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Abstract. The paper analyses the effect of structure size on the nominal strength of the structure that is implied by 
the cohesive (or fictitious) crack model proposed for concrete by Hillerborg et al. A new method to calculate the 
maximum load of geometrically similar structures of different sizes without calculating the entire load-deflection 
curves is presented. The problem is reduced to a matrix eigenvalue problem, in which the structure size for which 
the maximum load occurs at the given (relative) length of the cohesive crack is obtained as the smallest eigenvalue. 
Subsequently, the maximum load. nominal strength and load-point displacement are calculated from the matrix 
equilibrium equation. The nonlinearity of the softening stress-displacement law is handled by iteration. For a linear 
softening law. the eigenvalue problem is lineaf and independent of the matrix equilibrium equation, and the peak 
load can then be obtained without solving the equilibrium equation. The effect of the shape of the softening law is 
studied. and it is found that the size effect curve is not very sensitive to it. The generalized size effect law proposed 
earlier by Bahnt. which describes a transition between the horizontal and inclined asymptotes of strength theory 
and linear elastic fracture mechanics. is found to fit the numerical results very well. Finally some implications 
for the determination of fracture energy from the size effect tests are discussed. The results are of interest for 
quasi brittle materials such as concrete, rocks, sea ice and modem tough ceramics. 

1. Introduction 

The basic idea of the cohesive crack model, originated by Barenblatt [1] and Dugdale [2], 
is that the stress singularity at the crack tip is eliminated by the cohesive (crack bridging) 
stresses acting across the crack near the crack tip. Various versions exist. In application 
to metals as well as polymers, the cohesive stresses are assumed to be independent of the 
deformation near the crack tip. In this study, concerned mainly with quasibrittle materials 
such as concrete, rocks, tough ceramics and sea ice, we will use the version introduced by 
Barenblatt [1] and proposed for concrete by Hillerborg et al. [3] (also called the fictitious 
crack model), in which the cohesive (crack-bridging) stress is assumed to be a function of the 
crack opening displacement. Because these stresses cannot be considered proportional to the 
opening displacements, the cohesive crack model is a nonlinear fracture model. 

The stress-displacement relation (softening law) of the cohesive crack model approximates 
the effect of the distributed damage in the fracture process zone and concentrates all the 
damage into a single line. A counterpart of the cohesive crack model, which is in calculations 
almost equivalent, is the crack band model (Bazant and Oh [4]) in which the damage in the 
fracture process zone is assumed to be distributed over a band of certain specified width. Both 
models are simplifications of reality because the damage is neither concentrated into a line 
nor distributed over a band of finite width. But such phenomena can be captured only by more 
complicated models, such as the nonlocal continuum, which are left out of consideration in 
this paper. 

Fracture analysis based on the cohesive crack model is usually carried out by a finite 
element method. The computational algorithm has been established by [3] and refined by 
Petersson [5]. Petersson introduced an influence matrix of the nodal displacements along the 
crack line, condensing the unnecessary degrees offreedom for the other nodes of the structure, 
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and handled the nonlinearity by iterations. Petersson's method has become standard and has 
been followed by most subsequent researchers, although with some refinements; for example 
CafIJinteri [6] and Planas and Elices [7]. 

As it has been recently recognized, the most important practical consequence of fracture 
mechanics, which distinguishes it from the classical failure theories based on elasticity or 
plasticity, is the size effect. It is manifested by the dependence of the nominal stress at 
maximum load (nominal strength) on the structure size of geometrically similar structures. 
Although the size effect has received considerable attention in recent literature, size effect 
studies with the cohesive crack model have been scant. Some important results, however, have 
been obtained by Planas and Elices [8, 7]. Also, HiIlerborg presented calculations of broad­
range data on the size effect in a three point-bend specimen with a certain stress-displacement 
law for the cohesive crack, and Bazant [9] showed that these data can be closely approximated 
by a generalization (Bazant [10]) of the size effect law proposed earlier (Bazant and Oh [4] 
and Bazant [11 D. 

The method of calculation of the size effect law in the previous works has been indirect, 
and required calculation of the entire load-deflection curve. Such calculation is not only 
unnecessary, but also introduces errors since, due to discretization, none of the calculated 
points on the curve is likely to be exactly the maximum load point. 

The objective of the present paper is to conduct a systematic study of the size effect 
exhibited by the cohesive crack model and present a new method that allows the maximum 
loads of geometrically similar specimens of different sizes to be calculated directly, without the 
rest of the load-deflection curve. Such a direct calculation is made possible by the observation 
that the response of a monotonically loaded structure with a single mode-I crack that is 
never closed is path independent and a crack surface potential exists. In the new method, the 
structure size for a given relative crack length that yields the maximum load is obtained as an 
eigenvalue of a matrix eigenvalue problem and the condition of singularity of the tangential 
stiffness matrix can be satisfied exactly. A similar idea has been applied to the cohesive crack 
model with a linear softening law by Li and Liang [12], Li and Hong [13] and Li and Liang 
[14]. However, their studies were not aimed at the size effect. Their method applies only to 
the linear softening law, and cannot be simply generalized to the general nonlinear softening 
laws. 

A secondary objective is to study the effect of the shape of the softening law of the cohesive 
crack model on the law of the size effect, which has apparently not been thoroughly clarified. 

2. Energy principle for structure with cohesive crack 

As is shown in Bazant and Cedolin ([ 15], sec. 10.1, 12.3-12.5), fracture propagation can in 
general be described on the basis of the potential 

F=IT+\Ii, (1) 

understood as the Helmholtz free energy of the structure if the conditions are isothermal. 
IT = U - vV = potential energy of the structure; U = strain energy; lY = work of loads 
( - vV = their potential energy) and \Ii = surface energy of cracks in the structure. As has 
been cautioned in [14], crack propagation can be described by a potential only when crack 
closure is absent or negligible. For linearly elastic structures, we may write 

U = ~ r Cijkllll.jlLk./ dD. W = -p j bilLi dS, (2) -in ST 
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where a comma before an index denotes a derivative; repeated indices imply summation; 
n = domain occupied by the structure; ST = boundary on which surface traction Pbi 
is applied; bi = vector field describing the distribution of surface traction over ST; Ui = 
displacement vector in Cartesian coordinates Xi,; Cijkl = fourth-rank material stiffness tensor; 
and P = 19ading parameter. Finding the maximum value of P is the major concern of this 
paper. 

When the crack growth law is characterized in terms of R-curves, the surface energy 
'l1 = J R( a )da, where a is the crack length ([ 15], ch. 12). In the cohesive crack model, there 
are cohesive forces (J = 'P( w) acting in the process zone in front of the stress-free crack; 
w = [un] is the crack opening, Un = displacement in the direction n normal to the crack, and 
[ ] denotes a jump (discontinuity) across the crack. The surface energy is then expressed as 
([ 12]) 

\[1 = fa <I>[w(s, a)] ds, 
ao 

<I>(w) = low <p(v) dv, (3) 

where s is the coordinate measured along the crack, s = ao is the stress-free crack tip, and 
s = a is the process zone tip. 

The first variation of the potential F yields the equilibrIum conditions of the system. The 
first variation with respect to displacement yields the displacement equilibrium equation 

(4) 

where ow = [Dun]. This equation is to be satisfied for any admissible displacement variation 
OUi. The first variation with respect to crack length a yields the crack equilibrium condition 

OaF = (:aII + :a 'l1) oa = 0, "IDa> o. (5) 

This equation can equivalently be expressed as of / oa = (1(7 + Pkp )2, in which K(7 is the 
stress intensity factor at s = a due to cohesive stress in the process zone, and kp is the stress 
intensity factor at s = a due to unit applied load, P = 1. In other words, the crack equilibrium 
condition is equivalent to the condition that the total stress intensity factor at I = a is zero, i.e. 

K(7 + Pkp = 0, (6) 

which is the basic feature of all cohesive crack models. 
To ensure that an adjacent state be also an equilibrium one, it is necessary that 02 F = 0 for 

variation along the equilibrium path. Separating this second variation into parts corresponding 
to variation of displacement, crack length and load (labeled by subscripts u, a, and P), we 
may write this condition as 

OuuF + ouaF + oupF = 0, 

oauF + baaF + bapF = O. 

The second variations of F can be written more explicitly as 

(7) 

(8) 
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and 

Also ~ 

{) 
Dua F = Dau F = Da {)a Du F . 

At the maximum load, the first variation of P must vanish (0 P = 0), and (7) then yields 

{)2 F 
ouuF = oaDa ;:} '} . 

ua-

(9) 

(10) 

(11) 

Under load control, the maximum load corresponds to the limit of stability (onset of unstable 
crack propagation). So at Pmax we must have 82 F j 8a2 = O. This implies that at Pmax the 
quadratic form DuuF must be singular, which means that the quadratic form (with OUj = DVj) 
must become zero for some nonzero admissible displacement variation OUj. This singularity 
condition is the theoretical basis for the present new method to calculate peak loads without 
having to calculate the entire load-deflection curves. 

3. Problem formulation and finite element approximation 

It is convenient to write the given relation of the cohesive (crack-bridging) stress a to the 
crack opening w (stress-separation curve) as 

a = i.p(w) = Idl - g(wjwc)], (12) 

where It = direct tensile strength of the material, and We = critical crack opening displacement 
beyond which the cohesive stress is zero. Obviously g(O) = 0 and g( x) = 1 for x ? 1. Since 
crack closure is prohibited in the process zone, the laws for unloading and reloading need not 
be specified. 

The existence of a unique functional relation between a and w is the basic hypothesis of 
the cohesive crack model. Often this hypothesis is not mentioned, however it is certain that 
in reality there exists no unique relation, for several reasons: 

(1) The normal stresses parallel to the crack plane have influence, and so does the loading 
rate, 

(2) tv approximates the accumulated damage strain across the width of the fracture process 
zone, and this width, as well as the damage density in the zone, is variable (depending 
on structure size and geometry, as well as rate). 

Nevertheless, for a certain range of practical applications, a unique relation given by (12) can 
be assumed to exist as a good approximation, as we do here. 

The structure or specimen, which is assumed to be linearly elastic, is discretized by a 
finite element mesh, as illustrated in Fig. 1 for a three-poi nt-bend fracture specimen which 
will be considered in numerical computations. The load-point displacement w, and the crack 
opening displacements at the nodes along the crack line (line of symmetry) are grouped into 
the column matrix w = (w" U·2 .... , W,y f, and the corresponding nodal forces into columr) 
matrix F = (F" F2 , ... , Fn)T. in which superscript T denotes a transpose. The remaining 
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Fig. 1. Geometry dimensions and mesh definition of a three-point bend beam. 

nodal displacement and nodal forces for the rest of the structure are grouped into column 
matrices WR and FR. The associated finite element equation can be written in the partitioned 
form as 

{ 
F } [Kcc 

FR = - KRC 
KCR] { w} 
KRR WR' 

(13) 

It should be noted that while in the previous section a square bracket is used to denote a jump 
in the displacement, here it is used to denote a matrix, as it will usually be self-evident in 
the context. Condensing out all the displacement components of WR, we obtain the matrix 
equilibrium equation as {F}= [K]{w}, where [K] = [Kcc]- [KCR][KRR]-I[KRc] refers 
only to the load-point displacement and crack-line nodal displacements. It is further convenient 
to convert this equation to the form 

{W} = -[C]{F} + {B}P. (14) 

where compliance matrices [C] and {B} have the meaning of crack openings due to unit nodal 
force on the crack surface and to unit applied load, respectively. Their sizes are (n X n) and 
(1 x n), where II = N - 1 = number of nodes along the crack line. 

For the sake of generality, we introduce dimensionless variables as follows 

~ F 
F = bhft' 

[C] = E~C], ~ aN 
aN = h' 

~ D 
D-­- Lo' (15) 

Here as = cnP / bD = nominal stress, cn = coefficient chosen for convenience such that aN 

would represent the stress at a certain chosen point, for example the maximum stress in a beam 
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according to the theory of bending; b = thickness of the structure; D = characteristic size 
(dimension) of the structure (which is in our example chosen to represent the beam depth); 
h = length of finite elements along the crack, considered to be proportional to D, that is, 
hi D = constant. Furthermore, we introduce the notation Lo = EG II 11 = effective length 
of the~fracture process zone (which is often called the characteristic length, but this term is 
avoided here because it conflicts with the older definition of the characteristic length of a 
nonlocal continuum). With these dimensionless variables, we can rewrite (14) as 

{w} = (-[C]{F} + {B}a.v)D. (16) 

In what follows, the bar over the variables will be dropped for the sake of simplicity, with 
the understanding that all the variables are dimensionless according to (15) unless stated 
otherwise. 

To solve (16) more efficiently, we partition the matrices further. Let i = 1, 2, ... , nl - 1 
denote the degrees of freedom on the stress-free crack surface; i = nl, nl + 1, nl +2, ... , n2-
1 those in the process zone, and i = n2, n2 + 1 .... , n3 those in the ligament (Fig. 1). Since the 
actual crack is closed from the process zone tip and beyond, the corresponding crack opening 
displacements must be zero. To this end, we divide {w} into two parts: {WI} includes the 
displacements along the open crack which includes the stress-free crack and the process zone 
(i = 1. 2, ... , n2 - 1); {W2} (i = n2, n2 + 1, .... n3) is zero, by definition. The matrix [C] 
and the vectors {F} and {B} are partitioned accordingly. {W2} is condensed out, so we get 

(17) 

where [Cil] = [Cld - [CI2][C:!2]-I[C21 j, {Bi} = {Bt} - [Cn][C22J- I{B2}' 
In the previous studies, the nodal force has been related to the nodal stress values by 

assuming that the stress is piecewise constant. However, such an assumption is not sufficiently 
accurate, especially near the crack tip. In this study, we assume that the stress is linearly 
distributed from node to node, and so we can write Fi = (O'i-I + 40'; + O'i+ I) I 6, i = 
nl + L nl +2, .... n2-1.Fori = nl, Fi = (20'i+O'i+1 )/6.Fori = 1,2, ... nl-l, Fi = O. 
In terms of function g( w), we can write the relation between the nodal forces and nodal stresses 
as {F I} = {I} - [Ttl {g(w)}, where {I} is the column matrix that corresponds to the constant 
part of the stress-separation function <.p( w) (zero for i = 1, 2, ... nl - 1, 112 for i = nl, and 
1 for i = nl + 1, nl + 2, .... n2 - 1), and [Ttl is a tri-diagonal matrix whose elements are 
zero whenever one of its indices is within the range 1 and nl - 1. With these notations, the 
displacement equilibrium equation becomes 

1 
D {wt} = {U} - [Cjtl[Ttl {g(w)} + {Bj}O'.v. (18) 

where the column matrix {U} = [Cj tl{I}. 
In the ligament, we also assume that the stress distribution is piecewise linear. Therefore, 

we have similar relations between the nodal forces and the nodal stress values. Such a relation 
can again be represented symbolically as {F2} = [TZJ{O'2}, where [T2J is also a tri-diagonal 
matrix. Since {F2} is linearly related to {F d and O'N, the stress at the process zone tip O't can 
be expressed symbolically as 

(19) 

which is actually a condition of stress continuity across the process zone tip. The equation fqr 
{SI} and 52 is straightforward and thus will not be given. 
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Fig. 2. Nominal strength of structure as a function of size and process zone length. 

Equations (18) and (19) are the basic equations of the cohesive crack model and should be 
solved simultaneously. When the function g(x) is nonlinear, the resulting system of equations 
is nonlinear, and the iteration method should be employed. 

4. Size as an eigenvalue 

In Hillerborg's approach, (18) and (19) are solved to obtain the crack opening displacements 
{WI} and the applied load aN for a given size D and given crack length, and the maximum 
load is then found by searching through different crack lengths. Now we will try to formulate 
a direct solution approach to obtain the maximum load without having to calculate the entire 
load deflection curve. The applied load as a function of D and relative crack length a/ D is 
plotted in Fig. 2. It should be emphasized that the maximum is defined only with regard to 
different a/ D. The matrix of the quadratic form buuF may now be written as 

~ [I] - [ei tl[Ttl [:!] , (20) 

where [I] is the unit matrix, and [dg/dw] is a diagonal matrix with nonzero values dg / dw 
only in the positions corresponding to the nodes in the process zone. The singularity condition 
is mathematically equivalent to finding a nonzero eigenvector {v} such that the following 
equation be satisfied 

(21 ) 

For gi ven D (2 I) can, generally, be satisfied only approximately since a / D can assume 
only discrete values in accordance to the element mesh. On the other hand, if a/ D is given, 
then (2 I) can be satisfied exactly because D can vary continuously. In this very sense, (2 I) 
becomes a matrix eigenvalue problem, with the largest value of 1/ D (thus, the smallest D) 
as the eigenvalue. 
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For a linear softening law, the matrix [dgldw] happens to be a constant matrix. In that case, 
the eigenvalue problem is linear and independent of the equilibrium solution. Furthermore, by 
multiplying (18) with the eigenfunction {v} T, one can find for the applied load the equation 

{v}T{U} 
(TN~= {v}T{Bi}" (22) 

This value corresponds to the maximum load only when the structure size is equal to the 
eigenvalue D of (21). The case of linear softening is appealing due to its simplicity. 

When the softening is nonlinear, however, such a simple solution is no longer possible. In 
that case, matrix [dgj dw 1 depends on the crack separation {WI} and the singularity condition 
is coupled with the equilibrium equation. Iteration must then be used to solve the problem. 
But the procedure is still straightforward. For a given aj D value, we first solve the linearized 
eigenvalue problem to obtain an initial guess of D. With the obtained D value, we can solve 
(18) and (19) to obtain {wd as well as the applied load parameter (TN. Using the value 
of {wI} we can then evaluate the tangent matrix [dgldw], and obtain a new eigenvalue D. 
Such a procedure is repeated until the difference between the two succeeding values of D is 
sufficiently small. The obtained applied load parameter (TN corresponds to the maximum load 
when the structure size is the converged value D (in other words, (TS is not a maximum load if 
D takes any other value). Next, the value of aj D is changed by a small amount, for instance, 
a length equal to the element height. The previously solved nodal crack openings are used as 
the initial estimate to calculate the initial eigenvalue D, and so forth. 

This computational strategy is very effective. The actual number of iterations depends on 
the relative process zone length. Larger relative process zone lengths usually need fewer than 
5 iterations to achieve a 4-digit accuracy in D. When the process zone length occupies less 
than 5 elements, the iteration may fail for some nonlinear softening laws which have extreme 
slopes (that is, when dg j dw is either very close to zero or very large). 

The validity of the solution can be checked using Hillerborg's method. The obtained D is 
used as the given data, (18) and (19) are solved for different crack lengths. In particular, one 
may want to check whether the maximum load coincides with the singularity condition. The 
singularity condition is checked by calculating the determinant of the matrix shown in (20). 
When the matrix is positive definite, the determinant is positive; when singularity condition is 
satisfied, the determinant becomes zero. It turns out that, for general nonlinear softening laws, 
the maximum load occurs at a smaller aj D value than when the determinant becomes zero. 
Such a discrepancy is obviously caused by the inevitable error introduced by finite element 
discretization. The basis for this assertion rests on the following facts: 

(1) The distance in terms of the relati ve process zone length between the maximum 
load and the singularity condition depends on the type of the softening stress-displacement 
(separation) law. For a linear softening law, there is no discrepancy. For softening laws that 
are very different from a linear softening law, the distance can be substantial. 

(2) The foregoing distance depends also on the relative process zone length. A larger D 
causes larger discrepancies. 

(3) If we use the assumption of piecewise constant distribution of cohesive stress along 
the crack (which corresponds to replacing the matrices [Td and [T:d with unit matrices), the 
discrepancies are generally much larger. Even for a linear softening law there will be a certain 
small but appreciable distance between the maximum load and the singularity condition. That 
is the reason why the assumption of piecewise constant stress distribution causes unnecessary, 
loss of accuracy. 
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5. Numerical results 

Calculations have been run for the three-point-bend specimen shown in Fig. 1 having span 
LID = 4, initial notch-depth ratio aol D = 0.2 and thickness b = 1. The nominal stress 
is defined as aN = 6P I D, which means that en = 6. The beam depth is divided into 100 
elements. The softening law is considered to be a power function 

( w)n 
a = 1 - We (23) 

where n, We = given constants; n controls the shape of stress-separation diagram. For different 
n, the softening curves are plotted in Fig. 3. When plotted against wi We, the curves are " ;:;ry 
different for different n values, as is shown in Fig. 3a. However, when plotted against 1(', 

each curve, by definition, embraces a constant area, and the curves become quite close to 
each other, although they still substantially differ in the tail portion of the curves because the 
dimensionless threshold values are very different for different exponents n. 

Figure 4 shows, for various values of exponent n, the computed size-effect curves (that is, 
the curves of dimensionless nominal stress versus dimensionless size j) = D I Lo). The plots 
are shown in the linear scale on the left and in the log-log scale on the right. This figure reveals 
an amazing property: the shapes of size-effect curves are not very sensitive to the details of the 
softening laws. One reason for the proximity of the size-effect curves for various n is that the 
differences among the different dimensionless softening curves are mostly in the tail portion, 
which has little effect on the maximum load (although it could be important to the tail of [he 
load-deflection diagram). In the initial portion, the dimensionless softening curves are close 
to each other and the average slopes are approximately the same. 

The proximity of the size effect curves breaks down when the dimensionless softening 
curves are significantly different in the initial portion. As an example, we compare the linear 
softening law with toe bilinear model for concrete [5], which has its change of shape (knee 
point) at a = 0.3ft and W = 2/L'c/9. Figure 5 shows that the two size effect curves are quite 
different. For small sizes (say, j) < 0.5), these two curves are parallel in the log-log scale plot. 
This is because the softening law is in effect linear when only the initial portion of the bilinear 
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softening curve enters the equations. If we shift the curve calculated with the bilinear softening 
law in the horizontal direction, the two curves can become very close. The dashed line in Fig. 
5 is the size effect curve (with a bilinear softening law) that has been shifted by mUltiplying 
!J with 1.58, which is equivalent to redefining La = E G f / (1.58 i1). The difference between 
the dashed line and the size-effect curve of linear softening becomes significant in the large 
size range (that is, lJ > 10). In other words, it is impossible to deduce an accurate value of 
material property La from the size effect curve if the size range is not wide enough. 

For materials such as concrete which are very heterogeneous on the microscopic scale, the 
material properties usually exhibit large random scatter. In such cases, the difference between 
the size effect curves for the linear softening and bilinear softening laws is not important when 
compared to the random scatter. Therefore, the linear softening model may be preferred in 
view of its simplicity. 

Previous studies of size effect have shown that generally the size effect curve in the plot 
of log-log scale has two asymptotes. The horizontal one is approached for small sizes, anq 
the inclined one, of slope -1/2, is approached for large sizes. A simple formula to describe 
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the size effect curve with these asymptotic properties was derived by BaZant [4, 11], and IQtcr 
generalized to a broad size range in [9, 10]. The stress intensity factor J( e can be calculated at 
the tip of the process zone caused by the applied load, using the following empirical equation 
(Tada [16]). 

J( e r;:::::: (a) VEVf = aNY D* F D and 

F(O = ~1.99 - ~(1 - 0(2.15 - 3.93~ + 2.7e) 
(1 + 20(1 - ~)3/2 

(24) 

For large sizes, the left hand side approaches 1, and thus (24) determines the asymptote of the 
size effect law for the large size limit. The asymptote in the small size region is a horizontal 
line aN = f3 It- For the three-point-bend specimen with notch ratio 0.2, f3 = 1.92 With these 
two given as asymptotes, Bazant's generalized size effect law can be written as 

(25) 

where r is the third parameter in addition to parameters Lo and it which are implied in the 
equation through the dimensionless variables. Figure 6 shows the comparison between (25) 
and the size effect curves for the cohesive crack model. For the size effect curve obtained 
with the bilinear (i.e. Petersson's) softening law, the best fit yields r = 0-4383; the best fit 
with the linear softening law yields r = 0.5092. Since (25), for both size limits, has the same 
asymptotic behavior as the cohesive crack model, the proximity between the cohesive crack 
model solutions and (25) should be considered very satisfactory. In passing we also note that if 
r = 1, the size effect curve, which is also shown in Fig. 6, is very different from the cohesive 
crack model solutions when a size range of more than 1 :20 is considered. 

Do the foregoing results mean that the analysis of the test data, determination of G f and of 
R-curve, and application in practical design problems such as diagonal shear or torsion should 
be based on (25) with r approximately equal to 0.5? Not necessarily. Whether the value r = 0.5 
or r = 1 should be used does not really matter for most practical applications to concrete, and 
it anyway depends on the method chosen for fracture analysis. Although the size effect method 
for determining G f or R-curve can be applied for any r value, in most practical applications 
to concrete the value r = 1 may still be appropriate, or at least acceptable. The reason is that 
the present cohesive crack model cannot be claimed to completely describe the real behavior, 
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because it neglects the rate effect or time dependence, which is very pronounced for concrete, 
and because it lumps fracturing damage into a line. In reality this damage is spread over a 
fracture process zone of certain finite width, which likely depends on the structure shape and 
size as well as the loading rate. The latter aspect can be captured by a nonlocal model for 
continuum damage, whose optimum approximation could lead to a different r-value from that 
which we found. Thus, there is at present, no definite general theory that would unquestionably 
indicate which curve would give the correct representation at all sizes. The existing theories 
are not experimentally validated beyond a size range of roughly 1 :20. So we must inevitably 
accept that G f does not correspond to a truly infinite size, but merely to an optimum fit in a 
size range for which it has been calibrated by tests (or some experimentally verified theory). 
But this is not a problem from the practical viewpoint, as long as the G f is used in structural 
analysis (e.g. in the cohesive crack model or the crack band model) with structure sizes that 
do not exceed by more than about 1 :20 the specimen sizes used for calibration. 

Consider now Fig. 7(c) where the given test data A, having the typical limits 1 :5, are the 
circles. Their optimum fit by the size effect law with r = 1 is the curve 123, whose asymptote 
63 gives (by LEFM calculations) fracture energy Gj (as described by BaZant and Pfeiff~r, 
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[17]). When the given test data, having again the range 1:5 are the crosses, fitting the size 
effect law with r = 1 gives the curve 254, whose asymptote 74 gives the fracture energy G7 
larger than the previous one (G7 > Gj). There may be a certain value r = rl (for example, 
r = 0.5), applicable to a size range 1 :500, for which the size ranges A and B are both fitted 
well, but there is no theory or experiment to tell us what the rl value really is. However the 
Gj value ~obtained by fitting with r = 1 the circular data points will be adequate for the 

behavior in the size range A'(about 1 :20), and the G7 value obtained from the crosses will be 

adequate for the size range B' (1 :20). If the size range were extended 1 OO-times beyond the 
point 4 in Fig. 7, there would likely be still another asymptote 89. 

Now, various methods of fracture analysis, such as the R-curve method or the crack band 
model, are not sufficiently accurate to reproduce the size effect for a range as large as 1 :500 
with some particular r value. But they agree with the size effect law for r = 1 for a limited 
size range, up to about 1 :20. So, if a certain model is calibrated using r = I by the test data 
A, Gj applies in the size range A' (Fig. 7(c)) but not B'; and if it is calibrated using r = 1 by 

the test data B, G7 applies in the size range B' but not A'. This is sufficient for most practical 
purposes. But one must of course be mindful of the limitations. 

As a familiar analogy from the vibration theory, the curve 154 may be compared to the 
full spectrum, whereas the size effect law for r = 1 (curve 123 or 254) may be compared to 
one spectral component of the spectrum, corresponding to one term in the Fourier expansion 
of the full spectrum. Or, as another analogy, the curve 154 may be compared to the full 
compliance function in viscoelasticity, whereas 123 or 254 for r = 1 may be compared to one 
term of its Dirichlet series expansion. As we know, these single components are adequate for 
representing the behavior in the frequency or delay ranges of about 1: 10. 

6. Conclusions 

1. It is shown that there exists a method which allows direct calculation of the size effect 
curve for the cohesive crack model without calculating the entire load-deflection curves of 
specimens of various sizes. Instead of solving, for a given specimen size, the applied load 
for various crack lengths, the problem can be inverted so that for any chosen relative crack 
length one seeks directly the structure size for which the chosen relative crack length yields 
the maximum load. This inverted problem becomes a matrix eigenvalue problem when the 
structure is discretized by the finite element method, with the structure size as the smallest 
eigenvalue. 

2. After solving the eigenvalue, the displacements and the load can be solved from a 
matrix equation. This equation, as well as the matrix eigenvalue problem, is nonlinear. Both 
are coupled ifthe softening law forthe crack-bridging stress is nonlinear, and thus the solution 
must be iterative. The iteration converges rapidly if the initial estimates of the crack opening 
displacements are taken as the previously solved displacements for an adjacent crack tip 
location. Another improvement in the present method compared to the previous finite element 
solutions is that the stress distribution along the crack line is assumed to vary linearly from 
node to node, rather than being piecewise constant. 

3. The differences in the size effect curves calculated from very different softening laws 
relating crack-bridging stress to crack opening displacement are not very significant. For 
power softening laws, very different stress-displacement curves can be obtained by varying 
the exponent, but the exponent has only a minor effect on the calculated size effect curve. 
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The difference between the size effect curves for linear softening and for Petersson's bilinear 
softening law is not negligible. However, when compared with the large scatter inherent to 
heterogeneous materials such as concrete, the difference seems practically not too important. 

4. The calculated size effect curves can be closely matched by the generalized size effect 
law PJoposed by BaZant. This means that this law is of rather general applicability. But the 
preceding conclusion also indicates that one cannot easily deduce the shape of the stress­
displacement curve from the shape of the size effect law. One can only deduce the initial slope 
of this curve. 

5. If the cohesive crack model described material behavior over a very broad size range 
such as 1: 1000, it would follow that the determination of the fracture energy G 9 from the 
size effect test should be based on the generalized size effect law with r ~ 0.5 rather than 
r = 1. However, the cohesive crack model itself probably is not valid for such a wide range. 
The value r = 1 may still be adequate for a limited size range such as 1 :20, provided that the 
fracture characteristics are calibrated to data lying within that range. 
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