Creep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials

Matthieu Vandamme, Ph.D.1; Zdeněk P. Bažant, Ph.D., Hon.M.ASCE2; and Sinan Keten, Ph.D.3

Abstract: A variety of geomaterials, such as cementitious or clay-based materials, has on the nano-scale a layered microstructure that can contain fluid in its nano-porous space. The creep of such nano-porous basic units is what causes the macroscopic creep. Here, one nano-pore whose walls consist of two parallel infinite solid layers interacting through Lennard-Jones potential is studied. The authors evaluate numerically the energy barriers that such a system needs to overcome for the two solid layers to slide over each other and show how this sliding depends on the longitudinal and transverse forces applied to the layers. The energy barriers translate into a dependence of the apparent viscosity of the system on the disjoining pressure in a manner consistent with the microprestress theory. This result makes it possible to explain why the long-time creep of cementitious materials is logarithmic. The experimental data on how the long-term logarithmic creep of cementitious materials depends on the temperature and relative humidity is then considered. This model can capture the observed dependencies if not only the energy barriers induced by the interactions between layers but also the influence of the interlayer fluid, which is water in the case of cementitious materials, is taken into account. This fluid is modeled as a continuum with the same properties as the bulk fluid. DOI: 10.1061/(ASCE)NM.2153-5477.0000102. © 2015 American Society of Civil Engineers.

Introduction

All geomaterials, whether artificial, e.g., cementitious materials in general, or natural, clay-based materials, exhibit creep, i.e., slow deformation over time under the action of sustained mechanical stress. The creep occurs at a rate that can be detrimental to the lifespan of concrete structures and structures on clay foundations (Bažant et al. 2011; Puzrin et al. 2010). Cementitious and clay-based materials have in common the fact that the phase that confers to them most of their viscous properties is nano-porous and layered.

Indeed, the matrix of regular Portland cement paste is made of calcium silicate hydrates (also called C-S-H) which, although spatially variable in both structure and composition (Richardson 1999), consist of more or less ordered stacks of calcium silicate layers, each of which is made of a Ca-O sheet covalently bonded with silicate chains (Richardson 2008; Pellenq et al. 2009). Between those solid calcium silicate layers, one finds a few molecular layers of water.

By contrast, as their name suggests, the minerals in clay-based materials are phyllosilicates made of stacks of layers combining silicate tetrahedra with aluminum octahedra (Meunier 2005). Again, between those solid layers, one finds a few molecular layers of water. Thus the cement-based and clay-based materials share a layered nano-structure that contains interlayer water.

Because the spacing of the adjacent solid layers is on the order of only a nanometer, the clay and C-S-H are subjected to strong disjoining pressures. At the scale of an individual slit nano-pore, the disjoining pressures can lead to swelling or shrinkage during sorption or desorption and can be not only positive (compression) but also negative (tension). The sign of the disjoining pressure is affected by the ratio of nano-pore width to the number of molecular layers of the interlayer fluid in the nano-pore (Ustinov and Do 2006; Bažant and Bazant 2012).

However, when averaged over a distribution of pore sizes in a disordered nano-porous solid [e.g., even in ideal one-dimensional nano-porous solids (Brochard et al. 2012)], one observes during sorption only swelling: In a disordered nano-porous solid, the representative disjoining pressure is positive (i.e., compressive), inducing tensile stresses in the solid microstructure of material (this also means that during desorption one observes only shrinkage). At the macroscopic scale of material, those tensile stresses induced by disjoining pressure and adsorption can reach several dozens of MPa (Espinoza et al. 2014). Locally, those tensile stresses can even be greater, exceeding 100 MPa (Bažant 1972).

For both cementitious materials and clay-based materials, various kinetics of creep can be identified. In cementitious materials, short-term creep kinetics, usually associated with local reorganization of water and lasting from a few weeks to a few years at the macroscopic scale, is followed by long-term creep kinetics that are logarithmic with respect to time. In clay-based materials and soils in general, the application of load causes water to be expelled [which is the so-called consolidation process (Terzaghi et al. 1996)], but once the excess fluid pressure is dissipated, soils creep logarithmically with respect to time (Lambe and Whitman 1969).

The origin of this logarithmic creep in both cementitious and clay-based materials has been much disputed. For cementitious materials, an explanation was provided by the so-called microprestress solidification theory (Bažant et al. 1997), which recognizes the importance of disjoining pressures and the effect they can have on viscosity. The principle of the theory is the following: The hydration processes in cementitious materials and the restraint induced by the heterogeneous and disordered microstructure prevent an...
instantaneous release of the high average tensile disjoining pressure prevailing in the C-S-H nano-pores. This disjoining pressure, acting perpendicularly to the C-S-H layers, will be denoted as $S$ and called microprestress (nano-prestress though might be a more accurate term, but microprestress is by now well established). The microprestress initially develops as a consequence of clinker hydration. Later, it changes with moisture content and temperature and, in the absence of mechanical load on concrete, dominates the stresses in solid microstructure (Bažant et al. 1997). The microprestress theory recognizes that the apparent viscosity (denoted as $\eta$) associated with the sliding of two C-S-H layers over each other is sensitive to this microprestress, i.e., $\eta = \eta(S)$. The theory then recognizes that, because of the disordered and isotropic nature of C-S-H at the meso-scale, this microprestress in one layer must induce in layers of different orientation shear forces acting parallel to these layers (Fig. 1). Based on those features, one can show that, for any power-law dependence of the viscosity on the microprestress (i.e., $\eta \propto 1/S^{p-1}$ with $p - 1 > 0$), the viscosity evolves linearly with time $t$, i.e., $\eta \propto t$ (see section “Dependence on Temperature” for a detailed derivation). For a constant stress, a creep rate that gives a creep strain that increases with time logarithmically.

Recognizing the potential role of the enormous tensile stresses induced by disjoining pressures, the authors aim in the present work at clarifying this role numerically, considering a simplified model system. The system consists of two solid layers that are parallel to each other, with an interlayer pore space between them. The interlayer fluid is modeled as a continuum, and only an effective potential between atoms of the opposite adjacent layers is introduced. Given their high stiffness (Shahsavari et al. 2009; Carrier et al. 2014), the solid layers are considered as rigid.

Here, the authors aim to identify the energy landscape that the system of two layers will be exposed to while sliding over each other. The energy barriers and their evolution with disjoining pressure effects (i.e., with the microprestress) will be translated into the dependence of the apparent viscosity on the microprestress. The relevance of the numerical results with respect to the microprestress theory will be discussed. A comparison with creep data obtained on cementitious materials at various temperatures and relative humidities will be performed.

Shearing of Infinite Plates Interacting through Lennard-Jones Potential

Two rigid and infinite plates that are parallel to each other were considered. Each plate consists of atoms located on a square lattice (Fig. 2). All lengths of the problem are made dimensionless by dividing them by the lattice parameter $a$: Thus, the dimensionless distance between two closest-neighbor atoms within a plate is equal to unity. The two plates are separated by a distance called the basal spacing: Its value, made dimensionless upon division by the lattice parameter, is denoted as $z$. The in-plane principal directions of the two plates are considered aligned at all times and are denoted as $e_x$ and $e_y$; $x$ and $y$ are the dimensionless relative displacements of the top plate with respect to the bottom one in the $e_x$ and $e_y$ directions, respectively. The origin of the relative displacements is chosen such that the two plates are in an eclipsed configuration when $x = 0$ and $y = 0$.

The $i$-th atom of one plate interacts with the $j$-th atom of the other plate through a Lennard-Jones potential:

$$
\Psi(r) = \Psi_0 \left[ 2 \left( \frac{r_0}{r} \right)^{12} - \left( \frac{r_0}{r} \right)^{6} \right] \tag{1}
$$

where $r$ is the dimensionless distance between the two atoms; $r_0$ is the dimensionless equilibrium distance of the Lennard-Jones potential; and $\Psi_0$ is the depth of the energy well. This interaction potential should be interpreted as an effective one, in the sense that it aims at capturing not only the direct wall–wall interaction but also the electrostatic and entropic effects due to the presence of the interlayer water, as well as the water–wall interactions. All the energies in the system are made dimensionless by dividing them by the depth of the energy well of this Lennard-Jones potential. Thus, the dimensionless depth of the energy well of the Lennard-Jones potential is equal to unity. Note that, by introducing a characteristic energy (i.e., the depth $\Psi_0$ of the energy well of the Lennard-Jones potential) and a characteristic length (i.e., the lattice parameter $a$), a characteristic force $\Psi_0/a$ is defined with respect to which all forces introduced in the problem will be made dimensionless.

Given the periodicity of the system, all the atoms are equivalent one to the other. Therefore, from now on, the focus is on the energy of only one atom of one plate interacting with all the atoms of the other plate. The energy of interaction of this atom is $\sum_i \Psi(r_i)$, where $r_i$ is the dimensionless distance that separates the atom of interest from the atom $i$ in the other plate.

Consider that the atom of interest is subjected to a (dimensionless) force $F$ acting parallel to the layers in the $e_z$ direction, and to a (dimensionless) tensile force $S$ normal to the layers, i.e., in the $e_x$ direction (this force is the microprestress). Under the action of those forces, the energy $E$ of the atom of interest is:

$$
E = \sum_i \Psi(r_i) - Sz - Fx \tag{2}
$$

For a given microprestress $S$ and transversal load $F$, the energy landscape to which the system is exposed upon a displacement in the $e_z$ direction (i.e., upon sliding of the two layers over each other) is obtained as follows. At a given relative displacement $x$, for a
fixed relative displacement $y = 0.5$, the energy $E$ is minimized with respect to the distance $z$ between the two plates (indeed, the authors checked that, at given $x$, minimizing the energy with respect to $y$ and $z$ yields $y = \pm 0.5$). Thus, at the given relative displacement $x$, the equilibrium $z$-position of the layer is determined, and the energy $E$ of this equilibrium state is stored. This calculation is repeated for a variety of relative displacements $x$. Note that, in these calculations, the force $S$ normal to the layers is kept constant: When the relative displacement $x$ evolves, the $z$-position of the layer (i.e., the interlayer spacing) varies. Said otherwise, shear induces volume variations, as noted by Hoang and Galliero (2015). However, the C-S-H layers being surrounded by the solid C-S-H gel, this variation of the $z$-position would be partly prevented and thus translates into variations of the force $S$: Here, this effect is neglected.

The results for a dimensionless equilibrium distance $r_0 = 1$ are displayed in Fig. 3. Calculations for microprestress $S > 6$ were not possible because such microprestress suffices to separate the two plates from each other. First, one observes that, in absence of any transversal load or microprestress, equilibrium positions are at $x = \pm 0.5$, i.e., when the two plates are in a staggered position with respect to each other. For the plate to be translated from $x = -0.5$ to $x = 0.5$, the system needs to overcome an energy barrier, which is denoted as $\Delta E$. In absence of a transversal load $F$, an increase of the microprestress $S$ decreases this energy barrier. Furthermore, application of a transversal load $F$ imposes on the energy landscape an asymmetric tilt. This induced tilt causes a decrease of the energy barrier that the plate needs to overcome to move in the specified direction of the transversal load to and an increase of the energy barrier that the plate needs to overcome to move in the reverse direction. This favors the sliding in the direction of the transversal load.

Based on energy landscapes such as the ones displayed in Fig. 3, one can calculate how the energy barrier $\Delta E$ required for the plate to move by one lattice spacing in the direction of the transversal load evolves with the various loadings. The calculated energy barriers are displayed in Fig. 4. Two regimes may be distinguished at low and high microprestress. When the microprestress is low enough, then, for any transversal load, the energy barrier $\Delta E$ decreases linearly with the normal force $S$, i.e., $\Delta E = c_1 - c_2 S$, where $c_1$ and $c_2$ are functions of the transversal load. In contrast, when the microprestress $S$ is high enough, then, for any transversal load $F$, the energy barrier $\Delta E$ decreases linearly with the logarithm of the normal force $S$, i.e., $\Delta E = c_3 - c_4 \ln(S)$. Again, the coefficients $c_1$ and $c_2$ depend on the transversal load.

In an isotropic solid such as C-S-H on the mesoscopic scale, the microprestress $S$ must induce a transversal load $F$. Reasonably, one can assume that this transversal load will represent a fraction of the microprestress $S$. For various ratios $F/S$ of the transversal load $F$ to the microprestress $S$, how the energy barrier for dimensionless equilibrium distance $r_0 = 1$ depends on the microprestress $S$ is plotted [Fig. 5(a)]. For large enough microprestresses $S$, a clear logarithmic dependence of the energy barrier on the microprestress $S$ is observed, i.e., $\Delta E = \alpha_1 - \alpha_2 \ln(S)$. Interestingly, to first order, the coefficient $\alpha_2$ does not depend on the ratio $F/S$. Therefore, independent of this ratio (which is not known, as it is a consequence of the spatial orientation of the microstructure, of the elastic properties of the phases, and of the hydration process), the energy barrier $\Delta E$ decreases linearly with the logarithm of the stresses.

Over this latter range of large enough microprestress, when introducing an Arrhenius-type dependence of viscosity on the energy barrier (Debenedetti and Stillinger 2001; Nabarro 2001), i.e.,

$$
\eta \propto \exp(\Delta E/k_B T)
$$

we find, for the apparent viscosity $\eta$ associated to the sliding of the two layers over each other, the following relation:
The energy barriers are on the order of $10^{-21}$ J. Those energy barriers are therefore of the same order of magnitude as $k_B T \approx 10^{-21}$ J at $T = 300$ K. Therefore, the proposed mechanism of a viscosity affected by the energy barriers due to the effective wall–wall interaction is plausible. In terms of stresses at stake, the dimensionless normal forces considered in the study are on the order of unity as well (Fig. 4), i.e., the normal forces are on the order of $\Psi_0 / a$. Those normal forces translate into normal stresses on the order of $\Psi_0 / a^2$, i.e., into normal forces on the order of 1 eV/(1 nm)$^2$ $\approx 10^6$ Pa = 100 MPa. Therefore, the characteristic stresses considered in this study are on the order of the stresses induced by disjoining pressures in real systems.

The fact that the model nano-scale system proposed here (Fig. 2) makes it possible to retrieve the microprestress theory, and hence a long-term creep of cementitious materials that evolves with time as a logarithmic function, may look surprising at first glance. Indeed, C-S-H layers are made of several chemical elements and are complex chemically. Therefore, with respect to natural C-S-H, or even to already existing C-S-H molecular models (see, e.g., Taylor 1986; Richardson 2008; Pellenq et al. 2009), this model is crude, in the sense that it fully neglects the chemistry of C-S-H. The fact that, in spite of this crudeness, this system makes it possible to retrieve the microprestress theory, shows that the logarithmic feature of long-term creep of cementitious materials does not originate from any chemical specificity of C-S-H. Such a conclusion is consistent with the experimental observation that clays also creep logarithmically with respect to time in the long term, although the chemical composition of the clay layers differs from the chemical composition of C-S-H. In contrast, the feature that this system keeps in common with C-S-H is that it is a nano-porous layered material. This observation hints towards a logarithmic creep of cementitious materials that would originate from the fact that C-S-H is a nano-porous layered material.

**Dependence of Viscosity on Microprestress, Temperature, and Water Content**

The model that was formulated allows one to deduce a dependence of viscosity on microprestress that is consistent with the microprestress theory. Now, the aim is to determine whether this model makes it possible to retrieve the observed dependence of creep of cementitious materials on water content and temperature. Since this model makes it also possible to retrieve a creep that evolves logarithmically with respect to time, the comparison with experimental data for cementitious materials is restricted to the long-term creep, which does evolve logarithmically with respect to time. To compare this model with the existing data, the first step is to review the main steps of the derivation of the microprestress theory, as presented next.

**Dependence on Temperature**

Let us now focus on the effect of temperature on the viscosity predicted by this model and on the consistency of this prediction with the phenomenology of long-term creep of cementitious materials. The derivation of the microprestress theory proceeds as follows (Bažant et al. 1997):

The shear stress, $\tau$, applied to the C-S-H layers may be expressed as $\tau = \eta \dot{\epsilon}$ where $\eta$ is the viscosity, $\dot{\epsilon}$ is the shear strain, and $\dot{\epsilon}$ is the shear strain rate, which characterizes the sliding of the two parallel layers over each other. The relaxation of the microprestress $S$ is imagined to be the result of a creep (or flow) of similar origin, resisted by a spring of stiffness $K_S$ coupled in series, as sketched in Fig. 1. Thus, the equation governing the relaxation process is

$$\eta \propto \exp \left[ \frac{\alpha_1 - \alpha_2 \ln(S)}{k_B T} \right] = \exp \left( \frac{\alpha_1}{k_B T} \right) \left( \frac{1}{S} \right)^{\alpha_2/k_B T}$$

Since $\eta \propto 1/S^{p-1}$ with $p - 1 > 0$, one can observe, for large microprestress, a dependence of viscosity on microprestress that can justify the microprestress theory (see section “Introduction”).

In terms of orders of magnitude, it is found that the dimensionless energy barriers $\Delta E$ are on the order of unity (Fig. 4). It follows that the energy barriers are on the order of $\Psi_0$ and thus, classically
\[ \frac{S}{K_S} + \frac{S}{\eta(S)} = 0 \]  

(5)

The viscosity must depend on the microprestress \( S \), and since no characteristic value of this dependence is known, the dependence must be considered as self-similar, i.e., a power law

\[ \eta = \frac{1}{\alpha S^{p-1}} \]  

(6)

where \( p \) and \( \alpha = \text{constants} \). Differential Eq. (5) may then be solved and one gets \( S^{1-p} = \alpha K_S (p-1) t \). The evolution of the viscosity with time then follows

\[ \eta = K_S (p-1) t \]  

(7)

By comparing Eq. (6) with Eq. (4), it is found that \( p - 1 = -\alpha_2 / (k_B T) \).

At the scale of a macroscopic concrete specimen, a constant uniaxial stress \( \sigma_u \) is thus expected to cause the axial strain rate \( \dot{\epsilon}_u = \sigma_u / \eta \). Therefore, the material compliance \( J_u = \dot{\epsilon}_u / \sigma_u \) defining the creep is expected to evolve as

\[ \dot{J}_u \propto \frac{1}{\eta} = \frac{k_B T}{K_S \alpha_2 t} \]  

(8)

This equation shows that, as anticipated, the power-law dependence of the viscosity on the microprestress [see Eq. (4)] translates into a creep rate that decreases as \( 1/t \). Therefore, after integration, one finds that the long-term creep evolves logarithmically with respect to time.

From Eq. (8), one may expect that the rate of this long-term logarithmic creep should scale linearly with the temperature \( T \). Said otherwise, the parameter \( c_u = \dot{J}_u \alpha_1 \), which is independent of time when the creep is logarithmic, should be proportional to the temperature \( T \). For a few concrete specimens, for which the basic creep (i.e., the creep at no moisture exchange) has been measured at various temperatures (see the data in Nasser and Neville 1965; York et al. 1970; Kommendant et al. 1976, gathered in Bažant et al. 2004), Fig. 6(a) shows the parameter \( c_u = \dot{J}_u \) as obtained by the optimal fitting of creep data in the range within which the creep was actually logarithmic in time. From the experiments, it is found that the parameter \( c_u = \dot{J}_u \) is not proportional to the temperature \( T \).

A reason for this more complex scaling can be found in the behavior of the interlayer water, the effect of which the authors have for now discarded. Indeed, for the two C-S-H layers to slide over each other, the two layers need not only be displaced respectively to each other, but the interlayer water needs to be sheared. In the numerical study performed in section “Shearing of Infinite Plates Interacting through Lennard-Jones Potential,” the calculated energy barriers are those corresponding only to the relative displacement of the two C-S-H layers. Those energy barriers can be modified by the presence of water (as will be seen in section “Dependence on Relative Humidity or Water Content”), as interlayer water screens the interactions between the C-S-H layers, but this screening is only a consequence of the presence of the interlayer water, not of its shearing, the contribution of which does therefore not appear explicitly in Eq. (8). However, on top of the contribution of the energy barriers, the strain rate at which the C-S-H layers slide on each other must also depend on the viscosity \( \eta_w \) of the interlayer water. In fact, the strain rate and the viscosity of the interlayer water should be inversely proportional to each other. An analogy to justify why it should be so is that of a horse that runs erratically and encounters fences on his way, over which he has a given probability of succeeding in jumping; the average speed at which the horse will move away from his starting point will depend on both his true speed (which is the analogous of the inverse of the interlayer water viscosity) and this probability: If the probability for him to succeed in jumping over the fences does not change, if he runs twice as fast, on average he will reach a given distance twice as fast. This observation makes it possible to formulate the unknown proportionality factor in the scaling relation Eq. (8), which can be rewritten as

\[ \dot{J}_u \propto \frac{1}{\eta_w} \frac{k_B T}{K_S \alpha_2 t} \]  

(9)

where \( \eta_w \) is the viscosity of the interlayer water. To check the validity of this modified scaling relation, the experimental data displayed in Fig. 6(a) is used to plot the parameter \( t \dot{J}_u \eta_w / T \). The viscosity \( \eta_w (T) \) of the interlayer water is approximated by the viscosity of bulk water: Its values at various temperatures are obtained from the NIST standard reference data (http://webbook.nist.gov/chemistry/fluid/). Interestingly, one observes in this figure no specific trend of the parameter \( t \dot{J}_u \eta_w / T \) with respect to temperature: For a given concrete, this parameter remains roughly constant.

The foregoing observation validates a model for the creep of layered C-S-H, which in essence consists of two mechanisms: (1) interactions between adjacent C-S-H solid layers, which induce energy barriers that need to be overcome; and (2) viscosity of
the interlayer fluid itself, which is modeled as a continuum with properties identical to those of the bulk fluid. The fact that such a model enables one to capture reasonably well the dependence of long-term creep on temperature can seem surprising, since in this model the interlayer water is considered as bulk water, while the physical properties of confined and bulk water are known to differ significantly from each other. For instance, some find out that, for hydrophilic surfaces, the viscosity of confined or interfacial water differs from the viscosity of bulk water by a factor of about three (Raviv et al. 2001; Sendner et al. 2009). However, note that the relative dependence of the viscosity of confined and bulk water on temperature might be quite similar, in which case the parameter $\eta_0 \Delta S / T$ [Fig. 6(b)] would still remain constant with temperature if $\eta_0$ was the actual viscosity of the confined interlayer water.

**Dependence on Relative Humidity or Water Content**

Next the effect of relative humidity or water content on the viscosity, as predicted by this model, and the compatibility of this prediction with the phenomenology of long-term creep of cementitious materials is investigated. In this model, consider that the depth of the energy well does not vary upon when the water content increases, and that the only aspect that varies is the equilibrium spacing between the two solid plates. In other words, to model an intake of water in the interlayer space, only the equilibrium distance $r_0$ in the interaction potential Eq. (1) is modified, but not the depth $\Psi_0$ of the energy well.

The energy barriers calculated for various equilibrium distances and under various loadings are depicted in Fig. 5. As already observed in section “Shearing of Infinite Plates Interacting through Lennard-Jones Potential” where calculations are performed for an equilibrium distance $r_0 = 1$, the energy barriers for all equilibrium distances considered decrease, at large microprestress, linearly with the logarithm of the microprestress. They do so at a rate that is independent of the ratio $F/S$. However, this rate of decrease depends on the equilibrium distance, as can be observed in Fig. 7, which shows the coefficient $-d\Delta E / d\ln S = \alpha_2$ calculated for the range of high microprestress.

The goal now is to compare these calculations with the experimental data on how creep at moisture equilibrium varies with the relative humidity. To do so, data by Zhang (2014), who performed microindentations on compacted specimens of C-S-H powders equilibrated at various relative humidities is used. Using micromechanics, they back-calculated the creep properties of the C-S-H particles. The creep properties he measured by indentation are condensed into the so-called contact creep modulus $C$ (Vandamme and Ulm 2009). Zhang et al. showed that this creep modulus is inversely proportional to the parameter $c_u = t \dot{J}_u$ (Zhang et al. 2014), which is constant during the logarithmic long-term creep of cementitious materials. Their results are presented in Fig. 8(a).

At the various constant relative humidities considered, the water content is found from the data obtained by Feldman (1973) and reanalyzed by Jennings in the form of adsorption isotherms of C-S-H (Jennings 2008) [Fig. 8(b)]. To prepare their specimens, Zhang et al. dried the C-S-H powder that they manufactured, rewetted the powder to compact the specimens, and then equilibrated the compacted specimens at the desired relative humidity. Here, the second drying isotherm among the isotherms collected by Jennings is considered.

In the driest state possible (i.e., when all evaporable water has left C-S-H), the stoichiometric formula for C-S-H is considered to be $\text{C}_1 \gamma \cdot \text{S-H}_\text{I} \text{I}$ (in cement chemistry notation). Thus its molar mass is equal to $178.84 \text{~g} \cdot \text{mol}^{-1}$. In this driest state possible, the structure of C-S-H is considered to be close to that of tobermorite 9 Å, as provided by Bonaccorsi and Merlino (2005) and recalled by Richardson (2008), i.e., orthorombic space group Fd2d with $a = 11.16 \text{~Å}$, $b = 7.32 \text{~Å}$, $c = 37.40 \text{~Å}$, $\alpha = 90^\circ$, $\beta = 90^\circ$, and $\gamma = 90^\circ$.

To approximate this structure with our simple model, we consider that the characteristic spacing between the closest inhomogeneities within each C-S-H layer is $\sqrt{11.16 \times 7.32} = 9.03 \text{~Å}$, and that the basal spacing is $37.40/4 = 9.35 \text{~Å}$. In this driest state, the thickness of the interlayer water is considered to be null. At larger water contents, it is considered that the interlayer space is filled with bulk water, the molar volume of which is $18.048 \text{~cm}^3 \cdot \text{mol}^{-1}$ at $20^\circ \text{C}$ and $0.1 \text{~MPa}$ (these data are taken from the NIST standard reference available at http://webbook.nist.gov/chemistry/fluid/). By a simple geometric calculation, it can thus be determined how the mass density of C-S-H (or its basal spacing) should be related to its water content.

The result of this calculation is shown in Fig. 8(c), along with the states of Jennings’ CM-II model for C-S-H (Jennings 2008). In conjunction with the adsorption isotherm shown in Fig. 8(b), these results make it possible to calculate how the basal spacing of C-S-H must have depended on the relative humidity in the experiments of Zhang et al. Since the authors work with dimensionless data, comparison with this model requires that the basal spacing be made dimensionless by dividing it by the characteristic length $9.03 \text{~Å}$ calculated above for tobermorite 9 Å.

As shown by Eq. (8), the presence of the energy barriers that limit, during the logarithmic creep, the sliding of the C-S-H layers over each other causes that function $c_u = t \dot{J}_u$ should scale as

$$c_u = t \dot{J}_u \propto \frac{1}{\alpha_2} \propto -\frac{1}{d\Delta E / d\ln S}$$

Again, as written in section “Dependence on Temperature,” barriers must be augmented by the contribution of the interlayer water. Note that the viscosity of the interlayer water is considered not to depend on the layer thickness (i.e., the interlayer water is considered to behave like bulk water). Thus, in absence of any energy barrier induced by the interactions between the adjacent C-S-H layers, the apparent viscosity $\eta$ associated with the sliding of the C-S-H layers over each other must scale linearly with the inverse $1/d_\text{w}$ of the thickness $d_\text{w}$ of the interlayer water. Here, as calculated in the previous paragraph, $d_\text{w}$ is equal to the basal spacing from which $9.35 \text{~Å}$ must be subtracted. Therefore, the foregoing equation must be modified as
\[
    \dot{\nu} \propto - \frac{d w}{d \Delta E / d (\ln S)}
\]

(11)

The experimental data of Zhang, together with the prediction by the above equation, are displayed in Fig. 8(d), in which the two sets of values are made dimensionless by dividing them by their value at the relative humidity of 11%. Below the relative humidity of 60%, the model is in very good agreement with the set of experimental data, which is very satisfactory given the simplicity of the model. As was the case for the dependence on temperature (see section “Dependence on Temperature”), such good agreement of the model with experimental data can be surprising, since the actual viscosity of the confined interlayer water differs from that of bulk water, as it depends on confinement, i.e., on the water content. However, the crudeness of this approximation is somewhat comparable to the crudeness of the assumption that the depth of the energy well does not vary upon an increase of water content. Indeed, for hydrophilic surfaces, according to Raviv et al. (2001) and Sendner et al. (2009), the viscosity of confined or interfacial water does not differ from the viscosity of bulk water by orders of magnitude but by a factor of about three.

Above a relative humidity of 60%, this model overestimates the experimental data, and this overestimation increases with the relative humidity. This discrepancy can probably be explained, at least partly, by the fact that the adsorption isotherm used here [Fig. 8(b)] takes into account not only the water in the C-S-H interlayers but also the water elsewhere, e.g., adsorbed at the surface of the C-S-H globules (Jennings 2008). Therefore, the adsorption isotherm considered here overestimates the amount of water contained solely in the C-S-H interlayers. Other candidates to explain the discrepancy are the assumptions of the independence of the viscosity of interlayer water and of the depth of the energy well on confinement.

In any case, in spite of the discrepancy observed at large relative humidity, our model makes it possible to capture remarkably well how the long-term logarithmic creep of C-S-H depends on relative humidity below 60%. Recall that this model takes into account both the influence of the interactions between adjacent C-S-H layers and of the viscosity of the interlayer fluid (considered as a bulk fluid).

**Conclusions**

1. A model nano-scale system, made of two parallel solid layers separated by interlayer fluid, is a useful representative of the creep-generating microscopic building blocks in clay-based materials and in calcium silicate hydrates (i.e., C-S-H—the main hydration product in regular Portland cement).
2. The creep may be modeled by atomic interactions between two solid layers subjected to shearing that causes the energy barriers to be overcome and thus the two layers to slide over each other. The evolution of these energy barriers in the
presence of disjoining pressures and shear stresses can be studied numerically.

3. When the disjoining pressures and shear forces are considered proportional to each other, the energy barriers decrease linearly with the logarithm of the disjoining pressure, and they do so at a rate that is independent of the ratio between disjoining pressures and shear forces (Fig. 5).

4. This behavior is consistent with the microprestress theory, which makes it possible to explain why, in cementitious materials, the long-term creep evokes in time as a logarithmic function. The logarithmic feature of long-term creep of cementitious materials does not originate from a chemical specificity of C-S-H but could originate from the fact that, at the nanometric scale, C-S-H is a nano-porous layered material.

5. The analysis of experimental data on the long-term logarithmic creep of cementitious materials, with a focus on the creep kinetics, shows that the present model system is able to predict the observed effects of temperature (see section “Dependence on Temperature”) and relative humidity (see section “Dependence on Relative Humidity or Water Content”), provided that one takes into account (1) the energy barriers that need to be overcome in order for the two solid layers to slide over each other, and (2) the viscosity of the interlayer fluid. In particular, it is possible to fit the test data while considering the interlayer fluid (i.e., water in this study) to behave like a bulk fluid.

6. Although this study is focused on the cementitious materials (i.e., concrete), it can likely be extended to geomaterials, such as clays and clay-based materials, in which the basic microporous building units are also made of solid layers (i.e., phyllosilicates in the case of clay) with interlayer fluid. Indeed, clay-based materials are also known to creep logarithmically in the long term (Lambe and Whitman 1969).

References


