep, measurable on a macroscopic specimen, is the sum of a very large number of molecular events. One has merely to consider the size of particles as noted by the authors and the fact that a single event occurring somewhere in the cross section of a macroscopic specimen could only contribute a very small part of the local deformation to the deformation of the specimen as a whole. Therefore, the scatter observed on a creep curve (e.g., Fig. 1) is unlikely to be associated with the molecular behavior unless all the events happen at once! The writer is particularly uneasy about the authors’
assumption of sparseness, both in time and in space. This highlights one aspect of the authors' approach to analyzing experimental data, i.e., that of ignoring those points corresponding to decreasing values of creep. The writer agrees, of course, that the decreases stem from experimental variation, but how can the authors assume that other points do not contain such variations? The admission of variation due to factors other than those related to the micromechanisms of creep must then logically apply to all data points. The writer emphasizes that he considers practically all of the variation modeled by the authors to be due to extraneous factors unrelated to the physical mechanism of creep.

Basically, the question of sparseness results from the modeling of creep as an infinitely divisible distribution of the kind stated in the paper, and the distributions selected must therefore be questioned. The authors have started out with the assumption that an increment of creep of a specimen of macroscopic size in a specified time interval is a random variable, which can be represented as the sum of independent random variables (with a common distribution). The writer's analysis proceeds in the opposite direction. Since creep is not a stochastic process (in the sense described earlier), there are sufficiently many events so that the central limit theorem effectively ensures that the increments of creep in companion specimens are the same, except for the scale factor noted previously. The result is simpler, accords with one's common sense, and does not lead to increments of macroscopic creep being a stochastic process as depicted in Fig. 1 of the author's paper.

Aging effects have been eliminated in the authors' analysis by means of a transformation (that is reminiscent of the use of "pseudo-time" by the writer and others); and in addition the particular transformation is based on the representation of creep as a product of age and duration functions. Thus the extrapolation of mean values using these functions appears to have whatever advantages or disadvantages are characteristic of these functions as mean values of creep; in particular, it is to be noted that they model adequately only reversible creep deformation (30).

In conclusion, this discussion represents a critique—frank, but hopefully courteous—of the spirit rather than the detail of the authors' paper. In essence, I feel that the authors have modeled experimental "noise" as a micromechanical phenomenon, and that the basic problem they are addressing is not, in any practical sense, a problem at all. The writer would particularly value the authors' interpretation of the results in Table 2 in terms of their model.

APPENDIX.—REFERENCES

Closure by Erhan Çınlar,5 Zdeněk P. Bažant,6 M. ASCE, and ElMamoun Osman7

Thanks are due to Professor Jordaan for his courteous discussion. His fundamental position is that basic creep (i.e., creep under constant temperature and humidity and other environmental factors) is deterministic and that any observed variations from the deterministic actual creep value are due to experimental errors (gage effects, control of environmental conditions, load, etc.). We think that his belief is experimentally unjustified, and that the arguments he presents in favor of his position are faulty. The following is a step by step analysis of his assertions.

Firstly, suppose that the basic creep curve is some deterministic function, \(c(t) \), as Jordaan claims. If the observations are taken at times \(t_1, t_2, ..., t_n \), then the values read are \(c(t_1) + \epsilon_1, c(t_2) + \epsilon_2, ..., c(t_n) + \epsilon_n \), in which \(\epsilon_1, \epsilon_2, ..., \epsilon_n \) are the error values introduced by gage effects and other experimental factors. Since these errors are external, \(\epsilon_1, \epsilon_2, ..., \epsilon_n \) must be nonstochastic, and are therefore independent and identically distributed random variables having the normal distribution with mean 0 and variance \(\sigma^2 \) (unknown). Thus, the observed scatter around the mean curve \(c(t) \) must have the same variability for all \(t \). It is well known that the rate of variability is greater for small \(t \)

5 Prof. of Applied Mathematics, Industrial Engrg., and Mathematics, Northwestern Univ., Evanston, Ill.
6 Prof. of Civ. Engrg., Northwestern Univ., Evanston, Ill.
7 Instr., Univ. of Petroleum and Minerals, Dhahram, Saudi Arabia.
than for large \(t \). Thus, there must be additional randomness in creep itself, and the discusser’s claim does not hold.

Again assume that the model \(x_i = c(t_i) + \epsilon_i \) for the \(i \)th observed value holds. Suppose that the first five measurements gave \(x_i > c(t_i) \) for all \(i = 1, 2, \ldots, 5 \). The model being assumed would predict the value \(c(t_i) + \epsilon_i \) for the 6th observation, which has a probability of one-half of being below \(c(t_i) \), and independent of the observed values \(x_i, \ldots, x_5 \). As is well known from experiments, (e.g., 80 data sets in Ref. 31), this is not true: higher creep values \(x_6, \ldots, x_n \) imply higher value for \(x_6 \) also. Thus, the discusser’s claim is not true. Our model of creep reflects this property quite well. In our model, the deterministic function \(c(t) \) is replaced by a random function \(J(t) \), [so that, taking the experimental errors into account, the \(i \)th observation yields \(x_i = J(t_i) + \epsilon_i \) and \(J(t + u) - J(t) \) is argued to be stochastically independent of \(J(t) \). Thus, a high value for \(J(t) \) implies a high value \(J(t + u) \) because the increment \(J(t + u) - J(t) \) does not become any smaller (or bigger) because of the greatness of \(J(t) \).

Our principal result is a stochastic process that models the actual creep as a function of time (to the exclusion of experimental errors and gage effects). The simulations presented in our paper were for the purpose of giving a visual idea of the processes involved. Different curves there correspond to different specimens. Two curves may cross each other; they correspond to two specimens under identical conditions loaded at the same age. In fact, apparently, the discusser did not notice that his own normalized creep curves given in Table 2 actually cross each other, which is quite acceptable by our theory but not by his system of beliefs.

We agree with Professor Jordaan that “each increment in creep, measurable on a macroscopic specimen, is the sum of a very large number of molecular” movements. But his conclusion from this is faulty. There is no necessity that this leads to a deterministic curve.

Fatigue and damage accumulation are also due to the effect of a very large number of microscopic crack extensions and plastic slips, but it is well accepted that they are stochastic processes.

In particular, Professor Jordaan’s assertion that “the scatter observed on a creep curve is unlikely to be associated with the molecular behavior unless all events happen at once” totally misses the point. Quite to the contrary, we assume sparseness in time and space for the events (by an “event” here we mean a migration of a group of particles), i.e., the intervals between events happening at a given location are very large compared to the intervals between events happening over all locations, and, similarly, two events that happen close in time are assumed to be widely separated in space. (Of course all these are matters of scale—we believe that 1 mm is a very wide separation in this case.)

The discusser’s appeal to the central limit theorem is correct in its spirit but wrong in its conclusion. Firstly, the central limit theorem shows that the sum of a large number of infinitesimal variables satisfying certain conditions has a normal distribution—the sum is a random variable, not a deterministic number as the discusser seems to think. We do deal with sums of infinitesimal variables, but they do not fall in the domain of attraction of the normal law. Instead (and this is one of the major results of our paper), the infinitesimal variables we have to deal with fall in the domain of attraction of a gamma-related law.

While we do not agree with Professor Jordaan on the essentials, we agree with him on the shortcomings of our paper concerning the statistical analysis of data. Starting from our model, where \(J(t) \) is the stochastic creep at time \(t \), the better statistical model for the data handling would have been to take the “measured creep value at time \(t_i \)” to be \(J(t_i) + \epsilon_i \), where \(\epsilon_i, \ldots, \epsilon_n \) are independent and identically distributed normal random variables with mean 0 and variance \(\sigma^2 \). We have, in fact, attempted to use such a model, but had to abandon it due to the lack of data. Basically, in any of the available data sets, we have at best 30 observations from which we are estimating two parameters for the creep process \(J(t) \) and the experimental variance \(\sigma^2 \), and all this under conditions of nonstationarity. Thus, the errors \(\epsilon_i \) had to be neglected in favor of the real process \(J(t) \), which, in turn, led to elimination of negative increments because they can only be explained as errors. If the experiments are carefully executed, \(\epsilon_i \), should be insignificant compared with the creep values \(J(t_i) \), and what we did may be reasonable.

A more exact statistical analysis with the model \(J(t_i) + \epsilon_i \) will have to wait until we have data obtained on a large number of identical specimens that are kept under identical environmental conditions, loaded identically, whose deformations are measured at certain properly predetermined times.

It is important to make a distinction between the stochastic model governing the creep process \(J(t) \), and the statistical model for the \(i \)th observation \(J(t_i) + \epsilon_i \). The important thing is the process \(J(t) \)—this is what the structure “feels,” and the calculation of creep effects in structures are to be based on \(J(t) \). (The experimental errors must be omitted in such computations.)

Professor Jordaan questions whether our stochastic process can be fitted to test data that are rather smooth. It indeed can, with the proper choice of parameters. In simulations, for instance, creep curves obtained from our model can be made as smooth as desired, and the band of all curves can be made as narrow as desired. Noting that \(a_i/b_i \) gives the rate of increase of the mean and \(a_i/b_i^2 \) that of the variance, we see that we can achieve the desired state of affairs by letting \(a_i/b_i^2 \) approach 0 while keeping \(a_i/b_i \) fixed. This is achieved by setting \(a_i = a_i^0/\epsilon \) and \(b_i = b_i^0/\epsilon \) in which \(a_i^0 \) and \(b_i^0 \) are fixed and \(\epsilon \) is sufficiently small. In the limit, as \(\epsilon \to 0 \), we obtain a deterministic model \(J(t) = c(t) = \int_0^t (a_i^0/b_i^0) \) ds.

We should like to thank Professor Jordaan for his interest, and for providing us an opportunity to clarify some relevant background matters.

Appendix.—Reference