
SIZE EFFECT IN BLUNT FRACTURE: 
CONCRETE, ROCK, METAL 

By Zden~k P. Bazant,' F. ASCE 

ABSTRACT: The fracture front in concrete, as well as rock, is blunted by a zone 
of microcracking, and in ductile metals by a zone of yielding. This blunting 
causes deviations from the structural size effect known from linear elastic frac
ture mechanics (LEFM). The size effect is studied first for concrete or rock struc
tures, using dimensional analysis and illustrative examples. Fracture is consid
ered to be caused by propagation of a crack band that has a fixed width at its 
front relative to the aggregate size. The analysis rests on the hypothesis that 
the energy release caused by fracture depends on both the length and the area 
of the crack band. The size effect is shown to consist in a smooth transition 
from the strength criterion for small sizes to LEFM for large sizes, and the nom
inal stress (IN at failure is found to decline as (1 + 1../1.. 0)-112 in which 1..0 = 
constant and A = relative structure size. This function is verified by Walsh's 
test data. If reinforcement is present at the fracture front and behaves elasti
cally, the decline of (J N is of the same type but is shifted to larger sizes; how
ever, if the reinforcement yields, the decline of (J N stops. It is also noted that 
some known size effects which have been attributed to random strength vari
ations within the structure should be explained by fracture mechanics, which 
gives a very different extrapolation to large structures. Finally, exploiting the 
fact that in metals the size of the yielding zone at the fracture front is approx
imately constant, it is shown by dimensional analYSis that elastic-plastic fracture 
causes a similar size effect. 

INTRODUCTION 

In concrete structures as well as rock masses the fracture front is blunted 
by a zone of microcracking, whereas in ductile metals it is blunted by 
yielding. These front-blunting phenomena cause deviations from the 
structural size effect known from linear elastic fracture mechanics. Study 
of these deviations is the objective of this paper. 

Understanding of the structural size effect is important for correct 
interpretation of test data. Most laboratory tests are carried out on a 
reduced scale, from which generalizations must be made for much larger 
real structures. With regard to the size effect, basically two types of the
ories may be distinguished: 

1. Strength theory (or the concept of failure surfaces), in which the 
failure criterion is expressed in terms of stresses (or strains), calculated 
according to theories of elasticity, plasticity or viscoplasticity. 

2. Linear elastic fracture mechanics, in which the failure criterion is 
expressed in terms of the enetgy consumed per unit crack length incre
ment. 

Although fracture mechanics might seem to be appropriate for con
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crete when the failure is due to cracking, the linear (classical) form of 
fracture mechanics was clearly shown to be inapplicable to concrete (12,18-
19,21-23,28-29,31,35-38), except possibly for extremely large structures. 
For this reason, and perhaps also for reasons of simplicity, the present 
practice and building codes for concrete structures (13,16,30,32,39) uni
versally adhere to strength-based criteria. However, these criteria do not 
agree with fracture test data any better than classical fra~tur: m:c~anics. 
Moreover, they are inherently inconsistent when apphed In hOlte ele
ment analysis, since they lead to spurious dependence of the results on 
the element size (4-7,11,17), whether or not a sudden stress drop or a 
gradual strain softening is considered. In fact, failure criteria in terms of 
stresses or strains are theoretically sound only in the sense of plasticity, 
which prohibits strain-softening, i.e. a decline of stress at increasing strain. 

Recently, however, it has been established (4,11) that concrete does 
obey fracture mechanics provided that one uses a proper nonlinear form 
of fracture mechanics in which fracture front blunting by the large size 
of the microcracked zone is taken into account. The purpose of this pa
per is to examine the consequences of this finding for the structural size 
effect in various brittle failures of concrete structures, such as the di
agonal shear failure of beams, slabs and panels, torsional f~ilure.of beams, 
punching shear failure of slabs or shells, cryptodome failure In the top 
slab of prestressed reactor vessels, some failures caused by bearing 
stresses, etc. 

The size effect for rock fracture is similar to that for concrete, because 
of similarities of the fracture mechanism. In elastic-plastic metals, the 
mechanism of crack front blunting is different; nevertheless, it will be 
seen that the size effect is similar. 

SIZE EFFECTS IN STRENGTH AND FRACTURE CRITERIA 

To separate the size effect from other influences, one must consider 
structures of different sizes but geometrically similar shapes (e.g., beams 
of the same span-to-depth ratio and the same crack length-to-depth ra
tio). According to standard criteria, failure is indicated by the condition 
(IN = r: where r: = direct tensile strength of concrete, and aN = nominal 
stress at failure characterizing the stress state at a certain critical point 
of the structure. For reasons of dimenSionality, aN = C N P Ibd where coef
ficient CN is independent of size and characterizes the structure shape 
and type of loading, P = load or loading parameter, d = characteristic 
dimension and b = thickness. Thus, if one considers the plot of log aN 

versus log A where A = dlda = nondimensional size parameter and da 
= maximum size of aggregate, the locus of all failure states according 
to any kind of strength criterion is a horizontal line (Fig. 1), regardless 
of whether one uses elastic, plastic or viscoplastic analysis. The only 
difference between these types of analysis is the level at which the hor
izontal line is to be drawn. Fig. 1 shows examples for some elementary 
situations, such as beam bending, shear and torsion. 

For linear elastic fracture mechanics, the plot of failure states is com
pletely different. It is well known that (J N varies inversely as Vd for all 
linear fracture mechanics solutions (14,15), and so the plot of log (J N 

versus log A is a straight line of slope -1/2; see Fig. 1. 
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FIG. 1.-Slze Effect According to Strength Criteria and Linear or Nonlinear Frac
ture Mechanics 

. '!"he true size eff~ct in concrete structures represents a gradual tran
sl~lon from the honzontalline to the inclined straight line (Fig. 1), as we 
wlil see later. 

BLUNT CRACK BAND THEORY FOR CONCRETE OR ROCK 

In concrete, as well as mortars, rocks and certain ceramics, fracture is 
p~eceded by a gradual dispersed microcracking that occurs within a rel
atively large fracture process zone ahead of the tip of a continuous crack. 
As recently demonstrated (2-7,11,17), fracture of this type may be mod
el~d as the propagation of a band of uniformly and continuously dis
tnbuted (smeared) cracks with a fixed width w, at the fracture front. At 
a certain distance behind the crack band front, the distributed cracks 
coalesce into one major crack; this need not be modeled, however, since 
only the situation at the fracture front matters for fracture propagation 
(Fig. 2). 

It appears that the width w, of the crack band front must be treated 
as a material property, or else consistent numerical results independent 
of the method of analysis could not be obtained. Comparisons with nu
merous fracture test data confirm the constancy of We and show that, if 
the results o~ stable direct tensile tests should be correctly represented 
a~ th~ same time, w, = nd a where d. = maximum aggregate size (or grain 
size m rock), and n = empirical constant, roughly 11 = 3 for concrete 
(4,11), and n = 5 for rock (2,9). The progressive microcracking in the 
fracture process zone may be described by a triaxial stress-strain relation 
(4, 11) th~t ~xhibits strain-softeiring with a gradual reduction of maxi
mu~ pnn~lpal stress (]" z to O. The uniaxial special form of this stress
stram relatIOn may be simply considered as a bilinear stress-strain dia-
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a, 

FIG. 2.-Crack Band Fracture and Idealized Tensile Stress-Strain Diagram for 
Fracture Process Zone 

gram, shown in Fig. 2, characterized by elastic modulus E" strength 
(peak stress) r; , and strain-softening modulus E" which is negative . 
The energy consumed per unit advance of the crack band, called the 
fracture energy, may then be simply expressed (4,11) as 

G, = w, (1 - ~:) {~, ........................................... (1) 

By analyzing numerous test data, it was shown that G, may be predicted 
(with a coefficient of variation about 16%) from the empirical formula G, 
= O.0214(f; + 127) r;2 dalE, (with E" r; in pounds per square inch) (11). 
Substituting this formula into Eq. 1, E, can be solved as a function of 
r; , d a' E, and w,. Note that G f is not the same as the apparent fracture 
energy determined on the basis of linear elastic fracture mechanics. 
Th~ experime.ntal support for the crack band theory is broad. Not only 

does. It agree With the fracture test data of various types and with direct 
tenSile test data (4,11), but also the strain-softening stress-strain relation 
used i~ this theory. agrees with test data on short-time and long-time 
deflections of crackmg beams (10) and gives the correct size effect for 
ductility (3). 

SOME ILLUSTRATIVE EXAMPLES 

To illustrate the size effect resulting from the crack band theory, let 
us begin with some simple examples. Consider first a plain concrete cen
ter-cracked rectangular panel [Fig. 3(a)] of thickness b, width 2d, and a 
sufficiently large length 2L. The panel is loaded by vertical normal stresses 
a at top and bottom. The crack band is horizontal, symmetrically lo
cated, and has length 2a and width w, = Ild •. 

We try to determine the value of (]" at which the crack band propa
gates. Before cracking, the strain energy denSity in the panel is uniform 
and equals (]"2/2Ee. The formation of the crack band may be imagined, 
as an approximation, to relieve strain energy and stress from the "stress 
relieK' area 1]54361 in Fig. 3(a), in which the "stress diffusion" lines (27) 
25, 45, 16, 36 have a certain fixed slope k I (close to 1). Thus, the total 
energy release from the panel is 

W = WI + W2 •.•••.•.••.•.•.•......•••. '" ..•.•.••••••••....••• (2) 

a 2 

in which W 2 c. 2lld.ab - ................... (3) 
2E, 
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FIG. 3.-Examples of Crack Band Propagation 

We imagine the ~op ?nd bottom boundaries to be fixed during cracking, 
?nd so the contnbUtion. of the work of load U applied at the boundaries 
IS zero. So, the Rotential energy release rate of the panel is a w faa = 
2(2k la + nd.} ba 2/2E,. Due to the requirement of energy balance (first 
law of thermodynamics), aw/aa must be equal to the energy consumed 
per unit crack band extension, i.e. 

aw 
;;;; = G,b ..................................................... (4) 

After substituting Eq. 1 for Gf , we get an equation from which we may 
obtain the following solution: 

UN = Bft ................................................... '" (5) 

in which aN = U and 

f* - f; 
, - 11 + ~ 

'V ~o 

................................................. (6) 

and B = ~1 + :~/ Ao = 2:
1 
~ ................... , ........... (7) 

in which A = did. = relative structure size (~ ~ II = 3); and Band Ao = 
~onstants when geometrically similar beams are considered. They are 
mdependent of the size. it may be called the size reduced-strength. It is 
a characteristic of the entire structure, rather than of the material. Al
tho,:,gh the foregoing expre~sions for Band Ao are only crude approxi
mations, the form of Eq. 6 IS exact, as we will show later. 

As another. example, consider a crack band of length a and width We 

= nd.(~ = 3) In a rect~ngular unreinforced beam of thickness b and depth 
d, subjected to bendmg moment M. First, consider that a « d (short 
cracks). In an approximate sense, the formation of the crack band may 
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be imagined to relieve the strain energy from the "stress relief" area 
1264351 in Fig. 3(b), in which the "stress diffusion" lines 15 and 26 have 
a certain empirical slope k I close to 1. Before cracking, the strain energy 
density at the tensile face of beam is uU2Ee where UI = 6M/bd 2, and 
the same value approximately applies over the whole region 1264351 if 
a« d. Thus, the total energy release is W = WI + W 2 , WI = k l a

2uU 
2Eu W2 = nd.au~/2E" and the energy release rate of the beam, cal
culated at constant M, is aw/aa = b(2kla + Ild.)(6M/bd2t/2Ee. Sub
stituting this into Eq. 4, along with G, = Ild.(1 - E/E,) f; /2E, and M 
= aN(d - a)2/cI (where CI = const. =.6 for elastic stress analysis, and 
C I = 4 for plastic stress analysis), we may express aN from the resulting 
equation; this yields aN = Bfi where fi is given again by Eq. 6 in 
which 

B = ~ (_d_)2 /1 + ~; ~u = ~ ~ .......................... (8) 
6 d-a 'V -E, 2k l a 

Again ~o and B are constants when geometrically similar beams are con
sidered. 

Finally, consider the same beam but a - d « d (short ligament) [Fig. 
3(c»). Here we may write aw/aa = (MO/2) + Wo where Wo = strain 
energy of the beam if no crack existed, which is independent of a, and 
o = additional rotation caused by the crack band. Since the force re
sultants of the bending stresses over the ligament are zero, these stresses 
should affect only a region of size d - a, according to St. Venant's prin
ciple. Thus, we may imagine that the localized bending moment M 
transmitted through the ligament d =-a affects only the region 1265781 
in Fig. 3(c), with segments 18 and 26 equal to ko(d - a} where ko = 

empirical constant, close to 1. Approximately, 0 = [2ku(d - a) + nd.l 
M/EJI where II = b(d - a)3/12 = inertia moment of the ligament sec
tion. Further, we may substitute G, according to Eq. 4, and evaluate the 
derivative a (M 0/2) / a a at constant M. Then we substitute this, as well 
as the relation M = uN(d - a)2/cI' into the condition bG, = a(MO/2}/ 
aa (Eq. 4), and finally we express UN from this condition; this yields 
again UN = Bit (Eq. 5) in which it is again given by Eq. 6, although the 
constants are expressed differently: 

B = ~ ~ 1 + _ ~ , ; ~ 0 = d ~ a 4'~ 0 .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... (9) 

Eq. 6 can be similarly derived for various other situations, e.g., edge
cracked panels, crack band in infinite medium, double-cantilever spec
imen, etc. The solutions are approximate in the evaluation of energy 
release; however, the approximate nature of the solution causes uncer
tainty only in the constants kl and ko, but not in the form of Eq. 6. That 
form is exact. 

GENERAL DIMENSIONAL ANALYSIS 

In the foregoing examples, Band C are independent of size, and the 
size effect is described by the same function (Eq. 6). This provokes sus-
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picion that Eg. 6 might be of general applicilbility. If so, it must be pos
sible to verify it by dimensional analysis. 

The geometry of a given structure may be characterized by some set 
of dimensions d, 1 I , 12 , ••• In' one of which represents the crack band 
length, e.g., I I = a. We consider all geometrically similar structures (with 
similar cracks) such that the ratios ~i = I,/d (i = 1, 2, ... n) are the same. 
The size of the structure is characterized by a single characteristic di
mension, d. As the preceding examples illustrate, the total release Wof 
strain energy of the structure consists, according to the crack band the
ory, of two parts (W = WI + W 2); one part (W I) is the energy released 
into the fracture front by the remaining (uncracked) part of the structure, 
and the second part (W 2) represents the energy released from the ma
terial of the crack band. W I depends on the uncracked area (such as 136 
and 245 in Fip' 3(a» from which energy is released. This area is pro
portional to a , and is independent of IIda . Therefore, WI is a function of 
a, and is independent of d •. On the other hand, W 2 is proportional to 
the crack band area (lIda)a. So, our fracture model rests on the following 
fundamental hypothesis: 

Hypothesis I.-The total potential energy release W caused by fracture 
is a function of both: 

1. The length, a, of the fracture (crack band). 
2. The area of the cracked zone, IIdaa. 

It should be noted at this point that, in contrast to the preceding ex
amples, we do not need to assume W to be a sum of parts WI and W 2 

(Eq. 2) corresponding to parts 1 and 2 of Hypothesis I. W can be a gen
eral function of a and IIdaa. 

The dependence of W on length a characterizes the energy that is re
leased into the fracture front from the surrounding uncracked structure 
[e.g., areas 136 and 245 in Fig. 3(a)], while the dependence of W on IIdaa 
characterizes the energy released from the cracking zone [e.g., zone 1243 
in Fig. 3(a)]. As will be seen later, if W depended only on a one would 
obtain linear fracture mechanics, and if it depended only on IIdaa one 
would obtain the strength criterion. 

Parameters a and nd.a, however, are not nondimensional. They are 
allowed to appear only in a nondimensional form, which consists in the 
following nondimensional parameters: 

a IIdaa 
0:1 = d; 0:2 = 7············································ (10) 

representing the nondimensional crack band length and the nondimen
sional crack band area. Furthermore, W must be proportional to the vol
ume d2 b of the structure and to the characteristic energy density (J'~/2Ec 
where (J' N = P /bd, P = given applied load or loading parameter, and b 
= thickness. In consequence of all these facts, the total strain energy 
release caused by cracking has the general form 

W = 2~c (~r bd
2 

[(0:1 ,0:2 ,~,)""""""""""""""""" (11) 
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in which { = a certain continuous and continuously differentiable pos
itive function, independent of size d. The precise definition of param
eters ~, and the precise dependence of f on ~, depends on the geometrical 
share of the structure. 

The condition for the crack band to propagate is aw/aa = Gfb (Eg. 
4). Thus, differentiating Eg. 11 at constant ~r (similar structures), and 
noting that 

a{ a[ aO: I a[ iJo: z 
- = -- + -- ........................................ (12) 
iJa aO: I iJa iJ0: 2 iJa 

we get ~ + h;~a) 2~:e = Gfb ................................ (13) 

in which we introduced the notations 

af a[ 
{I=-; h=- ............................................ (14) 

iJO: I a0: 2 

Now, setting P = (JNbd, d = Ada, and substituting Eg. 1 for Gf (with We 

= "da), we obtain 

Bf; 
(J N = -~1-1=+= -A= -:=d=a ............................................. . (15) 

.. 1 E c IIIz ~
-

mwhlchB="h l-
E
/;A o =7: ........................... (16) 

Thus, (IN = B ft (Eg. 5) in which again ft = [; (l + A/Ao)-I/2 (Eq. 6), with 
A = d/da. . . . .. 

Eq. 6 or 15, which is the basic result of thiS st~dy, IS ~hus ve~fIed In 

a general sense as a consequence of HypotheSIS I. Thl~ equatIon ex
presses the selfsimilarity properties (1) of fracture of bnttle heteroge
neous materials. 

Note that Eg. 6 or 15 is independent of the precise form of function 
{(ai' a2 '~i)' However, calculation of constants Band Ao requires a~ ac
curate solution of this function. Often this is difficult to do. CalculatIons 
of Band Ao in the previous examples are too crude, and it is preferable 
to determine Band Ao by statistical regression of test data. 

If the total energy release depended only on the length a of fracture 
(first part of Hypothesis I), we would have [2 = 0, and we would get (J N 

= C/va in which C = (2G,EclM lf2 = constant. This is the well-known 
size effect of linear fracture mechanics (Fig. 1). 

If the total energy release consumed by fracture depended only on the 
area of the cracked zone (second part of Hypothesis I), we would have 
{I = 0, and we would get (J'N = constant (Fig. 1). This is the type of size 
effect typical of plasticity, as well as all failure theories based on strength, 
critical strain, or failure surfaces in the stress or strain space. The present 
formulations of the so-called continuous damage mechanics also give the 
same type of size effect, i.e., (IN = constant. . 

For structures of a small size relative to the size of aggregate, I.e., for 
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small A, the value of A/Ao in Eg. 6 may be neglected in comparison to 
1, and we then have It == r; and cr N == At; . We see that the strength 
criterion (Fig. 1) is correct for small size structures. For structures of a 
very large size compared to the size of aggregate, 1 may be neglected 
in comparison to A/Ao in Eg. 6, and then 

It = I:~ (large A) ........................................ (17) 

We see that, for very large concrete structures, such as dams (or large 
rock masses), Eg. 6 asymptotically approaches the size effect of linear 
elastic fracture mechanics (Fig. 1). Obviously, Eg. 6 represents a gradual 
transition from the strength criterion for small structures to linear elastic 
fracture mechanics for large structures. For A » Ao the fracture energy 
dominates. 

COMPARISON WITH TEST DATA 

For the purpose of statistical regression analysis of test data, Eg. 6 may 
be transformed to a linear plot 

Y == a + b A ................................................... (18) 

in which Y == e~r ii == ;2' b == 82IAO ....................... (19) 

Slope band Y-intercept a may be e,!sily determined by statistical regres
sion, and then 8 == I/vIa, Ao == a/b. 

The only extensive fracture test data in which geometrically similar 
specimens of different sizes were used appear to be those of Walsh (38). 
He tested three-point bent specimens of various depths, d, and the same 
ratio aid (for information on these tests, see Ref. 11 or 38). Walsh's test 

10. 10. 10. Walsh, 1912 
~ Sen.s 2 Senes 3 

DB 0.8 DB 
A-S 0.64 '-2376 A-S 345 

0.6 
C-D542 

0.6 
C-D 113 

0.6 C - 0. 800 

0.4 0. 
0 0.4 0.4 

0 

0.2 0.2 

.. DO. DO. 

b" 
10. 20. 50. 0. 10. 20. 50. 0. 10. 20. 

';-10 10 10. 
S"i .. 4 S." •• 5 Strltlt 6 

;. 08 0 D.B 0..8 A -, 781 A-2Da3 
CIl-

A· 3899 
C-DD1O C -0077 C·03.58 0.6 0.8 0.6 

0 
0.4 0 0..4 0 0.4 

0.2 G-Af(I·~t,-11l! I 0.2 I y. ~-:-~l 0.2 
H' • A-' 

DO. DO. 0..0. 
0. 10. 20. 3D 0. 10. 20. 3D 0. 10. 20. 

X' did. 

FIG. 4.-Regresslon AnalysIs of Fracture Test Data of Walsh (1972) 
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results for six different concretes are plotted in Fig. 4 as Y versus A. If 
the test results followed the theory perfectly, these plots would have to 
be straight lines. Thus, the deviations of the data points from the regres
sion lines shown in Fig. 4 represent the errors. From Fig. 4 we see that 
inclined straight lines agree with the basic trend of test data reasonably 
well. For the strength criterion, the regression lines would have to be 
horizontal, and for linear elastic fracture mechanics, the regression lines 
would have to pass through the origin (a == 0). Obviously, none of this 
would agree with the tests (Fig. 4). 

Eg. 6 may be also compared with laboratory test data for reduced scale 
structures. The largest set of test data exists in the literature with regard 
to the diagonal shear failure of reinforced beams without web reinforce
ment. The results of 296 beam tests from the literature, which have been 
statistically analyzed by J. K. Kim at Northwestern University (8), in
dicate again a good agreement with Eg. 6, much better than that for the 
strength criterion or for linear elastic fracture mechanics. 

INFLUENCE OF REINFORCEMENT AND BOND SUP 

Reinforcement located in or near the fracture front may have influ
ence, too. To examine it, consider the same center-cracked rectangular 
panel as before [Fig. 3(d)], reinforced by vertical steel bars which are 
spaced uniformly and so closely that a smeared modeling is possible. 
The panel is loaded on top and bottom by uniform normal stress cr. 

Before cracking, the stress in concrete is <Ie == Kc == Ej[Ec(l - p) + 
E,p]; P == steel ratio; and Ee , Es == Young's elastic moduli of concrete 
and steel. When cracks form, the steel bars slip against concrete over a 
certain length 2L, near the cracks, which may be estimated as (6,17) L, 
= (cr,Ab/ U;') (1 - p)/[(I - p) + pE,/Ec], in which p == steel ratio, U;' == 
ultimate bond force per unit length of bar, as determined by pull-out 
tests, A ~ == cross section area of one steel bar, and cr, = steel stress at 
the cossing of crack band. 

The presence of bond stresses along length 2Ls complicates analysis. 
However, for the purpose of fracture analysis, the bond stresses are not 
very important, provided that the stiffness of the connection between 
the opposite sides of the crack band is modeled correctly. Thus, the fric
tional slip over length 2Ls may be replaced by free (frictionless) slip over 
a modified, free bond slip length 2L: (Fig. 3(d». As an approximation, 
one may use (6,17) 

L, Ar 1 - P 
L * == 2" == 2 U;' 1 _ P + pE, <I, ................................... (20) 

Ec 

Formation of fracture relieves the stress in concrete from the "stress 
relief" region 1254361 in Fig. 3(d), in which the "stress-diffusion" lines 
16, 25, 36, and 45 have a certain constant slope, kJ . The stress is, how
ever, relieved to zero only if this region is entirely within the free bond 
slip length 2L~ [Fig. 3(d»). If the crack band length, a, is so large that 
this region reaches beyond the free bond slip length, then the tensions 
in the steel bars introduce tensile stress into concrete within the trian
gular regions 6ab and 5ed in Fig. 3(d). The value of the stress in steel 
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within the slip region, (J'sL, is les<; than (but probably close to) the stress 
that the steel carried before cracking, i.e., (T,{ < K,(J' where K, = Lj[E,(l 
- p) + Esp], Thus, the stress resultant per unit area, applied on these 
triangular regions, is less than PK,(J', which produces in concrete within 
the triangular regions a stress, (J':, such that a: < K,(pK,a). So we may 
write 

(J'e = C,PKsKe(J' •.•••.....••................•.................... (21) 

in which c, is a coefficient less, than 1 but probably close to 1. The strain 
• I 

energy release from the panel of thickness b may now be expressed as 

[ 

2 (K,(J')2 H. 2 (T;2] 
W = (k1a + and.) -- - - (k]a - 2Lt) - b ............... (22) 

2Ee kl 2E, 

in which H. = 1 if k]a > 2Lt; and H" = a if k]a ~ 2Lt. 
In the energy balance, the energy consumed by bond slip should be 

also included. The maximum slip displacement of bars relative to con
crete occurs at the crack band boundary and may be roughly estimated 
as (f;/E,)L,. At the ends of length 2Ls, the slip is zero, and so the 
mean slip displacement is about f; L,/2E,. The bond stress is roughly 
Ui, per unit length of bar, as determined from pull-out tests. The number 
of steel bars per unit cross section of panel is p / A b where A b = cross 
section area of one bar, and Ls = 2Lt. So the work of bond stresses 
over length L, per unit advance of the crack band is, approximately, 

Wi, = .E...f; Lt U;'b ............................................. (23) 
Ab E, 

in which b = panel thickness. In Eqs. 22 and 23 we may further sub
stitute Lt = L,/2 = cLA b/2Ui, where CL = as - a;. 

The energy balance condition for crack band advance may now be 
written as bG, + WI, = aWjaa, where Gf = I1d.(l - Ec/E t )f;2/2E,. Dif
ferentiating Eq. 22 and substituting, we obtain (J', = B'ft where (J', = 
Ke(J' and 

II ~ /:+ :, . . . . . . . . . . . . . . . . . . . . .. (24) 

E, PCL 
A =1+-+--' 

1 -E, I1d.f;' 

2c L A b 2 2k] 2 a 
BI = 1 + H. - -; (CtpK s ); C] = - [1 - 2H.(c ,pK,)]- ......... (25) 

I1d. U b 11 d 

Consider now geometrically similar panels (same a/d), with the same 
steel ratio, p, and bars of the same cross section, A b , and the same steel 
stress at crack band crossing (CL = constant). Then, Eq. 24 indicates the 
same type of dependence on structure size parameter A as does Eq. 6, 
except that A] is larger than Ao. This causes a shift of the asymptotiC 
declining straight line in the plot of log ft versus log A to the right (see 
Fig. 5). Note also that if Ab is increased with the structure size, the size 
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effect becomes somewhat more pronounced since ft decreases as Ab 
increases. 

We thus see that the size effect in reinforced structures is less pro
nounced for smaller structures, but for large enough structures the size 
effect becomes just as significant as for unreinforced structures since the 
asymptotic slope remains -1/2. This is, however, true only if the re
inforcement remains elastic. 

For a long enough crack band, the opening in the center of its length 
becomes sufficiently large to cause the steel to yield, and that will com
pletely alter the size effect. If the steel bars are yielding, the strains are 
so large that all tensile resistance of concrete is lost. and the load is then 
resisted by reinforcement a10ne. In that case the value of (J' becomes size 
independent. Therefore, in reinforced structures, the plot of log rr ver
sus log A eventually stops decreasing and approaches a horizontal 
asymptote. However, this limiting plastic value might be too low for 
practical purposes. E.g., in diagonal shear of beams, it would mean de
signing the stirrups to carry the total shear force, rather than just a part 
of it. 

FURTHER CONSIDERATIONS 

In laboratory testing, model structures have normally been made in 
the smallest size possible with regard to the aggregate size (cross sec
tions of 5-15 aggregate diameters). Thus, the great majority of the lab
oratory tests of beams, plates, panels, slabs, shells, etc., thus far per
formed throughout the world are within the initial, nearly horizontal 
range of the diagram in Fig. 1. Obviously, such tests tell nothing about 
the size effect. 

Present methods of design embodied in the codes for concrete struc
tures are all based on strength criteria, elastic or plastic. This raises ques
tions with regard to extrapolation to larger sizes typical of actual struc
tures. The safety margin for a large structure might be smaller than 
thought, unless reinforcement yielding dominates. Therefore, it may be 
useful to reexamine the existing design procedures for those failures which 
are of brittle nature, e.g., the diagonal shear failure and torsion failure 
of beams, punching failure of slabs or shells, shear failure of deep beams 
and panels, cryptodome failure of a top slab in reactor vessels, etc. Re
cently it has become popular to analyze these failures according to the 
theory of plasticity, even though the failure may be caused by concrete 
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cracking. This trend of research is questionable; if it has led to successful 
comparisons with test data, this may be simply because a wide range 
of structure sizes have not been tested in the laboratory. 

The case of punching shear failure of slabs may serve as an illustra
tion. Plasticity analysis can be made to agree with punching test results 
only if the tensile strength is considered to be about r;/200, which is 
about 2? times less than the correct value of tensile strength. The proper 
conclusIOn should not be that plasticity of concrete works, but that it 
does not work, and that fracture mechanics is, therefore, necessary. The 
small value of the nominal stress at failure is probably due to the fact 
that the existing laboratory test data do not pertain to the initial hori
zontal portion of the diagram in Fig. 1. 

It should be kept in mind that many failures accompanied by cracking 
do not exhibit the fracture-type size effect. This is true of fracture-in
sensitive response, such as the bending failure of beams. One can decide 
whether this is the case by calculating the failure load twice; once for 
the actual ~ensile strength of concrete, and once for a zero tensile strength 
(a no-tensIOn material). If botll calculatiuns yield about the same results, 
as is the case for bending of reinforced beams, then the designer does 
not need to worry about the problem analyzed here. 

The results of fracture tests of concrete could no doubt be also suc
cessfully described by a theory in which one considers a line crack rather 
than a crack band and postulates at the crack tip a line segment char
acterized by a declining relation between the transverse normal stress 
and the crack opening displacement. This approach, initially introduced 
f~r metals by Knauss, Wnuk, Kfouri, Miller and Rice (24,25,26,40), and 
pIOneered for conc.rete by t,Iillerborg, Modeer and Petersson (20,33), ap
p~ars to be e~senhally equivalent to the crack band theory, with some 
mm~r exceptIOns (4,11). Because of this equivalence, Eq. 6 should be 
applicable also to a fracture theory of this type. 

QUESTION OF STATISTICAL SIZE EFFECT 

Because of the heterogeneity of concrete, its strength varies randomly 
throughout a concrete structure. This variation is independent of struc
ture size .. The stress gradient, on the other hand, normally varies in
versely With the structure size, and so the region of nearly maximum 
stress (say, over 0.95 f!) becomes larger in a larger structure. Therefore, 
~he chance of encountering low strength in the peak stress region is higher 
m a .Iarger ~tructure. The result is that the apparent strength necessarily 
dechnes With the structure size. 

The decline stops, however, when the region of nearly maximum stress 
becomes much larger than the regions of low strength. Therefore, all 
the?ries of the statist~cal size effect produce a plot of log (J'N versus A 
which tends to a honzontal asymptote (Fig. 6). This is completely dif
~erent fr~m the fracture-mechanics size effect (Fig. 6), except when yield
mg of remforcement dominates the response. 

The statistical size effect has often been invoked to explain the ap
parent dec.rease of stre~gth with structure size. On the basis of the pres
ent-analYSIS, however, It appears that many observed size effects in con
crete structures should be explained by fracture mechanics rather than 
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by st.atistical variation of strength. The dependence of the apparent 
bendmg strength on the depth of plain concrete beams is an example 
(d. Refs. 11, 33). 

With regard to experimental confirmation, the importance of a suffi
ciently wide range of test data should be noted. If the test data do not 
cover a very large range of A, the statistical size effect may seem to work 
(Fig. 6): even If fracture mechanics is the correct explanation. This may 
be obViously dangerous for extrapolations. 

ELASTIC-PLASTIC FRACTURE: ANALOGOUS DIMENSIONAL ANALYSIS 

What is the size effect for elastic-plastic fracture mechanics of metals? 
It ~hould be similar to Eq. 6, since elastic-plastic fracture can be de
~bed by. models si~ar to Hillerborg's (24-26,40), and Hillerborg's model 
IS approximately eqUivalent to the crack band theory. In elastic-plastic 
fract~re (27,34), the crack tip is blunted by yielding, and a yielding zone, 
the size of which is essentially a material property, develops ahead of 
the c~ack. tip. The far-a~ay elastic stress-and-strain field is modified by 
the y~el.dmg zone and IS approximately the same as in an elastic body 
con~ammg a l~n~~r, equivalent crack. Let the length of the longer, 
eq.U1valent (or fICh~lOus~ crack be a + Ap where a is the actual crack length 
(Fig. 7). We may Imagme that the longer crack relieves the stress from 
the triangular regions. 567 and 568, while the crack of length a in an 
elastic. body would relIeve the stress from the smaller regions 123 and 
124. (Fig. 7). The area of these smaller regions is proportional to a2

, and 
s~ .It depends only on a. Assuming that Ap « a, we find that the ad
?Itional stress rehef areas 132675 and 142685 are proportional to aA , 
I.e., depend on aA p • A similar picture could be drawn for various typ~s 
of fracture specimens. So it is reasonable to introduce the following 
hypothesis. 

Hypothesis n.-The total potential energy release W caused by frac
ture is a function of both: 

1. The length, a, of the actual crack. 

f f 

~------2d-----~ 

f f I 

FIG. 7.-Effect of Yielding Zone at Fracture Front In Metals 

531 



2. The quantity a6 p , where ap is a constant having the dimension of 
length. 

Let us .now carry out a general dimensional analYSis based on this 
hypotheSIS. Para~eters a a~d aa~ are not non dimensional. They must, 
however, appear m a nondlmenslOnal form, which is given by the fol-
lowing non dimensional parameters: . 

aa p 
Ct2 =-d Z •••••••••••••••••.••••••••••••••••••••••••••• (26) 

So, the total strain energy release caused by elastic-plastic fracture may 
be written as 

W = 21E (~r bdz/(CtI ,(1z '~I)""""""""""""""""'" (27) 

in 'Yhich E = young's elastic modulus. The crack propagates if a W jaa 
= G,b where G, may be regarded as a material constant (effective frac
tUre energy) representing the sum of the energy consumed (per unit 
crac~ exte~si~n) by t~e fr.acture process and of the energy consumed by 
plastic stram m the Yleldmg zone at the crack front. Differentiating Eq. 
2~ at constan.t ~I .(geometrically similar structures), and using Eq. 12 
With the not~tlOns In Eq. 14, we obtain [UI/d) + (/26p/d2») P2/2bE = G,b. 
~s a further I~portant step we should _note that, for the size of the yield
Ing zone, Irwin showed that ap = cpG, E/a 2 (27) where 0' = the yield 
stress of the material and cp = some constan{ (of the order ~f one). Sub
stituting this into the previ<J,us relation, and setting P = O'Nbd, we may 
solve O'N and obtain 

BO' Y 
O'N = ---="e-

II + ~ 
\.j do 

with d =£3. 6 -k G,E o I p - 0 2" ••••••••••••••••••••• (28) 
I 0' Y 

in which ko = cp /z/II and B = 2/(c p/z). For geometrically similar struc
tures, ko and B are constants (nondimensional). Thus, do is also a con
stant and may be called the characteristic size. 

Due to the equivalence of Eq. 28 and Eq. 6 (or 15), a similar discussion 
could be repeated. In particular, Eq. 28 represents a gradual transition 
from the yield criterion for small structures (d « do) to linear elastic 
fracture mechanics for large structures (d » do). 

CONCLUSIONS 

. 1. Fracture of concrete structures is imagined to arise from propaga
tion of a crack band whose width at the front is a fixed material property 
and equals about 3 times the maximum aggregate size. The size effect 
in brittle f~ilure of concrete s.tructures or rock masses may be analyzed 
on the baSIS of the hypotheSIS that the potential energy release caused 
by fracture depends on both: (a) The length of the crack band; and (b) 
the area of the crack band. 

2. Dimensional analysis based on the foregOing basic hypothesis shows 
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that, for structures that are geometrically similar (i.e., have the same 
shape), the nominal stress at failure varies with the structure size as (1 
+ h/hofl/Z where ho is a constant and h is the ratio of the size of the 
structure to the maximum size of the aggregate. 

3. For the smallest structure that can be made with a given aggregate, 
the strength criterion governs, and for structures that are sufficiently 
larger, the energy criterion governs. The plot of the nominal stress at 
failure versus the size of the structure represents a smooth transition 
from the strength criterion to linear elastic fracture mechanics. 

4. If reinforcement is present near the crack band front, and if it be
haves elastically, the size dependence of the nominal stress at failure is 
of the same type but the validity of the strength criterion is extended 
and the transition to energy criterion occurs at a larger size. However, 
if the reinforcement yields, the decline of the nominal stress at failure 
with the structure size ceases. 

5. Random variations of material strength give a different type of size 
effect. Various known size effects on strength, such as the dependence 
of the bending strength on the depth of a beam, should be explained 
principally by fracture mechanics rather than a statistical size effect. 

6. The main physical mechanism that causes the size effect described 
here is not the microcracking but, more generally, fracture-front blunt
ing of any type. Blunting due to plastic yielding, typical of metals, causes 
a similar type of size effect. 
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