
1&104 SEPTEMBER 11180

JOURNAL OF THE STRUCTURAL DIVISION

SLIP-DILATANCY MODEL FOR CRACKED REINFORCED CONCRETE

By Zdeněk P. Bažant, F. ASCE and Tatsuya Tsubaki

INTRODUCTION

The stresses transmitted between the opposite surfaces of cracks in concrete have a major effect on the response of reinforced concrete. This has been recognized by Schnobrich and coworkers (18,20) who introduced in finite element analysis the concept of reduced elastic shear stiffness of cracked concrete. The transfer of shear stress across the cracks, due to aggregate interlock, is modeled by multiplying the shear modulus with a certain shear transfer factor α_s such that $0 < \alpha_s < 1$, which is either taken as constant or, more realistically, as a function of the crack width (8,10). This model represents a rather significant advance compared to the previous complete neglect of the shear transfer ($\alpha_s = 0$) and has served as a point of departure for the present work, in which a further improvement is attempted.

The reduction of shear stiffness, however, does not give the full picture. If the opposite surfaces of a rough crack are in contact, and if the normal stress across the crack is zero or constant, any relative tangential displacement $\delta_\|^\|$ (slip) between the opposite surfaces of a crack is at constant stress always accompanied by a relative normal displacement $\delta_\|^\|_n$ (crack width). This is called crack dilatancy. If $\delta_\|^\|$ is kept constant, slip $\delta_\|^\|$ leads to jamming of rough crack surfaces (aggregate interlock) which produces not only a shear stress $\sigma_\|^\|_s$ but also a normal compressive stress $\sigma_\|^\|_c$ transmitted across the crack by the contacts of surface asperities. This may be regarded as a manifestation of friction.

Thus, the effect of cracks in concrete cannot be described merely by a reduced shear stiffness $\sigma_\|^\|_s$, G resulting from the relation between $\delta_\|^\|$ and the shear stress $\sigma_\|^\|_s$, transmitted across the cracks. Rather, it must be described by a relation that involves $\delta_\|^\|$, $\delta_\|^\|_n$, $\sigma_\|^\|_s$, and $\sigma_\|^\|_c$, i.e., not only tangential but also normal displacement and stress components on a crack (2). A nonlinear model based on tests was developed for this relation (2); it is however unnecessarily sophisti-
The concrete is considered to be either in a state of plane stress (slab, plate) or in a state of plane strain, and only the in-plane behavior is considered. Concrete is assumed to contain one or two systems of straight, parallel, equidistant and continuous cracks. We disregard the fact that cracks in concrete often begin to form as a series of discontinuous microcracks and remain such as long as \(\delta \) is very small. The spacing of reinforcing bars as well as the spacing of cracks is assumed to be sufficiently dense so that the change of internal forces from one bar to the next or from one crack to the next would be negligible. At least one principal internal force is assumed to be tensile and concrete and is assumed to have no tensile strength. We have to restrict attention to monotonic loading, even though cyclic loading is important and some experiments have recently been carried out (14,15,16,19). To treat the composite action, we assume that the stress-strain curve is bilinear, and in the reinforcing net are the same. We will distinguish the case where the opposite crack surfaces are in contact (frictional cracks) from the case where they are not (frictionless cracks). First we consider the frictional cracks.

Stiffness of Concrete with Slipping Frictional Cracks of One Direction

A fundamental property characterizing the response of cracked concrete is the relationship between the relative normal displacement, \(\delta \), and the relative tangential displacement, \(\beta \), between the opposite surfaces of a crack, and the normal stress, \(\sigma \), and the shear stress, \(\tau \), that are transmitted across the crack due to contact (or interlock) of concrete surfaces (superscript \(c \) refers to concrete) (see Fig. 1). Although this relationship is quite complex and nonlinear (3), we may approximately treat it as friction, writing \(\sigma = -k\delta + c \), and if the crack is slipping we have

\[
\sigma = -k\delta + c \quad \text{(frictional slip)}
\]

\[
\delta = \alpha \beta + \varepsilon \quad \text{(dilatancy)}
\]

in which \(k = \) friction coefficient; \(c = \) cohesion; \(\alpha = \) dilatancy ratio; and \(\varepsilon = \) expansion (or initial dilatancy).

Problem and Basic Assumptions

The concrete is considered to be either in a state of plane stress (slab, plate) or in a state of plane strain, and only the in-plane behavior is considered. Concrete is assumed to contain one or two systems of straight, parallel, equidistant and continuous cracks. We disregard the fact that cracks in concrete often begin to form as a series of discontinuous microcracks and remain such as long as \(\delta \) is very small. The spacing of reinforcing bars as well as the spacing of cracks is assumed to be sufficiently dense so that the change of internal forces from one bar to the next or from one crack to the next would be negligible. At least one principal internal force is assumed to be tensile and concrete is assumed to have no tensile strength. We have to restrict attention to monotonic loading, even though cyclic loading is important and some experiments have recently been carried out (14,15,16,19). To treat the composite action, we assume that the stress-strain curve is bilinear, and in the reinforcing net are the same. We will distinguish the case where the opposite crack surfaces are in contact (frictional cracks) from the case where they are not (frictionless cracks). First we consider the frictional cracks.

Stiffness of Concrete with Slipping Frictional Crack of One Direction

A fundamental property characterizing the response of cracked concrete is

FIG. 1.—Stresses in Cracked Reinforced Concrete; (a) Orthogonally Reinforced Slab; (b) Roughness of Crack Surfaces; (c) Actual Distribution of Stresses

FIG. 2.—Tangent and Secant Linearization of Friction and Dilatancy Laws

In view of the actual nonlinear behavior, \(k \) and \(\alpha \) should be regarded as the slopes of the tangent of some nonlinear diagrams (Fig. 2) of \(\sigma \) versus \(\delta \), and of \(\delta \) versus \(\beta \), and \(\varepsilon \) and \(\alpha \) as the offsets of these tangents on the vertical axes. Optimally, the values for \(k \), \(\alpha \), \(\varepsilon \) and \(\alpha \) should correspond to the tangents at points close to the actual solution, but in this respect we should keep in mind that the actual diagram of \(\sigma \) versus \(\delta \) is not unique and depends on \(\delta \) and the loading history, and the same holds for the diagram of \(\delta \) versus \(\beta \).
In absence of information on the actual nonlinear behavior, we should use $c = e = 0$.

From the macroscopic point of view, the effect of the relative displacements γ_α and γ_β, on many densely distributed parallel cracks of mean spacing, s, is to produce the averaged strains

$$\epsilon'' = \frac{\gamma_\alpha}{s}, \quad \epsilon'_n = 0, \quad \gamma'' = \frac{\delta_i}{s} \quad \text{. (3)}$$

in which γ'' is shear angle = twice the tensorial shear strain component ϵ''.

The total strains of concrete containing many densely distributed parallel cracks may then be expressed as

$$\epsilon = \epsilon'' + \epsilon' \quad \text{. (4)}$$

in which ϵ'' is the column matrix $(\epsilon'_{\alpha}, \epsilon'_n, \gamma'')^T$, T denoting a transpose; and ϵ and ϵ' are similar matrices representing the total strains and the strains in the concrete between the cracks. To achieve equilibrium, the stresses in concrete between the cracks must be the same as the stresses transmitted across the cracks. Assuming the concrete between the cracks to be isotropic and elastic, we may then write

$$\epsilon' = C_\alpha \sigma' \quad \epsilon'' = C_{\epsilon''} \sigma'' \quad \epsilon' = C_{\epsilon'} \sigma'$$

in which $\sigma' = (\sigma'_\alpha, \sigma'_n, \sigma'')^T$; C_α is the flexibility matrix of uncracked concrete; and E_s, v, and G_s are Young's modulus, Poisson's ratio, and shear modulus, respectively, of solid concrete that does not contain continuous macroscopic cracks. When the concrete is in a state of plane strain rather than plane stress, E_s and v must be replaced by $E_s/(1 - v^2)$ and $v/(1 - v)$, respectively.

It must be remembered that Eq. 5 is an acceptable approximation only within the service stress level and that E_s and G_s should be taken as secant moduli. Near ultimate loads, some stress components, e.g., the compression stresses parallel to cracks, may become high even in cracked concrete, and then Eq. 5 would have to be replaced by a nonlinear constitutive relation (e.g., Refs. 1, 3).

If we substitute $\delta_i = s(\epsilon'_n - \epsilon''_n)$ and $\delta_i = s(\gamma'' - \gamma''_n)$ (from Eqs. 3 and 4) into Eq. 2, and express ϵ''_n and γ''_n from Eq. 5, we get

$$\epsilon''_n = \frac{\sigma'_n - v \epsilon''}{E_s} = \pm \alpha \left(\gamma''_n - \frac{\sigma''}{G_s} \right) \quad \text{. (5)}$$

Furthermore, noting that $\epsilon''_n = \epsilon''$ and substituting $\epsilon''_n = E_s \epsilon'' + v \epsilon''$ (Eq. 5) and $\sigma'' = \mp k \sigma''$ (Eq. 1) into Eq. 6, we obtain for slipping cracks

$$\left[\frac{1 - v^2}{E_s} + \frac{1}{G_s} (\pm k \alpha_s) (\pm k) \right] \sigma''_n = \epsilon'' + v \epsilon'' + \mp \frac{\alpha \gamma''}{s} + \frac{1}{G_s} (\pm k \alpha_s) (\pm k) - \frac{\epsilon}{s} \quad \text{. (7)}$$

Among the double signs at k and c, the upper ones go here (and in the sequel) with $\sigma''_n \geq 0$ and the lower ones with $\sigma''_n < 0$; as for α_s, the upper sign

for $\delta_i \geq 0$ and the lower ones with $\delta_i < 0$. For admissible solutions the signs of α_s and σ''_n must match, and then $(\pm \alpha_s) (\pm k)$ always equals $\alpha_s k$. In a computer program, however, it is not known in advance whether the solution of a certain case will be an admissible one; therefore, the expression $(\pm \alpha_s) (\pm k)$ cannot be replaced by $\alpha_s k$ and must be considered with all sign combinations; the same holds for $(\pm \alpha_s) (\pm c)$.

Expressing σ''_n from Eq. 7, and substituting this into Eq. 1 and into the relation $\sigma''_n = E_s \epsilon'' + v \epsilon''$ (Eq. 5), we finally obtain

$$\sigma'' = D \sigma' + f \quad \text{. (8)}$$

in which

$$D = \frac{1 - v^2}{E_s} + \frac{1}{G_s} (\pm k \alpha_s) (\pm k), \quad f = \frac{1}{G_s} (\pm k \alpha_s) (\pm k) \left(\frac{\epsilon}{s} \right) \quad \text{. (9)}$$

Matrix D represents the stiffness matrix of concrete containing slipping closely spaced parallel cracks. Note that it is nonsymmetric unless $k = \alpha_s$, which is far from true for concrete. When we use $c = e = 0$, D is a secant stiffness matrix. For $e = 0$, the value of c spacing, s, has actually no effect on the resulting stiffness matrix, Eq. 9. (This is not true of the more realistic nonlinear model in Ref. 2.) Note also that matrix D is singular because the last row is a multiple of the first row and the last column is a multiple of the first column. This singularity is an inevitable consequence of adopting the friction and dilatancy laws (Eqs. 1 and 2) for approximating the relation among $\sigma''_n, \sigma'_n, \epsilon$ and δ_i. When this relation is modeled more accurately, the incremental stiffness matrix is obtained as nonsingular (2), but the theory becomes more complex. We will see that the singularity of D causes no problem when we deal with reinforced concrete because the stiffness matrix of the composite is nonsingular.

A very important property is the cross effect between ϵ''_n and σ''_n or between ϵ''_n and σ'' These cross effects influence the response profoundly. They cause the principal directions of stress in concrete and those of strain not to coincide, while in the currently used approach these directions do coincide.

Stiffness of Concrete with Slipping Frictional Cracks of Two Directions

Reinforced concrete may contain parallel crack systems of two directions. The angle between the two crack systems, generally nonorthogonal, will be denoted as ϕ (see Fig. 1), and all quantities referring to the second crack system will be labeled by primes. For the second system we again have:

for $\sigma''_n \geq 0; \quad |\sigma''| = -k' \alpha''_n + \epsilon''; \quad \text{. (11)}$

for $\sigma''_n \geq 0; \quad \delta_i' = \alpha''_n \delta_i' + \epsilon'' \quad \text{. (12)}$
We allow \(k', \alpha'_c, c', \) and \(e' \) to be in general different from \(k, \alpha_c, c, \) and \(e, \) so as to admit that the diagrams in Fig. 2 could be linearized about different points.

Superimposing the strains due to cracks in both directions and transforming the primed strains due to the second crack system to the coordinates of the first crack system, we get

\[
\varepsilon'_m = \frac{\varepsilon_0'}{s} + \frac{\varepsilon'_s}{s'} \cos^2 \phi - \frac{\varepsilon'_t}{2s'} \sin 2 \phi; \quad \gamma'_m = \frac{\varepsilon'_t}{s'} \sin^2 2 \phi + \frac{\varepsilon'_s}{2s'} \sin 2 \phi \quad (13)
\]

Also, by coordinate transformation

\[
\sigma'_m = \sigma'_m \cos^2 \phi + \sigma'_s \sin^2 \phi + \sigma'_t \sin 2 \phi \quad (15)
\]

Substitution of these expressions into Eq. 1 and Eq. 11 yields

\[
\sigma'_m = f_s \sigma'_m + f_s \quad (17)
\]

in which

\[
f_s = \frac{1}{f_0} \left[\frac{1}{s} \sin 2 \phi \pm k' \cos 2 \phi \mp k' \cos^2 \phi \mp (\pm k')(\pm c') \sin 2 \phi \right]; \quad f_0 = \frac{1}{2} \sin 2 \phi \pm k' \sin^2 \phi \quad (18)
\]

From Eqs. 4, 5, 13, and 14, we have

\[
\varepsilon'_m = \frac{\varepsilon'_s}{s} - \frac{\varepsilon'_t}{s'} \cos^2 \phi + \frac{\varepsilon'_t}{2s'} \sin 2 \phi - \frac{1}{E_e} \left(\sigma'_m - \nu \sigma'_s \right) \quad (19)
\]

Substitution of Eqs. 19, 20, and 12 into Eq. 2 yields

\[
\sigma'_m = f_s \left\{ \pm \alpha' \left(\gamma'_m - \frac{\sigma'_s}{G_e} \right) - \left(\varepsilon'_m - \frac{\sigma'_m - \nu \sigma'_s}{E_e} \right) \right\} \quad (21)
\]

in which

\[
f_s = \frac{1}{s'} \left\{ \pm \alpha' \cos^2 \phi \mp \alpha' \cos^2 \phi \mp \left(\frac{1}{2} + \left(\pm \alpha' \right) \left(\pm \alpha' \right) \right) \sin 2 \phi \right\} \quad (22)
\]

Eqs. 4, 5, and 13 provide

\[
\epsilon_m = \frac{1}{s} \left(\pm \alpha'_s \sin^2 \phi + \frac{1}{2} \sin 2 \phi \right) + \frac{1}{E_e} \left(\sigma'_m - \nu \sigma'_s \right) + \frac{e'}{s'} \sin^2 \phi \quad (23)
\]

Substituting Eqs. 21, 1, and 17 into Eq. 23, we get

\[
\sigma'_m = \sigma' + f_s \sigma'_m + \alpha' \gamma'_m + f_s \quad (24)
\]

Finally, Eqs. 24, 17, and 1 yield the stress-strain relation in Eq. 8 with

\[
D = E^* \left[f_0 f_0 f_s + \frac{\tau \alpha_d}{E} \right]; \quad f = \left\{ f_s f_0 E^* + f_s \right\} \quad (28)
\]

Note that this stiffness may be written also in the form

\[
D = E^* a^T b
\]

in which \(a = (1, f_s, \tau \kappa) \); and \(b = (1, f_0, \tau \alpha_c) \). This indicates that matrix \(D \) is again singular. We may further observe that the cross effects between shear stress and normal strain and between shear strain and normal stress are again present and the matrix is nonsymmetric. Note also that the values of crack spacings \(s \) and \(s' \) have no effect on \(D \).

For the special case where the first crack system is oriented in the principal strain direction (i.e., we have frictionless no-slip cracks), the concrete is subjected to uniaxial compression parallel to the first crack system, and if the second crack system is slipping, it must form with the first system an angle \(\phi \) such that \(\pm \cos \phi = k' \) = friction coefficient. Calculations of deformations due to the second crack system yield an expression for the uniaxial compression stiffness parallel to the first crack system, reduced by the presence of the second crack system. However, since the secant uniaxial stiffness in compression is well known from tests, it is preferable to assess it directly.

The case where both crack systems are in the principal strain directions (frictionless cracks) is a trivial one. Concrete can then transmit no stress and the applied loads must be aligned with bar directions or else such cracks could not exist.

In our treatment of the simultaneous slip on two crack systems we neglect the effects of the mismatch at crack corners (Fig. 3(c)). For the simultaneous...
slips, δ, and δ', to occur at zero normal relative displacements, δ_n and δ'_n, the triangles of sides δ, and δ' at crack corners would overlap (according to our assumed simple kinematics) and the corners would have to get sheared off, crushed, and removed. This effect should be negligible for small enough δ_n and δ'_n because the area of the triangles to be sheared off (δ, δ') is second-order small, and so should be the normal and shear resultants from these triangles as compared to σ_n or σ'_n.

To avoid crack corner overlap and shear-off, the slips δ, and δ', would have to be accompanied by additional dilatancies, $\Delta \delta = \delta_n/2$ and $\Delta \delta' = \delta'_n/2$, as shown in Fig. 3(e). We therefore propose that the way to account for crack corner overlap is to consider increased values of dilatancy factors α_n and α'_n whenever there is simultaneous slip on two crack systems. Because the ratio of the sides of corner triangles to the total crack length is δ, or δ'_n, we may consider that

$$\alpha_n = \alpha_n' + c_n |\delta'|$$ \hspace{2cm} (29)

in which $\alpha_n' = \text{the dilatancy ratio when a single crack system slips; } c_n = \text{an empirical positive constant; and } \delta'_n = \text{the slip of the other crack system. However, the correction } c_n |\delta'| \text{ is small and negligible for small enough slips.}$

Stiffness of Concrete Containing Contactless Cracks or Nonslipping Cracks in Contact

If there is only one system of open cracks the surfaces of which have no contact, Eq. 2 must be replaced by an inequality, $\delta_n > \alpha_n |\delta'| + \varepsilon (\varepsilon > 0)$, and Eq. 3 must be omitted because the strains due to cracks ε'', are indeterminate. Further we must replace the friction law, Eq. 1, with the conditions $\sigma_n'' = 0$, $\sigma'_n = 0$.

Eq. 4 reduces to the relation $\varepsilon'' = \sigma_n'' / E_n$. Thus, the stiffness matrix of concrete with one system of contactless cracks (Eq. 9) has the form

$$D = \begin{bmatrix}
0 & 0 & 0 \\
0 & E_n & 0 \\
0 & 0 & 0
\end{bmatrix} \hspace{2cm} (30)$$

This matrix differs from that presently used for cracked concrete (18) by the bottom diagonal term for shear, which is here taken as zero rather than $\alpha_n G_n$.

It is interesting to note that the matrix D for concrete with contacting cracks (Eq. 9) yields the matrix D for contactless cracks (Eq. 30) as a limiting case for $k \to \infty$, $\alpha_n \to \infty$ (at $k/\alpha_n \to \infty$), except that the last diagonal coefficient of the resulting matrix is obtained as G_n, rather than 0. However, this coefficient is irrelevant when we seek the crack direction for which the shear strain is zero.

If the crack surfaces are in contact but do not slip, the cracked concrete behaves just like uncracked (solid) concrete and its incremental stiffness matrix is, under the assumption of linearity, given by Eq. 5, i.e.,

$$D = C_{\sigma}^{-1} \hspace{2cm} \text{(contact, no-slip) \hspace{2cm} (31)}$$

Application to Finite Element Analysis

Matrix D from Eqs. 9 or 28 may be used as the incremental (tangent) stiffness matrix in finite element analysis with successive small loading steps. For steps in which the crack direction is already known the following rules are suggested.

![FIG. 4.—Type of Solution for Various Crack Angles, θ, and Dilatancy Ratios, α_n [Overall Maxima of Stresses in Reinforcement (Solid Circles) and Concrete (Open Circles); on Lines AA' and BB', $\sigma_n'' = \sigma'_n = 0$.]

Case 1. If there has been slipping contact in the preceding loading step, i.e., $\delta_n > \alpha_n |\delta'| + \varepsilon$ and $\delta_n = \varepsilon + \alpha_n \delta$, with these signs of these signs, we assume contact with slip of the same sign for the current loading step. However, (a) if we get slip δ, of opposite sign we must switch to assuming contact without slip of opposite sign; (b) if we violate $\sigma_n'' \leq \varepsilon/k$ for the end of the current loading step, we must switch to the case of no contact; and (c) if we violate $\delta_n = \varepsilon$ for the end of the current loading step, we must switch to the case of contact without slip (Eq. 31).

Case 2. If there has been no contact in the preceding step, i.e., $\delta_n > \alpha_n |\delta'| + \varepsilon$ and $\delta_n = \varepsilon$, we assume the same for the current loading step, but if we violate $\delta_n > \alpha_n |\delta'| + \varepsilon$ in which $\delta_n = \varepsilon (\varepsilon_n - \varepsilon'_n)$ and $\delta_n = \varepsilon (\varepsilon_n - \varepsilon'_n)$ for the end of the current step, we switch to the case of slipping contact with the same sign of δ_n.}

Case 3. If there has been contact without slip in the preceding loading step (Eq. 31), we assume the same for the current step, but if we violate $\sigma_n'' < \varepsilon$.
If the cracks are densely distributed so that the change of stress from one crack to another is not large, we may consider that, by reason of symmetry, the bars do not slip within concrete at the midpoints between two adjacent parallel cracks (Fig. 1(c)). Elsewhere there may be bond slip between the bars and concrete, and we know that each bar must actually exhibit bond slip within a certain distance (bond slip length) from the surface of crack because the elasticity solution indicates an infinite bond stress at the surface of the crack. The average strains in the reinforcement are determined by the displacements of the aforementioned midpoints at which there is no bond slip, and these strains must be the same as the macroscopic strains, ϵ_m, ϵ_n, and ϵ_{mn}, of the cracked concrete.

The average axial strains in the bars may be determined as

$$
\epsilon_i = \epsilon_m \cos^2 (\omega_i - \theta) + \epsilon_n \sin^2 (\omega_i - \theta) + \epsilon_{mn} \sin 2(\omega_i - \theta)
$$

in which $\epsilon_i = \epsilon_m \cos^2 (\omega_i - \theta) + \epsilon_n \sin^2 (\omega_i - \theta) + \epsilon_{mn} \sin 2(\omega_i - \theta)$.

The macroscopic stresses, σ_i^T, resulting from the axial forces in the steel bars per unit area of reinforced concrete (not of steel) are

$$
\sigma_i^T = E_p p_i \epsilon_i
$$

in which $\epsilon_i = \epsilon_m \cos^2 (\omega_i - \theta) + \epsilon_n \sin^2 (\omega_i - \theta) + \epsilon_{mn} \sin 2(\omega_i - \theta)$.

The conditions stated for cases 1(b), 1(c), 2, and 3 result from Eqs. 1 and 2 upon noting that $|\sigma^T| \geq 0$ and $|\sigma| \geq 0$. It might be preferable to replace them by the conditions $\sigma^T \leq 0$ and $\sigma \geq 0$, but then we lose continuity between cases 1 and 2 or 1 and 3 if $c \neq 0$ or $\sigma \neq 0$.

The case of no contact (case 2) is in reality obtained only if $\delta_n = 0$ (see Ref. 2); however, in view of the simplifying Eq. 2 we must allow in case of no contact a finite range of δ_n, as stated for case 1.

Stiffness of Cracked Reinforced Concrete

The macroscopic stresses, σ_i^T, must be the same as the macroscopic stresses, σ_i, of the cracked concrete.

The average axial strains in the bars may be determined as

$$
\epsilon_i = \epsilon_m \cos^2 (\omega_i - \theta) + \epsilon_n \sin^2 (\omega_i - \theta) + \epsilon_{mn} \sin 2(\omega_i - \theta)
$$

The macroscopic stresses, σ_i^T, resulting from the axial forces in the steel bars per unit area of reinforced concrete (not of steel) are

$$
\sigma_i^T = E_p p_i \epsilon_i
$$

in which $\epsilon_i = \epsilon_m \cos^2 (\omega_i - \theta) + \epsilon_n \sin^2 (\omega_i - \theta) + \epsilon_{mn} \sin 2(\omega_i - \theta)$.

The conditions stated for cases 1(b), 1(c), 2, and 3 result from Eqs. 1 and 2 upon noting that $|\sigma^T| \geq 0$ and $|\sigma| \geq 0$. It might be preferable to replace them by the conditions $\sigma^T \leq 0$ and $\sigma \geq 0$, but then we lose continuity between cases 1 and 2 or 1 and 3 if $c \neq 0$ or $\sigma \neq 0$.

The case of no contact (case 2) is in reality obtained only if $\delta_n = 0$ (see Ref. 2); however, in view of the simplifying Eq. 2 we must allow in case of no contact a finite range of δ_n, as stated for case 1.
case select the proper signs in front of \(k, k', \alpha_d, \) and \(\alpha'_d \). Then set up the stiffness matrix of cracked reinforced concrete and solve Eq. 38 for strains. Then calculate the stresses and relative displacements on the crack.

4. Check the solution.

Case a—one frictionless crack without contact: \(\alpha_m > \alpha_m |b| + \varepsilon \). Also store \(|b| = \) minimum for all discrete angles \(\theta \) considered so far (to find \(\theta \) for which \(b = 0 \), which is the classical case.)

Case b—one frictional slipping crack: \(\alpha_m' > \varepsilon \) and (I) \(b > 0 \) and \(\alpha_m > \varepsilon \); or (II) \(b < 0 \) and \(\alpha_m > \varepsilon \)

Case c—one frictional slipping crack: \(\alpha_m' > \varepsilon \) and (I) \(b = 0 \) and \(\alpha_m > \varepsilon \); or (II) \(b = 0 \) and \(\alpha_m > \varepsilon \)

Case d—crack in contact without slip: \(\alpha_m' < \varepsilon \) (at \(\theta = 0 \)). For all cases, \(\alpha_m < \varepsilon \) (i.e., the maximum principal stress in concrete must be compressive). This implies the check \(\alpha_m < \varepsilon \) for the frictionless crack. (Note that Eq. 1 requires only \(\alpha_m' \leq \varepsilon \) for case a, but we prefer \(\alpha_m' < \varepsilon \).) If any one of the conditions for the particular case is violated, the solution for this case is inadmissible; discard it.

5. Check for all foregoing cases whether the admissible solutions of stresses in reinforcement and concrete and the crack width exceed the previously attained maxima for any of the particular cases, and if they do, store the new maxima and record the corresponding \(\theta \).

6. Go to step 2 unless all discrete angles \(\theta \) have been considered.

7. Print maxima and corresponding angles \(\theta \), and stop.

As we see from this algorithm, the problem of solving the stresses in concrete and reinforcement and the deformations of cracked reinforced concrete for given total stresses is a rather complex nonlinear optimization problem with many linear inequality constraints. The constraints are due to the linearizations achieved by the concepts of friction and dilatancy, and to the neglect of tensile strength of concrete. The solution nonetheless requires fewer material parameters than the full nonlinear incremental solution of the problem (2) in which these constraints do not appear. Whereas the classical solution for frictionless cracks in principal strain direction can be calculated by hand (7), the inclusion of friction and dilatancy requires a computer. However, the solution by computer (4) is very inexpensive.

The classical approach (7) admits a solution only for one certain crack angle \(\theta \), whereas frictional cracks admit solutions for a finite and broad range of angles \(\theta \) (see Fig. 4). Thus the condition of maximum possible stresses or crack width is indispensable for having a unique solution.

Calculation of the crack width requires knowledge of the crack spacing, which may be estimated from experience. Theoretical prediction involves two effects. One is the transmission of tension from bars into concrete by bond stresses; another is stability and unstable localization of strain into cracks. Study of these problems is beyond the scope of this paper.

Numerical Studies And Analysis of Results

When the reinforcement is oriented along the principal stresses, frictionless cracks normal to the reinforcement represent a feasible solution and are, in fact, the governing case. Thus, the difference between the frictional analysis and the classical frictionless analysis may be expected to increase as the angle, \(\alpha \), between the reinforcement and the principal stresses increases, and this is indeed verified by numerical calculations. We select here an example where, as we shall see, the difference is significant: \(\alpha = 30^\circ \); applied principal stresses \(\sigma_1 = 1.0; \sigma_2 = 0.5; \sigma_3 = 0.0; \sigma_{21} = 90^\circ \) (orthogonal reinforcing net); \(p = p_s = 0.01 \) (reinforcement ratio); \(E_s = 1.0; v = 0.18; E_c = 7.0 \), and the maximum crack spacing \(s = 1 \). We treat \(E_s, E_c, \sigma_1, \sigma_2, \) and \(s \) as dimensionless. We will explore the solutions for various \(\hat{s} \) and \(\alpha_s \). For lack of experimental evidence and for simplicity we assume that the coefficients characterizing the cracks are constant, and we set \(k^* = k, \alpha_s = \alpha_s, z' = z, c = c = c'. \) For the solutions shown here, the crack angle has been incremented in the program (4) usually by \(\Delta \alpha = 0.1^\circ \), but for Fig. 6 by \(1^\circ \).

The results for the maximum stresses in reinforcement and concrete and for the maximum crack width, \(b_{ma} \), which are maximum with respect to crack angles and various cases and sign combinations, are plotted in Fig. 5. They are given in terms of their ratios to the maximum values of the maximum reinforcement stress, \(\sigma_{ma}^* \), the maximum principal compression, \(\sigma_{pa}^* \), in concrete, and the maximum crack width, \(b_{ma} \), that are obtained for frictionless cracks in principal strain direction (7). It is noteworthy that in many cases this ratio is much larger than 1.0 and that the smallest values are obtained when \(\alpha_s = 1 \).

What are the proper values for \(k \) and \(\alpha_s \)? No precise experimental information exists but a crude estimate can be made. It seems appropriate to select values that correspond to the load at which the cracks begin to slip and open significantly. According to test \(k = 1.7 \) when the crack surfaces exhibit large slip (17). Examination of the calculated response curves based on a theory that was calibrated by several test series (2) indicates also that \(k = 1.7 \) and, moreover, \(\alpha_s = 1.0 \). The value \(\alpha_s = 0.0 \) which would correspond to a symmetric stiffness matrix and to a normality rule of plasticity is definitely inapplicable.

For these typical values, the maximum stress in reinforcement is about 18% larger than the value for the classical frictionless approach (see Fig. 5(a) and (b)); the maximum principal stress in concrete (for any crack angle) is over 30% larger [Fig. 5(c) and (d)] and the maximum crack width is about 8% larger (Fig. 5(e) and (f)). These corrections are certainly significant. Similarly to the limit analysis with crack friction (6), we thus find that a neglect of friction on the cracks is not on the safe side.

Although, for some crack angles \(\theta \), the case of two crack systems prevails over the case of a single crack system, the maximum values for all crack angles are always given by a single crack system. This is shown by Fig. 6, in which \(\phi = 0 \) corresponds to a single crack system.

As shown in Fig. 4, the range of angles \(\theta \) (between the first cracks and the major reinforcement) for which frictional slipping cracks exist strongly depends on \(\alpha_s \) although it is almost independent of \(k \). The range becomes narrower as \(\alpha_s \) decreases, and for \(\alpha_s \leq 0.01 \) no admissible solution with slipping frictional cracks is found (if \(\Delta \alpha = 0.1^\circ \) is used) and all solutions consist of contactless cracks.

Note in Fig. 4 that the maxima of steel stress, of principal compression
magnitude in concrete, and of crack width for a typical α_d (and $\varepsilon = 0$) occur at a crack angle which considerably differs from the principal strain direction (assumed in the classical approach) and typically corresponds to a transition from the case of contactless slipping crack ($\theta_e \neq 0$) to the case of frictional slipping cracks, i.e., $\sigma_c / \sigma_s = \alpha_d$ (for $\varepsilon = 0$) and $\sigma_{cr} = \sigma_{cr}' = 0$. Thus, the friction coefficient k has (for typical α_d) no effect on these maxima. This is certainly an interesting result, for in limit frictional analysis (6) the value of k has a major effect while α_d does not enter the solution.

The crack angles that lead to maximum steel stress and maximum concrete stress or crack width are normally rather different. For very high α_d, the maxima can occur for slipping cracks with $\sigma_{cr}' \neq 0$. The classical case of cracks in principal strain direction gives nearly minimum (rather than maximum) crack width θ_e.

The ranges of crack angle for various types of solution and the calculated maximum stresses and crack widths for these ranges are summarized in Table 1. A single preexisting crack for the blank domain in Fig. 4 does not permit any admissible solution; neither do two slipping cracks in contact. This simply means that a crack of a different angle will be produced by the load, and the preexisting crack will behave as frictional without slip.

Thus, we see that consideration of dilatancy is essential if we want to account...
1. The concepts of secant friction coefficient and dilatancy ratio for the interlocked cracks in reinforced concrete lead to a simple stiffness matrix for cracked reinforced concrete (Eq. 9 or 28) which is suitable for finite element analysis.

2. The relations for friction and dilatancy make the crack stiffness matrix singular; but this causes no problem because the stiffness of the reinforcement makes the total stiffness matrix of cracked reinforced concrete nonsingular.

3. The resulting stiffness matrix is in general non-symmetric unless the dilatancy ratio equals the friction coefficient, which is far from true for cracks in concrete at the onset of large crack slip.

4. As in the currently used stiffness matrix (18), the shear transfer due to aggregate interlock on the cracks is accounted for. The present stiffness matrix is, however, more realistic as it also accounts for friction and dilatancy on the cracks. This leads to cross terms relating shear stress (or strain) to normal strain (or stress) that are absent in the currently used matrix, and causes the principal stress and strain to be non-coaxial.

5. In the present service stress design, and similarly for the frictional limit design, the principal strain direction (frictionless crack without contact) is not the most unfavorable crack direction, unless the reinforcement is laid in the principal direction.

6. For the present "service stress design with crack slip," the maximum steel and concrete stresses and crack width are never smaller than for the classical service stress design without crack slip. If the angle of reinforcement with the principal stress direction is between 20° and 45°, these maxima are significantly larger (while they are nearly the same if the angle is less than 10°). This is a safer design approach, which is particularly important for nuclear structures.

7. For orthogonal acts, the maxima of steel stress, of principal compression magnitude in concrete, and of crack width (for \(\theta = 0 \)) are obtained for the case of a single crack system, normally with a large slip. For typical dilatancy ratios (and \(\theta = 0 \)) they occur at a crack angle at which the case of contactless slipping cracks \((\delta, \theta = 0)\) transits into the case of frictional slipping cracks. Thus, the maxima are characterized by vanishing stresses \((\sigma_c^c = \sigma_c^w = 0)\) with the crack-width-to-slip ratio equal to the dilatancy ratio \((\delta_{\max} \| \delta_{\max} = \alpha_c \) for \(\theta = 0 \)). Therefore, the friction coefficient, \(\alpha_c \), normally has no effect on these maxima, while the dilatancy ratio, \(\alpha_c \), has a major effect; this is contrary to the situation in frictional limit analysis. For very high dilatancy ratios, however, the maxima can occur for slipping cracks with nonzero frictional stress. Moreover, the maximum stress in the second bar system occurs, even for typical \(\alpha_c \), for the case of frictional slipping cracks. Thus, the case of frictional slip cannot be omitted. The crack angles that lead to maximum steel stress and maximum concrete stress or crack width are normally rather different.

8. For crack angles other than those leading to maximum stresses and crack width, the results are strongly influenced not only by the dilatancy ratio, \(\alpha_c \), but also by the friction coefficient, \(\kappa \). The classical frictionless solution without crack slip is obtained as the limiting case if both the friction coefficient and the dilatancy ratio tend to infinity.

9. The case of two intersecting crack systems generally gives higher values of stresses and displacements than the classical solution, i.e., a single system of contactless (frictionless) cracks in principal stress direction \((\theta = 0)\). This classical case also gives nearly the smallest (not largest) value of crack width, \(\delta_{\max} \). The present method gives significantly higher stresses than the classical frictionless design without crack slip only when the direction of reinforcement substantially deviates from the principal stress direction. These are cases for which unduly large deformations and crack width have been observed in practice.

10. The present method also allows the design for a specified crack width, provided that the crack spacing is known.

11. When there are two crossing crack systems, the overlap of crack corners and their shear-off are neglected in the calculations. This effect could be accounted for by an increased value of the dilatancy ratio, compared to the case of a single crack system, but no tests to determine it are known.

12. Bond slip of steel bars may be approximately accounted for by an increased apparent stiffness of the steel bars (tension stiffening effect).

13. Dowel action of steel bars crossing the crack has been neglected in calculations although it is no doubt significant. A method to account for it is proposed, but the material coefficients are as yet unknown.

14. Although the effects of friction and dilatancy are based on test results (2), no test data seem to exist to verify our deductions for reinforcing nets. Such test data are needed.

Acknowledgment

Support of the National Science Foundation under Grant ENG75-14848-A01 to Northwestern University is gratefully acknowledged. The first author also obtained partial support under Guggenheim Fellowship awarded to him for 1976-79. Ted B. Byelyachko of Northwestern University is thanked for some useful suggestions.

Appendix.—References

SLIP-DILATANCY MODEL FOR CRACKED REINFORCED CONCRETE

By Zdeněk P. Bažant, F. ASCE and Tatsuya Tsubaki

ABSTRACT: A model is presented to calculate stresses, deformations, and crack width for a concrete slab or a shear wall that carries in-plane forces and is reinforced by a dense regular array of bars and containing one or two systems of straight, parallel, equidistant, and densely distributed cracks. Friction on the cracks (aggregate interlock) and dilatancy due to their slip is approximately taken into account, and slipping cracks without contact are also allowed. The resulting stiffness matrix for concrete with frictional cracks is non-symmetric and involves cross-terms relating the shear stress (or strain) and the normal strain (or stress), which implies that the principal strains and stresses in concrete are not co-axial. The proposed "service stress design with crack slip" never predicts smaller values of stresses in steel and concrete and of crack width than the classical frictionless design without cracks. Significantly larger values are obtained when the angle between steel bars and principal stress is large. A single system of slipping cracks in contact is found to be always the critical case for maximum stresses and crack width.

Note.—Discussion open until February 1, 1981. To extend the closing date one month, a written request must be filed with the Manager of Technical and Professional Publications, ASCE. This paper is part of the copyrighted Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Vol. 106, No. ST9, September, 1980. Manuscript was submitted for review for possible publication on August 30, 1979.

1Dprof. of Civ. Engrg., Northwestern Univ., Evanston, Ill.
2Postdoctoral Research Assoc., Northwestern Univ., Evanston, Ill.