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The size effect of Muttoni et al.'s critical shear crack theory (CSCT) is shown to be
quite close (with differences up to 15%) and asymptotically identical to the ener-
getic size effect law (SEL), which has been extensively verified experimentally and
theoretically (and is adopted for the 2019 ACI Code, Standard 318, for both beam
shear and punching). However, the CSCT derivation and calculation procedure
obfuscates the mechanics of failure. It is shown to rest on six scientifically untena-
ble hypotheses, which would have to be taught to students as an article of faith.
They make CSCT untrustworthy outside the testing range; ditto for beams with T,
I and box cross section, or for continuous beams. The present conclusions are
supported by experimentally calibrated finite element simulations of crack path and
width, of stress distributions and localizations during failure, and of strain energy
release. The simulations also show the CSCT to be incompatible with the “strut-
and-tie” model, which is (for 2019 ACI Code) modernized to include the size effect
in the compression strut. Finally, further deficiencies are pointed out for the Modi-
fied Compression Field Theory (MCFT), currently embedded in the Model Code.
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1 | NATURE AND EVOLUTION OF SIZE
EFFECT FORMULAE IN DESIGN CODES

Half a century ago, experiments in Stuttgart,1–3 Toronto,4,5

and Tokyo6 established the existence of a strong size effect
in shear failure of reinforced concrete (RC) beams.
Weibull's7 statistical power-law size effect was already well
known at that time, but was also known to apply only to
structures in which formation of a small crack (or fractured
representative volume element of material) within any one
of many possible places in the structure volume generates a
dynamic crack propagation and causes immediate failure.

This is obviously not the case for shear failure of RC beams,
which tolerate extensive cracking and a long stable crack
growth before reaching the ultimate load.

Based on energy release arguments adapted to
quasibrittle fracture mechanics, a new energetic size effect
law (SEL), applicable to failures occurring after stable
growth of a long crack, as typical of shear failure of RC
beams, was formulated in 1984.8 Immediately,9 the SEL was
proposed to ACI for shear design of RC beams (as well as of
prestressed beams10). Subsequently it was shown to apply to
many types of failure in all quasibrittle materials,11,12 which
do not follow classical fracture mechanics. Aside from con-
crete, they also include tough ceramics, fiber composites,
rocks, stiff soils, sea ice, wood, stiff foams, bone, etc. The
SEL captures the transition from a nearly ductile behavior in
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small concrete structures to a nearly brittle behavior in large
ones. The reason for this ductile-brittle transition of struc-
tural response is the material heterogeneity, which causes
the fracture process zone (FPZ) to be long (cca 0.5 m in con-
crete vs. micrometers in metals), and non-negligible com-
pared to the cross section size.

The size effect theory based on quasibrittle fracture
mechanics had to wait three decades to win broad accep-
tance in the engineering community. This long delay was
mainly caused by various controversies generated by com-
peting explanations of size effect—for example, the fractal
nature of crack surfaces or of microstructure of concrete, the
role of boundary layer, and the effects of initial crack spac-
ing, of crack width, or of material randomness of various
kinds.

In the 1980s, a generally accepted theory of quasibrittle
failures was lacking. The Japan Society of Civil Engineers
(JSCE) and Commité Européen du Béton (CEB), apparently
thinking that “better something than nothing,” introduced
into their design specifications purely empirical equations
for the size effect on the ultimate shear force13 and on the
cracking shear force,14 respectively. Meanwhile, the ACI
committees, cognizant of the enormous staying power of
code specifications adopted by democratic voting of large
committees, and thinking cautiously that “better nothing
than something controversial,” spent three decades in lively
polemics until eventually deciding to adopt the SEL for the
beam shear, slab punching and strut-and-tie specifications
(which have been adopted for the 2019 version of ACI code,
Standard 318).

Meanwhile, fib (fédération internationale du béton), the
successor to CEB, made a change in its Model Code
2010.15 It adopted the size effect equations based on the so-
called “Modified Compression Field Theory” (MCFT) for
beam shear and critical shear crack theory (CSCT) for
punching shear.15–19 The MCFT uses elementary, suppos-
edly logical, arguments, in which the critical crack width,
w, and a certain strain, ϵ, estimated from the classical elas-
tic theory of beam bending, are imagined to be the failure
indicators. Model Code 201015 specifies in its
Equations (7.3-19) and (7.3-21) two approximations for
beam shear capacity without stirrups—Level I and Level
II. This paper will focus on Level II approximation.
Level I, which is treated (according to equation (7.3-21) in
Ref.15) as an approximation to Level II, will be only
briefly examined in the Appendix.

Currently, the so-called CSCT,18–20 extending a concept
advanced in 1991,21 is being proposed as an improvement of
Model Code 2010 for beam (or one-way) shear. The Swiss
Code22 has already adopted the CSCT for both the beam
shear and punching (two-way) shear, while Model Code
2010 has done so for the latter. The objective of this article
is to call attention to the errors in CSCT.

2 | HYPOTHESES UNDERLYING THE CSCT
THEORY

Careful examination shows that six hypotheses are
implicit to CSCT. The average (or nominal) shear
strength (or ultimate stress) in the cross section is denoted
as vu = VR/bd where VR is the resistant shear force pro-
vided by concrete; d = depth of the cross section from the
compressed face to the centroid of reinforcement;
b = width.

Hypothesis 1 The shear force, VR, carried by concrete at
maximum load is (in CSCT as well as MCFT)
assumed to be controlled by a characteristic
crack width w of the dominant crack leading to
failure.

Hypothesis 2 To express the size effect, it is assumed that
(Equation (1) in Ref.19):

vuffiffiffiffi
f c

p =
α1

1 +α2 w=ddg
� � , α1 = 1=3 inMPa,mmð Þ ð1Þ

where α2 is an empirical calibration constant; fc is the mean
compressive strength of concrete (both fc and

ffiffiffiffiffi
f c

p
is consid-

ered to be in MPa); and ddg is called the equivalent surface
roughness, calculated as ddg = min(dg + 16, 40 mm) where
dg refers the maximum aggregate size.

Hypothesis 3 The width of the dominant diagonal crack is
assumed to be proportional to the reference
strain, ϵ, that is,

w= α3ϵd, α3 = 120=α2 ð2Þ
where α3 is an empirical coefficient depending on α2, and ϵ
is an assumed reference strain, defined as the normal strain
in the longitudinal direction, x, at a certain characteristic
location, crossing the dominant crack (see the on-line equa-
tion above Equation (1) in Ref.19).

It may be noted that Hypotheses (1—3) could be merged
from the viewpoint of practical application. But here they
are better kept separate to clarify what are all the hypotheses
implied in the derivation of CSCT, and allow their separate
discussion in what follows.

Hypothesis 4 The reference strain, ϵ, is assumed to be the
longitudinal normal strain at distance d/2 from
the concentrated load P = VR toward the sup-
port, and at depth 0.6d from the top face of
beam (Equation (2) in Ref. 19).

Hypothesis 5 The reference strain, ϵ, assumed to control
crack width, is calculated according to the
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linear elastic beam theory based on Bernoulli-
Navier hypothesis of plane cross sections
remaining plane (Equations (2) and (3) in
Ref. 19), that is,

ϵ=
M

bdρEs d−c=3ð Þ
α4d−c
d−c

,

M =VR a−α5dð Þ, α4 = 0:6, α5 = 1=2 ð3Þ
and, according to the no-tension hypothesis of elastic flexure
of concrete beams with one-sided reinforcement (Ref. 19
Equation (4)),

c= α6d, α6 =
ρEs

Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

2Ec

ρEs

s
−1

 !
ð4Þ

where Ec, Es = elastic moduli of concrete and of steel rein-
forcement, ρ = reinforcement ratio, c = distance of the neu-
tral axis from the top face of beam (or the length of the
triangular profile of elastic compression stress), a = shear
span = distance between the concentrated load and the clos-
est end support.

Hypothesis 6 The foregoing equations, based on linear elas-
tic beam bending theory, are assumed to be
applicable at maximum (or ultimate) load of
beam, that is, at incipient shear failure under
controlled load.

The foregoing notations could be simplified by replacing
α1… α5 with numbers. But the general notations for the coef-
ficients are here preferred because the values of these coeffi-
cients may change if the CSCT is recalibrated on a larger
database (e.g., the ACI-445 database).

3 | BEAM SHEAR STRENGTH ACCORDING
TO CSCT ENSUING FROM THE
HYPOTHESES, AND COMPARISON WITH
ACI-446

In dimensionless form, ϵ in Equation (2) (Hypotheses 3, 5,
6) can be written as.

ϵ= γvu, γ =
a−α5d

ρEs d−c=3ð Þ
α4d−c
d−c

ð5Þ

Substituting ϵ from Equation (2) into Equation (1)
(Hypotheses 1, 2), one gets a quadratic equation for vu. Solv-
ing it gives:

vuffiffiffiffi
f c

p =
−1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4α1C1d

p
2C1d

, C1 =
α2α3γ

ffiffiffiffi
f c

p
ddg

ð6Þ

which coincides with Equation (5) in Ref. 19. Multiplying
both the numerator and denominator of the right-hand side
of this equation with 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4α1C1d

p
, a more instructive

form of this equation follows:

vuffiffiffiffi
f c

p =
2α1

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ d=dM0

q , dM0 =
1

4α1C1
ð7Þ

This equation is in a form readily comparable to the size
effect factor λ proposed by ACI Committee 445, Fracture
Mechanics. This factor has been adopted for the 2019 ver-
sion of ACI code (ACI Standard 318), and reads:

vu = v0λ, λ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ d=d0
p ð8Þ

where d0 is a constant, called the transitional size (in ACI
taken as 10 in.).

It needs to be pointed out that ACI also includes a hori-

zontal cutoff at vu =2
ffiffiffiffi
f 0c

p
(introduced by ACI-318E), which

is not considered here because it is justified by statistics
rather than mechanics, that is, by an increasing width of the
database scatter band on approach to smaller d, which causes
the lower bound of the scatter band at small sizes to be sta-
tistically almost independent of d.

An important feature is the asymptotics, which has been
solidly established by quasibrittle fracture mechanics and is
as follows:

For d=d0 ! 0 : vu = constant;

For d=d0 ! ∞ : vu ! d=d0ð Þ−1=2 ð9Þ
These asymptotic properties are satisfied by both formu-

lations. However, for the same transitional size, that is, for
dM0 = d0, the size effect curves of log(vu) versus log(d/d0) dif-
fer significantly and the large-size asymptotes do not coin-
cide; see Figure 1a.

Varying the ratio k= dM0 =d0 stretches the size
effect curve horizontally but does not change the asymptotic
slope of −1/2 in the log–log plot. Can the large size
asymptotes be made to coincide by varying the k? To answer
it, denote q = d/d0, consider that the small-size asymptotes

are matched, which occurs for α1
ffiffiffiffi
f c

p
= v0, and seek the

value of k for which the large size limit of the ratio of the
size effect expressions in Equations (7) and (8) equals 1,
that is,

lim
d!∞

vMu
vu

= lim
d!∞

2
ffiffiffiffiffiffiffiffiffiffi
1+ q

p

1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ q=k

p =1 ð10Þ

The limit is 2
ffiffiffi
k

p
and, equating it to 1, one finds that both

the small-size asymptotic value, α1
ffiffiffiffi
f c

p
= v0, and the large-

size asymptotic condition in Equation (10) get matched if
(Figure 1b):

k=1=4 or dM0 = d0=4: ð11Þ
Figure 1b shows that the difference, Δvu, between the

two curves asymptotically matched curves becomes 12.6%
at d = d0, which is not too large, though not insignificant for
design.
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Figure 1c further shows that if the curves are matched at
d0 = d, then the difference, Δvu, between the two prediction
curves becomes 14.4% at both the small-size and large-size
asymptotes. Again, this is not too large, though not insignifi-
cant for design.

It may also be noted that Equations (1) with (2) was
previously used in MCFT16,23 without the dependence of
w on ϵ, and was in this form adopted for the Level I
Approximation in Model Code 2010. In that case, the size
effect curve ended with asymptotic slope −1 instead of
−1/2, which is thermodynamically impossible. The change
to −1/2 was achieved by Muttoni and Fernández Ruiz's18

artificial modification that added the fictitious dependence
on ϵ and thus made w proportional to vu. This then led to
the quadratic equation for vu, Equation (5), and thus chan-
ged the asymptotic slope from the (thermodynamically
impossible) value −1 to the value −1/2 dictated by fracture
mechanics.

4 | DEFICIENCIES OF CSCT REVEALED
BY FE SIMULATIONS OF BEAM SHEAR
FAILURE

Certain key aspects of failure, such as finding where the
energy needed for fracture is coming from and where it is
dissipated, are virtually impossible to observe in experiments
directly. However, they can be revealed by extending experi-
mental results with a realistic computer model. Microplane
constitutive model M724,25 for softening damage in concrete,
combined in finite element (FE) element analysis with the
crack band model,26,27 is such a model, as proven in many

previous studies (Refs. 28–30, e.g.) and also verified in
Appendix 2 (which gives more information on the FE analy-
sis). We will pursue the FE approach now, examining not
only the energy flow but also other features important to
understand the shear strength, such as the stress distributions
across damage zones and along cohesive cracks, stress redis-
tributions due to fracture and the overall response of struc-
tures of different sizes and shapes.

For the size effect analysis to make sense, the modes of
failure, and particularly the shapes of dominant cracks in
geometrically similar beams of different sizes, must also be
geometrically similar. This fact has been experimentally best
documented by the tests of Syroka-Korol and Tejchman,31

as shown in figure 7 of Ref. 32.
Shear tests of geometrically similar RC beams of differ-

ent sizes, without stirrups, have been simulated with FE pro-
gram ABAQUS. The microplane damage constitutive model
M7 has been implemented in user's subroutine VUMAT.
The carefully conducted experiments of beam shear failure
performed in M. Collins' lab at the University of Toronto23

are chosen to calibrate the FE element code with constitutive
model M7, as detailed in Appendix 2.

Figure 2a shows, in relative coordinates scaled with the
beam size, the FE meshes for nearly similar beams of two
sizes, which are d = 110 mm and 924 mm (this gives the
size ratio 8.41:1). The FE size is the same for all beam sizes,
so as to avoid dealing with spurious mesh size sensitivity.
The blackened elements in Figure 2 show, for maximum
load Pmax, the locations of the highest longitudinal strains in
the element. Note that the band of blackened elements runs
faithfully along the upper side of main crack (the width of

FIGURE 1 Size effect comparisons of SEL and CSCT for beam shear
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the blackened band is the finite element width and has noth-
ing to do with the crack width).

4.1 | Localizing stress distributions

Figure 2a shows, to the right of the beams, the distributions
of longitudinal normal stress σx across the height of the liga-
ment (understood as the zone between the tip of the dominant
diagonal shear crack at Pmax and the top face). These distribu-
tions (which are similar to those in Ref. 33 and in figure 11 of
Ref.32) demonstrate how the stresses localize near the top
face as the size d is increased. It is evident that, in the smallest
beam, the material strength across the ligament is utilized
almost in full (for plastic behavior it would be mobilized
fully). In the largest beam, by contrast, the material strength
is, at Pmax, localized within only a small portion of the liga-
ment. This localization provides an intuitive explanation of
the size effect (see also Refs.33–35). What do these distribu-
tions have in common with the crack opening at depth 0.6d,
and generally with Hypotheses (3) and (5)? Nothing.

4.2 | Cross-crack stress transmission

Figure 2a reveals, for beams of two sizes, another relevant fea-
ture impossible to measure directly—the distribution of the
vertical stress component transmitted, at Pmax, across the crack.
The numbers at the vertical arrows represent, as a percentage
of tensile strength of concrete, the vertical stress transmitted at
Pmax across the diagonal shear crack due to the aggregate inter-
lock or cohesive softening. Here it is important to notice that,
except near the crack tip, the percentages are quite low, and
that they decrease markedly with the beam size.

Especially note in Figure 2a the vertical forces Vcrack

indicated as percentages of the total shear force, Vc = Pmax,
obtained by integrating the vertical cross-crack stress com-
ponents along the whole crack length. They represent for the
beams of small and large sizes, respectively, only 18 and
2.9% of the total shear force Vc. If the vertical force transmit-
ted at Pmax across the crack is so small, how could the crack
width, w, play any significant role? It could not. Therefore,
Hypotheses (2–5) are unjustified, unrealistic.

Figure 2b shows the vectors of minimum principal com-
pressive stresses (maximum in magnitude). They confirm
that the load just before the failure (i.e., at Pmax) is transmit-
ted mainly by a strip of concrete along the top side of the
crack. In the sense of the strut-and-tie model, this strip repre-
sents what is called the “compression strut.” The fact that
these vectors generally do not cross the crack means that the
force transmitted across the crack at Pmax is negligible. This
again contradicts Hypotheses (2)–(5).

4.3 | Scenario of energy release and dissipation

Most relevant for fracture is the energy picture, shown in
Figure 3. Fracture dissipates energy, and that energy must
come from somewhere. At controlled displacement, it must
come solely from the release of potential energy (i.e., strain
energy) from the structure. As proposed by Griffith in
1921,11 this release is a central tenet of fracture mechanics
of all types, including quasibrittle fracture. So we calculate,
for all the integration points of all the elements, the density
of strain energy released at unloading:

Π=
1
2
σTCσ ð12Þ

which is an important quantity that cannot be directly measured;
C is the 6 × 6 matrix of elastic compliances for unloading
(i.e., inverse of the elastic moduli matrix), and σ is the 6 × 1 col-
umn matrix of stress components, as affected by distributed frac-
turing (for simplicity, the unloading stiffness is considered the
same as the initial elastic stiffness). Then, considering all the
integration points, we calculate the change of energy density in
each integration point between these two states; in this case

ΔΠ=Π99−Π0 ð13Þ

FIGURE 2 (a) Longitudinal stress variation across ligament above the
main crack tip (on the right of beam) and variation of vertical stress
component along the diagonal crack, (b) the vectors of minimum principal
compressive stresses (maximum in magnitude) calculated for Toronto test
beams23
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which is the change from the value Π99 for the prepeak state
at load P = 0.99Pmax, to the value Π0 for the postpeak state
at which the load has been reduced to 0 (other states could
be chosen, too; but for states close to each other the changes
would have high numerical scatter).

The energy density difference ΔΠ represents the values
of energy density release at each integration point of the
finite elements. From all these values, one can compute the
contour plots of the zones of energy release density. These
zones are shown in relative coordinates in Figure 3, where
the zone of maximum density is shown as dark. Note that, in
actual coordinates, the dark band for the largest beam would
be much wider than for the smallest beam.

The dark band of the energy release may be imagined to
represent the “compression strut” of strut-and-tie model. The
strut is located wholly above the main crack. On top of the
strut, the energy release comes from damaging concrete, and
in the rest of strut from the unloading of undamaged con-
crete. The main diagonal shear crack does not contribute to
the dominant energy changes, especially not for large beams.
So how can it play a significant role in controlling the failure
load? Again this contradicts Hypotheses (3) and (5).

The essential idea of the SEL is that the total energy
release from the structure is a sum of two parts,
�Π= �Π1 + �Π2, where �Π2 is the total strain energy released by
unloading from the undamaged part of the structures whose
volume increases (for geometric scaling) quadratically with
the structures size (d in our case), and �Π1 is the total strain
energy released by unloading from the damaged part (trav-
eled through by the FPZ) whose volume increases linearly
with the structure size, whereas W, the energy dissipated
(which must be equal to �Π) increases always linearly with
structure size. The ratio of the quadratic to linear increases
immediately indicates that, for small enough sizes, the qua-
dratic part, �Π2, must be negligible compared to the linear
part, �Π1, while for large enough sizes it must be dominant.

In our problem, further evaluation of the FE results could
show that the total energy dissipation by fracturing damage
increases roughly linearly with the shear crack length, which

is proportional to beam size d, while the energy released
from the undamaged part of the dark band (or compression
strut) on the side of the main crack increases roughly qua-
dratically with d because not only the length but also the
width of the dark band (or the strut) in Figure 3 increases
roughly in proportion to d. Thus the mismatch of linear and
quadratic increase is the ultimate source of transition in the
size effect curve for beam shear.

The aforementioned energy derivation of the SEL, is,
in fact, much simpler than that of CSCT (see Appendix
3, and also the 1984 study8 in which the SEL was first
formulated). Energy conservation and dimensional analysis
is the essence of a fundamental but simple derivation of
the SEL as given in Equations (5)–(7) of Ref. 32 and
summarized in Appendix 3.

4.4 | Compatibility with modernized strut-and-tie
model

The strut-and-tie model (originally called Mörsch's truss
analogy, 1903) is generally considered to provide good
estimates of limit loads of concrete structures. In the
classical form, however, the strut-and-tie model misses
the size effect. In Ref. 36 it was shown how the strut-
and-tie model could be modernized by calculating the
balance of energy dissipated by compression-shear
crushing on top of the compression strut, with the energy
release from the intact and damaging parts of the com-
pression strut.

Recently it has become widely accepted that the strut-
and-tie model must be modernized by incorporating the size
effect into the compression struts (and this has actually been
adopted for ACI Standard 318-2019). In view of the forego-
ing observations about the energy release zone and the
energy dissipation zone on top of the strut, such a moderni-
zation is simple, obvious and logical—simply introduce the
size effect into the compression strut.

The concept of a modernized “compression strut”
exhibiting a size effect is in concert with the SEL, agrees
with the present analysis (Figure 4) as well as with the
conclusions in Refs. 33, 36. Does not this agreement
invalidate the hypotheses of CSCT? It certainly does. It
must be concluded that the CSCT approach is incompati-
ble with the modernized strut-and-tie model, whereas the
SEL is.

5 | UNFOUNDED AND SCIENTIFICALLY
DUBIOUS ASPECTS OF THE HYPOTHESES

Re Hypothesis 1. According to the FE simulations, the
crack width w is highly variable along the
crack length. Which opening, w, and at which
location and beam size, would produce the

FIGURE 3 Energy release zones in relative coordinates, calculated for
Toronto test beams23
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cohesive stress that matters for the ultimate
shear force vu? There is no answer.

Re Hypothesis 2. A basic concept of the cohesive crack
model, which includes cohesion due to the
aggregate interlock, is the decrease of crack-
bridging cohesive stress σc with increasing
crack opening width w. This is a property stud-
ied for concrete in great detail since 1980.37

Already by 1990 it became clear that Equa-
tion (1), with w appearing linearly in the
denominator, agrees neither with the experi-
mental evidence on postpeak softening of
cracks in concrete, nor with FE simulations. It
is now generally accepted that the cohesive
softening curve is approximately bilinear, with
a steep initial drop followed by a very long tail
(Refs. 38, 39 e.g.).

If the denominator of Equation (1) were anything but
linear in w, substitution of Equation (2) into Equation (1)
would not yield for CSCT a quadratic equation for
w (Equation (5) in Ref.18), and then the large size
asymptote of size effect would not have slope −1/2 in
log-scale. So the motivation for Equation (1) seems to
be to manipulate the derivation so as to obtain an

asymptote of slope − 1/2, which is by now a widely
accepted fact.

Re Hypothesis 3. Why should the crack width, and thus
the ultimate load and the size effect, be deter-
mined by the product of beam depth d with
strain ϵ at some specific location? That is a
fiction, and is impossible in fracture
mechanics.

Can one identify in the present FE results any character-
istic strain controlling the ultimate load? Certainly not. What
matters for fracture is the release of stored strain energy from
the structure and, in the case of cohesive (or quasibrittle)
fracture, also the tensile strength of material. Certainly not
any particular strain.

Re Hypothesis 4. This is a mystery. Why should the refer-
ence strain, ϵ, be taken at distance d/2 from the
concentrated load, and why at depth 0.6d from
the top face? These values are empirical,
resulting from an effort to match some of the
experimental evidence. Besides, these values
would surely have to change in the case of con-
tinuous beams and T, I, or box cross sections,
for which the moment-curvature relations are
different.

FIGURE 4 Comparison of test data: (a) from Ref. 23, (b) from Ref. 31, and (c) from Ref. 43 with finite element (FE) results and the size effect curves of
SEL (Equation (8)) and critical shear crack theory (CSCT) (Equation (1)) (Δvu are the percentage errors of CSCT compared to SEL fits)
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Re Hypothesis 5. Why should the reference strain, ϵ, be cal-
culated according to linear elasticity if, at ultimate
load, the concrete behaves highly nonlinearly,
due to cracking damage? This is a fiction.

And why, in the first place, should the strain be chosen
as an indicator of size effect? As is well known, in elastic or
elasto-plastic geometrically similar structures, the strain at
homologous points is the same for all structure sizes. To
overcome this inconvenient fact is what leads to the mystic
Hypothesis (3) (Equation (2)).

And why should the strain analysis use the classical
beam bending theory based on the Bernoulli-Navier hypoth-
esis, which applies only in the flexure of sufficiently slender
beams? Fiction again.

The FE analysis shows the initially plane cross sections at
ultimate load to be highly warped. Formulas to calculate ϵ based
on inelastic behavior would, of course, be awfully complicated.
But why to bother with calculating this strain at all? It is not the
cause of failure. The real cause of quasibrittle failures and size
effect is the overall energy release from the structure.

Re Hypothesis 6. The overall spirit of the size effect calcu-
lation in CSCT (as well as MCFT) is to avoid
fracture mechanics and replace it by some sort
of simple linear elastic beam analysis. But this
analysis is just an artifice, aimed to provide a
semblance of logic.

6 | CAN CSCT BE EXTENDED TO DESIGNS
OUTSIDE THE RANGE OF EXISTING
TESTS?

The bulk of the existing tests of size effect in beam shear
strength involved a relatively limited range of geometries, in
terms of shear-span ratio and reinforcement types, and did
not include continuous beams. It is questionable whether the
CSCT, beginning with the elastic strain at 0.6d depth, and at
distance d/2 from the concentrated load, could be applied to
such situations. It is also questionable, as pointed out earlier,
to apply the CSCT to other cross section geometries.

On the other hand, the size effect factor λ, Equation (8)
based on SEL, is, in principle, applicable to all quasibrittle fail-
ures (geometrically similar for different sizes), in which a long
stable crack develops prior to reaching the maximum load and
an unlimited postpeak plastic plateau is lacking (see also Appen-
dix 3). Generally, it suffices to multiply with λ the limit analysis
formula for the strength contribution of concrete that works for
small beam sizes. The only parameter that needs to be estimated
is the transitional size d0, although one can assume that it varies
negligibly within the normal range of geometries.

7 | SHOULD NOT THE DESIGN CODE HEED
THE IDEALS OF SIMPLICITY AND
GENERALITY?

The main problem with Equation (6) or (7) of CSCT is not
that it would be unsafe to a large degree. It is not. The prob-
lem is that the fictitious derivation obfuscates the mechanics
of failure and is much more complicated than necessary to
obtain a realistic size effect prediction. Just compare the der-
ivation discussed above with the general derivation of SEL
in Equations 4–7 in Ref. 32, based solely on the energy con-
servation and dimensional analysis (as summarized in
Appendix 3), or to the original 1984 derivation in Ref. 8,
based on approximation of energy release in presence of a
localization limiter, the characteristic size of the FPZ.

These, as well as several other, derivations of the SEL are
much simpler, and are based on only three hypotheses—the rel-
evance of energy release, geometrical similarity of the dominant
large crack in structures of different sizes, and the approximate
size independence of the FPZ (which represents a characteristic
length, as a material property). These hypotheses are obvious,
generally accepted, and generally applicable to many types of
structures and materials. These are all the quasibrittle materials
which, aside from concrete and mortar, also include the fiber-
polymer composites, tough ceramics, sea ice, many rocks, stiff
soils, masonry, wood, etc. They all exhibit the same kind of
size effect on nominal structural strength.

So why should the size effect in concrete be different?
Concrete shear failure is not as exceptional as the derivation
of CSCT suggests. Rather it is just one manifestation of a
typical size effect exhibited by many materials and struc-
tures. So why should the beam shear need a special deriva-
tion, not applicable to all the other similar situations? Is it
not strange that the purported derivation underlying the size
effect of the CSCT (or the MCFT and Model Code 2010)
cannot be transplanted to other quasibrittle materials? Why
should concrete, and the shear of beams, be so unique?

Besides, a formulation based on the energy release concept
of fracture mechanics (based on the work of Ballarini at North-
western in the 1980s) has already been used for a long time in
most design codes, to predict the shear failure in the pullout of
anchors from concrete walls, including the size effect. How
come that, for one type of shear failure of concrete, the fracture
mechanics basis of size effect is accepted in the Model Code,
while for another type of shear failure it is not?

8 | COMMENTS ON THE ANALOGOUS
PROBLEM OF SIZE EFFECT ON PUNCHING
SHEAR STRENGTH OF SLABS

As demonstrated in Refs. 28, 40 the punching shear strength
of slabs also follows the SEL derived from energy release
(and the SEL size effect factor is also adopted for the 2019
version of the ACI Standard 318). Nevertheless, an alternative
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size effect calculation based on CSCT, resting on elementary
mechanics of bending, was incorporated into Model Code
2010. Muttoni et al.41 adapted their CSCT to punching with
the modification that a certain reference slab rotation is used
instead of the reference strain. For punching they thus obtain a
size effect that ends with the asymptotic slope of −0.4 (instead
of −0.5), which is not correct but at least does not violate the
second law of thermodynamics. The hypotheses in the deriva-
tion are again unjustified and fictitious.

9 | CONCLUSIONS

1. The shear size effect of the CSCT exhibits the correct
small-size and large-size asymptotic behaviors, and appears
to fit the size effect test data almost as well as the energetic
SEL. Compared to SEL, the CSCT gives strength differ-
ences up to 14%, which are not large, though not insignifi-
cant for design. For CSCT, a nonlinear size effect
regression of a large database, such as that of ACI-445 in
Ref. 35, is lacking. The previous comparisons of SEL to
many individual tests of diverse geometries included in that
database have not been replicated for the CSCT.

2. The size effect of CSCT is based on a simplistic derivation
devised to give a semblance of logical support in mechan-
ics. The method of calculation of CSCT (as well as MCFT)
is misleading. It is a “cook-book” procedure that has no
logic and obfuscates the mechanics of shear failure. It
would have to be taught to students as an article of faith.

3. The CSCT is shown to rest on six implied hypotheses.
They are all physically unjustified. They involve applica-
tion of the classical one-dimensional elastic beam bending
theory to what is a multidimensional nonlinear problem
of fracture mechanics. The same can be said about the
hypotheses implied by the MCFT and Model Code 2010.

4. Finite element simulations with the M7 constitutive model,
calibrated and verified here by the classical Toronto tests,
extend the measured data by showing that, within the liga-
ment between the tip of the main crack and the beam top,
the stress profile is nearly uniform for small beams and
rather localized for large beams. This means that, at maxi-
mum load, the concrete strength gets mobilized, for small
beams, over almost the full length of the ligament while,
for large beams, within only short portion of the length.

5. According to finite element results, the energy dissipa-
tion during fracture comes mainly from a highly stressed
band on the side of the main shear crack and from a
small damage zone above the tip of that crack. The main
shear crack dissipates during failure almost no energy
and thus, contrary to CSCT, its opening width cannot be
what controls failure. This observation suffices to invali-
date the CSCT (as well as MCFT).

6. Because of the lack of support in mechanics, the CSCT
cannot be trusted for extensions to designs outside the
range of the bulk of the existing size effect test data, which

include different reinforcement types and shear spans, dif-
ferent cross sections, different distributions of shear force
and bending moment as in continuous beams, etc.

7. The CSCT, as well as MCFT, is incompatible with the
strut-and-tie model, while the SEL is, provided that the
size effect is incorporated into the compression strut
(which is already adopted for ACI Standard 318-2019).

8. The size effect of MCFT, incorporated into Model Code
2010, shows major deviations from the SEL. It has an
incorrect large-size asymptote that is thermodynamically
inadmissible and, consequently, it mispredicts the size
effect in large beams.
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NOTATIONS

a shear span
ac the length of the fracture or crack band at maxi-

mum load
b characteristic width of the beam cross section
bw width of beam
c compression zone thickness of beam
C 6 × 6 matrix of elastic compliances for unloading

(i.e., inverse of the elastic moduli matrix)
C1 variable defined in Equation (6)
c1, c2,
c3, c4

variables equal to 520, 1500c5
ffiffiffiffi
f c

p
, 1,000 and ddg

respectively
c5 variable defined in Equation (A3)
d depth of the cross section from the compressed face

to the centroid of reinforcement
dg maximum aggregate size
ddg equivalent surface roughness and equals to min

(dg + 16, 40 mm)
d0 transitional size which equals to materials' character-

istic lengths times structure shape parameters
d0
M transitional size equivalence in the CSCT's equation

E Young modulus
Ec, Es elastic moduli of concrete and of steel reinforcement
F variable defined in Equations (A4) and (A5)
f1, f2 derivatives with respect to β1 and β2 used in

Equation (C3)
fc mean compression strength of concrete
Gf critical value of energy release rate
k variable defined as k= dM0 =d0
kv the ultimate shear force normalized by fc

0.5

M bending moment
Pmax the maximum load
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q variable defined as q = d/d0
Vc total shear force
Vcrack the vertical forces transferred by the crack.
v0 average shear strength of concrete for vanishing

size d
VR resistant shear force provided by concrete
vu average shear strength
vMu average shear strength of concrete in MC2010
w crack width
W the energy dissipated (which must be equal to Π)
wc a material constant equals to the width of crack band

swept by FPZ
z effective shear depth of beam according to the

MC2010
α1…α5 coefficients which follows α1 = 1/3, α2α3=120,

α4 = 0.6, α5=0.5
β1, β2 variables defined as β1 = ac/d and β2 = wcac/d

2, see
Equation (C1)

ΔΠ change of energy density
ϵ longitudinal reference strain located below 0.6d of

the compression face and d/2 distance of the
applied load

γ variable defined in Equation (5)
λ size effect factor of SEL
Π density of strain energy released at unloading
Π99 strain energy density for prepeak state at load

P = 0.99Pmax

Π0 strain energy density for postpeak state at zero load
�Π1 strain energy released by unloading from the dam-

aged part of the structures
�Π2 strain energy released by unloading from the

undamaged part of the structures
ρ longitudinal reinforcement ratio
σ 6 × 1 column matrix of stress components
σc crack-bridging cohesive stress
σx longitudinal normal stress across the height of the

ligament
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APPENDIX 1: DEFICIENCIES AND
PROBLEMS OF MCFT AND OF MODEL
CODE 2010

Although the MCFT, featured in the existing Model Code
2010, is not the focus of this study, some points are worth
noting, for comparative purposes. The MCFT has more seri-
ous deficiencies than the CSCT. The Level I Approximation
of Model Code 2010 consists of Equation (1) in which the
value of w/d (and thus also ϵ) is not variable but is fixed.
This gives wα2 / ddg = 1.25z. Consequently, the large-size
asymptotic behavior is.

for d! ∞ : vu ! constant
d

ðA1Þ

Such asymptotic behavior is not supported experimen-
tally. It is, in fact, thermodynamically impossible. Extrapola-
tion to large sizes would severely exaggerate the size effect.
At the same time, since the transition from the small-size
(horizontal) to the large-size (inclined) asymptote is sharper
and narrower than it is for the energetic size effect law
(SEL), Equation (A1) underestimates the size effect in the
mid-size range if the size effect is fitted to the same small-
size data.

It may be noted that an equation of the same form as
(A1) was proposed in Ref. 42 It found its way into the 2004
Canadian CSA A23.3 shear design provisions. A similar cri-
tique applies.

The Level II approximation of Model Code 2010
(or MCFT, Equation (4a) in Ref. 17) is written as

vuffiffiffiffi
f c

p = kv, kv =
0:4

1+ 1500ϵ
1300

1000+ ddgz
ðA2Þ

which may be rewritten as

kv =
c1

1 + c2kvð Þ c3 + c4zð Þ with c2 = 1500c5
ffiffiffiffi
f c

p
, c5 =

a−d=2
2dρEs

ðA3Þ
in which c1 = 520, c3 = 1,000, c4 = ddg are constants.
Although this equation leads to a quadratic equation for kv
(different from Equation (1)), the asymptotic slope kv for z
! ∞ may be more directly determined by replacing kv with
a new variable F such that

kv =F=z ðA4Þ
Equation (A3) may then be rearranged as

F 1+ c2
F
z

� �
c3
z
+ c4

� �
= c1 ðA5Þ

Now, assuming that F is a constant, the limit of this
equation for z ! ∞ is F (1 + 0) (0 + c4) = c1, that is,
Fc4 = c1 or F = c1 / c4. This confirms our assumed con-
stancy of F to have been correct and that kv = (c1/c4) / z, or.
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for z! ∞ : kv =
constant

z
ðA6Þ

Such asymptotic behavior of Level II approximation of
MCFT and of Model Code 2010 is, of course, also thermo-
dynamically impossible, and thus untenable (same as for
Level I). It also reveals a lack of scientific basis.

Most of the hypotheses of CSCT also apply to MCFT,
and the previous criticisms need not be repeated.

APPENDIX 2: EXAMPLES VERIFYING
REALISTIC PERFORMANCE OF
MICROPLANE MODEL M7

The credibility of the foregoing FE analysis with model M7
depends on comparisons with experiments. Model M7
(whose coding can be freely downloaded from www.civil.
northwestern.edu/people/bazant/), appears to be the only one
that can match all types of material tests of concrete, as
shown in Ref. 25. The M7, calibrated by a part of the data
set on various structural tests, was shown to predict correctly
the rest of the data set (Refs. 25, 28, 32, 33, e.g.). Here we
show how well the M7 fits the strength and size effect of the
three trusted experiments of beam shear failure and size
effect23,31,43 (similar demonstrations were also made in Refs.
32, 33).

Figure 4 shows the fitting of these tests,23 used for cali-
bration of M7. In Figure 4a, four-point-bend specimens of
4 different sizes (with only approximate geometric similar-
ity) are simulated by finite elements (FE) using M7. The
smallest and the largest effective depths are d = 110 mm
and 925 mm. The flexural reinforcement ratio slightly varies
from 0.76% to 0.91%. The shear span ratio, a/d, is 3. The
mesh for concrete uses 3D continuum hexahedral elements
of size 12.5 mm, which are kept the same for all sizes in
order to avoid dealing with spurious mesh sensitivity due to
localization of softening damage. The reinforcement is
modeled with 2-node linear beam elements attached at nodes
to the elements of concrete. The smallest FE system has
1,457 nodes and 990 elements, while the largest one has
78,895 nodes and 58,347 elements.

Figure 4b shows the verification and calibration results
for tests conducted in Ref. 31. Beams of three sizes are
tested with a 4-point bending load configuration. The effec-
tive depths of beams are 160, 360 and 750 mm. The rein-
forcement ratio is 1.0% and the aspect ratio, a/d, is 3. The
maximum aggregate size is 10 mm. The element size is
20 mm, for all the sizes. 3D continuum elements with
reduced integration are used in explicit (dynamic) analysis.

Figure 4c demonstrates the results for Walraven tests43

for normal weight concrete. Three different sizes with effec-
tive depths of 125, 420 and 720 mm with four-point bending
configuration are modeled and calculated using 3D hex ele-
ments. The concrete strength is 34.2 MPa and the reinforce-
ment ratio slightly varies from 0.75% to 0.83%. Figure 4

also shows the differences in the ultimate shear strength pre-
dictions of CSCT for the used tests. The variation of the sec-
ondary parameters other than the size could result in very
high discrepancies for ultimate strengths between the SEL
and CSCT. For example, in Figure 4c, the difference reaches
to 29% for small sizes and doubles for d ! ∞.

APPENDIX 3. FOR COMPARISON: GENERAL
DERIVATION OF SEL FROM ENERGY
CONSERVATION AND DIMENSIONAL
ANALYSIS

The total release of (complementary) strain energy Π caused
by fracture is a function of both (a) the length ac of the frac-
ture (or crack band) at maximum load, and (b) the area of
the zone damaged by fracturing, which is wcac, where
wc = ndg = material constant = width of crack band swept
by FPZ width during propagation of the main crack, dg =
maximum aggregate size, and n = 2 to 3. Parameters ac and
wcac are not dimensionless, but can appear only as dimen-
sionless parameters, which may be taken as β1 = ac/d and
β2 = wcac/d

2, where d = beam depth. According to the
Buckingham theorem of dimensional analysis, the total
strain energy release must have the general form:

Π=
1
2E

P
bd

� �2

bd2 f β1,β2ð Þ ðC1Þ

where b = characteristic beam width (e.g., bw). In the case
of geometrically similar beams of different sizes, f is a
smooth function independent of d. Now consider the first
two linear terms of the Taylor series expansion f (β1, β2) ≈ f
(0, 0) + f1β1 + f2β2, where f1 = ∂f/∂β1, f2 = ∂f/∂β2, and
note that

∂f
∂ac

=
∂f
∂β1

∂β1
∂ac

+
∂f
∂β2

∂β2
∂ac

ðC2Þ

in which ∂β1/∂αc = 1/d and ∂β2/∂αc = wc/d
2. The energy

conservation during crack propagation requires that
[∂Π/∂ac]P = Gfb, where Gf = critical value of energy release
rate. This leads to the equation

f 1
d
+
f 2wc

d2

� �
P2

2bE
=Gf b ðC3Þ

After rearrangement, and using the notation vu = P/bd =
average (or nominal) shear strength due to concrete, Equa-
tion (C3) yields the deterministic (or energetic) size effect of
ACI-446 (now embedded in ACI-318-2019), with the size
effect factor λ given by Equation (8), in which d0 = wcf2 /
f1 = constant (independent of size d, transitional size charac-
terizing structure geometry). Q.E.D.

The hypotheses underpinning this derivation are two:
(a) The size, wc (width or length), of the FPZ at the front of
dominant crack is constant (a material property), and (b) the
failures are geometrically similar (this similarity is not listed
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here among the hypotheses of CSCT but is tacitly implied).
Energy conservation is not a hypothesis but a physical fact.
Neither is Equation (C1), which is dictated by dimensional

analysis. Note that the fracture mechanics had not to be spe-
cifically invoked in this derivation, although energy balance
is the quintessential basis of fracture mechanics.
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