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Abstract: A minimum mesh reinforcement, called the shrinkage and temperature reinforcement, has been required by ACI design code for
92 years to attain ductility with no formation of large localized cracks. The required steel ratio, which is 0.18%, has been empirical. In this
paper, it is shown that it can be explained theoretically and justified approximately by finite-element analysis of the size effect and crack
growth based on quasibrittle fracture mechanics, in which the microplane model M7 and crack band model are used. The premise, which
simplifies the analysis, is that the cracking would localize into wider cracks if and only if there is a size effect. The size effect can be
completely avoided only if, for the same cross-section area, the tensile strength of yielding reinforcement is greater that the tensile strength
of concrete. The effect of increasing the reinforcement ratio is also explored. The calculations indicate that fracture mechanics can, and
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designs such as in shear walls. DOI: 10.1061/(ASCE)EM.1943-7889.0001850. © 2020 American Society of Civil Engineers.
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Introduction

Since 1928, the American Concrete Institute design code ACI 318
has required a minimum reinforcement for concrete slabs and walls
(Suprenant 2002). It is called the shrinkage and temperature
reinforcement and consists of a rectangular mesh of reinforcing
steel bars. According to the current code [ACI 318-2019 (ACI
2019)], the steel ratio, ρ, must be at least 0.18% for each of two
orthogonal directions. In the previous code version, it was 0.20%
for Grade 40 or 50 deformed bars, and 0.18% (or 60,000=fy) for
yield stress fy > 60,000 psi (1 psi = 6,895 Pa). This reinforcement
limit, which has been empirical, approximately ensures that the in-
plane tensile stress caused by restraints under nonuniform early
shrinkage and thermal strain causes only fine distributed cracking
but no localized cracks wide enough for endangering durability
(Sule and Van Breugel 2004; Gilbert 1992; Mertol et al. 2010;
Kianoush et al. 2008; England and Ross 1962; Wei et al. 2017).
For modern concretes, one must also consider the autogenous
shrinkage, for which an accurate prediction formula has recently
been developed (Rasoolinejad et al. 2019).

The purpose of this study is to explain and justify this require-
ment by quasibrittle fracture mechanics. Such an explanation then
provides credence of applying fracture mechanics to ensure non-
localized distributed cracks in various more complicated situations,
such as slabs or shear walls with various boundary conditions or
with widely separated strong steel bars. Useful studies of the mini-
mum reinforcement have been presented by many authors
(Appendix I). None of them, however, approached the subject
from the viewpoint of quasibrittle fracture mechanics and its size
effect.

The shrinkage and temperature reinforcement, or generally the
minimum reinforcement of a slab or wall under tension, has the
purpose of limiting the maximum crack width wc. Localized cracks
wider than about 0.5 mm significantly enhance permeability to
various corrosive agents. However, as shown by Bažant et al.
(1987), hairline cracks of width 0.1 mm (or even 0.2 mm) do not
significantly inhibit flow along the crack because the contiguity
of the space within the crack is rather limited due to blockage by
surface roughness. There are two possible alternatives to ensuring,
by calculations, such a negligible crack width:
• Estimate by fracture mechanics the opening width of a possible

localized crack. This approach leads to a system of nonlinear
algebraic equations.

• Exploit the fact that a mesh-reinforced slab exhibiting a (deter-
ministic) size effect must also exhibit gradual postpeak soften-
ing, which in turn leads to localization of distributed fine
cracking into fewer and wider cracks.
The former alternative is tedious and only the latter is pursued

here. As for size effect tests, no reports are found in the literature
(they would be costly, and funding seems unobtainable at present).
Nevertheless, the crack band microplane model M7, used here, has
been shown in many problems to give results in agreement with
experiments. The practical consequence of softening and the locali-
zation of distributed cracking into wider cracks is that cracks wider
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than about 0.3 mm significantly enhance diffusion of moisture with
corrosive agents into concrete. However, diffusion analysis, pre-
sented by Bažant et al. (1987), is beyond the scope of the present
paper.

Size Effect of Mesh-Reinforced Concrete

It is by now well-established that quasibrittle fracture exhibits a
strong deterministic size effect. This fact is now recognized in
the new design specifications in ACI 318-19 (ACI 2019) by im-
posing on the concrete shear strength of reinforced beams and slabs
the size effect factor λs ¼ minf½2=ð1þD=D0Þ�−1=2; 1g [D0 ¼
25.4 cm ð10 in:Þ], based on Bažant’s size effect law (SEL), Eq. (1).
The size effect is a quintessential property of all quasibrittle mate-
rials. For concrete, which is archetypical, the fracture size effect has
been derived theoretically and amply documented by experiments
as well as finite-element (FE) simulations (e.g., Bažant and
Le 2017).

According to fracture mechanics, it is not enough to check the
crack formation for one slab size. Generally, it is necessary to con-
sider a broad range of sizes and make sure that localized cracks do
not propagate for any one of them. To that end, it suffices if the
maximum load of a cracked mesh-reinforced concrete slab does
not exceed the load at which the bars are yielding.

The simplest way to detect by computer simulations whether
distinct localized cracks can propagate through a mesh-reinforced
concrete slab is to analyze the size effect in geometrically similar
fracture specimens of different sizes D, in which a notch conven-
iently fixes where the crack would start growing. This study uses
standard notched three-point bend beams with a notch that cuts
through both the concrete and steel bars and reaches to depth
D=4, as shown in Fig. 1 (the smallest size). The beams with their
notches are geometrically scaled in the ratio 1∶8 and their depths are
D ¼ 0.4, 0.8, 1.6, and 3.2 m.

The reinforcement consists of a square mesh of steel bars with
spacing s ¼ 0.1 m in both directions. The mesh is considered as a
material property (homogenized for the purpose of analysis), and so
the bar spacing and diameter are not changed with the beam size
(the design code, however, allows increasing bar spacing with slab
thickness). According to the crack band model, whose purpose is to
avoid spurious mesh sensitivity, the finite-element size h must be
treated as a material property related to the fracture energy of
material, Gf . Accordingly, either h must be kept constant (in the
zone where fracture is expected) or, if h is adjusted, the postpeak
softening of constitutive law must be adjusted so as to preserve
constant Gf for the crack band. The latter saves computer time, but
the former is simpler and more accurate. So, h ¼ 25 mm is used in
all the present analysis.

The fracture size effect is usually described in terms of the
nominal strength of structure, which represents a characteristic

of the maximum (or ultimate) load, P, and is defined as
σN ¼ cuP=A, A ¼ bD, where D is the characteristic structure size
and cu is a dimensionless factor. For ductile failure of elastoplastic
structures, there is no size effect, i.e., σN is independent of D. But
this is not the case for concrete, as well as fiber composites, tough
ceramics, rocks, stiff soils, wood, and sea ice, among others. Such
quasibrittle materials can grow long cracks or damage bands in a
stable manner before reaching the maximum load. The energy re-
lease of such cracks causes an energetic (deterministic) size effect,
which is labeled Type 2 and has the following form (Bažant 1984):

σN ¼ σ0

�
1þ D

D0

�−1=2
ð1Þ

where D = characteristic structure size; σ0 = ultimate nominal
strength of structure for small sizes, for which the plastic limit
analysis is applicable; and D0 = transitional size, which represents
the size at the intersection of the small-size strength asymptote and
the large-size linear-elastic fracture mechanics (LEFM) asymptote.
The Type 2 size effect must be distinguished from Type 1, which
has both energetic and statistical causes, is typical of plain concrete,
and occurs in (unnotched) structures that fail as soon as a macro-
crack begins to propagate from one representative volume element
(RVE) in the structure.

Further, it has been shown (Bažant and Kazemi 1990; Bažant
and Planas 1997) that

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGf=cfg 0ðα0Þ

q
; D0 ¼ cfg 0ðα0Þ=gðα0Þ ð2Þ

where Gf = fracture energy (material constant); E = Young’s
elastic modulus; α ¼ a=D is the relative (dimensionless) crack
length; a = equivalent crack length; gðαÞ ¼ K2

I=σ
2
ND is the dimen-

sionless energy release function of LEFM, available in handbooks,
where KI is the stress intensity factor; α0 = initial value of α for the
notch tip; and cf ¼ a − a0 is the material characteristic length ≈
half-size of the fracture process zone (FPZ) (Bažant and Planas
1997).

FE Analysis with M7 and Crack Band Model

The concrete is here characterized by microplane constitutive model
M7 (Caner and Bažant 2012a, b), which is the last in a series of
progressively improved microplane models (Bažant and Oh 1985;
Bažant and Prat 1988). For convenience, a simple explanation
and the listing of advantages of this model are given in Appendix II.

As a simple way to avoid spurious mesh sensitivity due to
softening cracking damage, the FE analysis based on M7 is con-
ducted with the crack band model (Bažant and Oh 1983). Con-
ceived in 1983, this model is nowadays used in various commercial
software (e.g., ATENA, DIANA or, OOFEM and implicitly also in
ABAQUS). The correct energy dissipation is ensured by keeping
the element size constant (here equal to 25 mm) for all structure
sizes. In case the element size would need to be varied (which
is not needed here), the postpeak softening slope must be adjusted
according to the element size so as to ensure a localized crack band
to dissipate the same energy.

The steel is modeled by a simple elastic-plastic constitutive
model with no hardening. Young’s modulus is 200 GPa, and the
yield limit 400 MPa. Various bar diameters are used to represent
the variation of the reinforcement ratio ρ, whose values are 0.1%,
0.18%, 0.5%, 1%, 2%, and 5%, the same for both directions. For
comparison, plain (or unreinforced) beams are also simulated. The
spacing of reinforcing bars is kept constant and is equal to 10 cm
for all scales.

Fig. 1. Specimen geometry. D scales with the size whereas s remains
constant for all scales.

© ASCE 04020120-2 J. Eng. Mech.
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The M7 parameters were calibrated by test data from extensive
test data on uniaxial, biaxial, and triaxial compression and tension
under proportional and nonproportional loading (Caner and Bažant
2012a). Because no studies of the size effect in mesh-reinforced con-
crete have been found, the modeling was based on the standard
reinforcing steel properties and the concrete predicted by the default
parameters of M7 (Caner and Bažant 2012a) corresponding to
Young’s modulus of 25 GPa and compressive strength 40 MPa
(Table 1).

The steel is modeled by truss elements attached at nodes to
concrete finite elements, using the Embedded Region feature in
ABAQUS version 6.13. This was extensively discussed in the
1970s and 1980s (Shah and Ouyang 1991), and it was concluded
that the slip at nodes is important only for local behavior (Bažant
and Desmorat 1994). It is unimportant for global behavior such as
the size effect, especially for deformed steel bars, and for the open-
ing mode of fracture. The size effect is a global phenomenon, de-
pending on energy release from the whole structure. Commercial
FE programs such as ATENA or ABAQUS, which have been well
validated, ignore bar slip and, anyway, its proper consideration
would introduce major complexity because the slip is a fracture
problem whose force-slip relation exhibits postpeak softening with
localization instability (Bažant and Desmorat 1994).

The FE mesh for concrete consists of fully integrated hexahedral
(C3D8) elements. In the explicit analysis, the mass scaling factor of
4 is used. However, if the kinetic energy exceeds 1% of the strain
energy, the analysis is rerun without any mass scaling. To reduce
the computational cost, only half of the beam through the thickness
simulated, and the boundary condition of symmetry is applied in-
stead. The largest size included 60,000 elements (which required
running the computations on the supercomputer cluster Quest of
Northwestern University).

FE Fracture Analysis Results

The load-point displacement is incremented up to and beyond the
maximum load point. The computed results are presented for vari-
ous reinforcement ratios ρ and, for comparison, also for plain con-
crete (ρ ¼ 0). The results are plotted in terms of the nominal stress
defined as follows:

σN ¼ cu
P
bD

; cu ¼
3L
2D

ð3Þ

where P = midspan load; b = beam width; L = beam span; and D =
beam depth. Unsurprisingly, the simulations of unreinforced con-
crete beams [Fig. 2(a)] show a size effect that perfectly follows the
size effect law [Fig. 2(b)].

The fracture energy Gf is not used as the direct input of con-
stitutive damage models in general and the microplane model in
particular. Rather, the measured size effect in notched fracture spec-
imens is exploited to determine Gf and the characteristic fracture
process zone size cf , and the free parameters of the microplane
model are adjusted to match the given Gf . To this end, the Type
2 SEL is related to equivalent LEFM and is obtained from the linear
regression plot (Bažant and Kazemi 1990; Bažant and Planas 1997;
Bažant and Le 2017)

Y ¼ AX þ C ð4Þ

where X ¼ D; Y ¼ 1

σ2
N

ð5Þ

and A ¼ gðαÞ
EGf

; C ¼ cf
g 0ðαÞ
EGf

ð6Þ

From the regression plots in Fig. 3, one gets Gf ¼ 80 N=m
and cf ¼ 10.7 cm (4.25 in:). In theory, a homogenized composite
of concrete and reinforcing mesh should also posses its fracture
energy, but a simple formula seems impossible because the per-
centage of yielding steel bars in the damage zone varies (see
Appendix III). When the mesh-reinforced concrete is smoothed by
a macrocontinuum, its fracture behavior depends, of course, on the
bar spacing. The strength contribution of reinforcing mesh, which
is superposed on the strength contribution of the fracturing con-
crete, can be approximately predicted by the plastic limit analysis.

For the case of 0.1% reinforcement, the failure of concrete on
the tensile side controls the maximum load. However, as the dis-
placement increases, the load reaches a plateau, which corresponds

Table 1. Default values of the M7 model

Parameter Value Meaning

E 25 GPa Elastic modulus (and vertical scaling
parameter)

ν 0.18 Poisson’s ratio
k1 1.5 × 10−4 Radial scaling parameter
k2 110 Controls the horizontal asymptote value in the

frictional boundary
k3 30 Controls the shape of the volumetric boundary
k4 100 Controls the shape of the volumetric boundary
k5 1 × 10−4 Controls the volumetric-deviatoric coupling at

low pressures

(a) (b)

Fig. 2. Simulation results of plain concrete beams: (a) nominal stress versus relative displacement for three-point bend beams; and (b) corresponding
double-log size effect plot.

© ASCE 04020120-3 J. Eng. Mech.
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to plastic yield stress in reinforcement [Fig. 4(a)]. Compared with
plain concrete, for small sizes, the maximum stress does not change
much with the introduction of reinforcement. However, for large
sizes, as the stress at concrete failure gets close to the yield limit
of reinforcement, the effect of reinforcement on maximum load be-
comes significant. The size effect curve then deviates from the
straight line of LEFM asymptote of slope −1=2, and approaches
the yield stress value for large sizes (Fig. 5). Upon increasing
the reinforcement ratio to 0.18%, the yield plateau almost reaches
the tensile strength of the concrete [Fig. 4(b)]. For large sizes, the
reinforcement controls the maximum load. For small sizes, the
beams with different reinforcement ratios fail at about the same
strength (Fig. 5), which indicates the tensile strength in concrete
controls the maximum load.

The size effect plot for plain concrete beam (ρ ¼ 0) follows, as
expected, Bažant’s size effect law, Eq. (1). The size effect plot in
Fig. 5 for ρ ¼ 0.1%, shows a significantly weaker size effect than
for plain concrete. For ρ ¼ 0.18%, the size effect is, as expected,
virtually nil (although the homogenized stress in yielding steel ap-
proximately equals the strength limit of concrete).

The reinforcement is in full control for ρ ¼ 0.5 [Fig. 6(a)], and
the peak is no longer governed by concrete. For the largest sizes,
one gets softening. That is due to the crushing concrete on the com-
pression side. As observed previously in experiments (Bažant and
Ozbolt 1992; Bažant and Cedolin 2010), there is a size effect on the
slope of postpeak softening due to concrete crushing; the larger the
specimen, the steeper the softening, even though the peak nominal
stress does not change. The notched beams with ρ ¼ 1%, 2%, and
5% [Figs. 6(b–d)] show that the postpeak softening due to concrete
crushing is getting steeper with increasing ρ as well as with struc-
ture size. The steel bars on the compressive side contribute to

increasing the compression capacity of the beam and the peak load.
The effect of ρ is summarized in Fig. 7.

The simulation results for mesh-reinforced concrete indicate
that as the structure size increases, the limit stress of concrete fol-
lows the SEL, whereas the stress in yielding bars stays the same.
So, for low reinforcement ratios, the size effect emerges as long as
the yield limit of bars is less than the failure stress. For medium
reinforcement, the steel controls the maximum load, and no size
effect is observed. This case occurs when the yield limit of the bars
is higher than the tensile strength provided by concrete.

For low reinforcement, with a yield limit less than the tensile
strength of concrete at small sizes, the size effect descends from
a horizontal asymptote for concrete strength limit at small sizes
to a lower asymptote for yield limit at large sizes (Fig. 8). For a
strong enough reinforcement, the latter limit becomes higher than
the former, and then there is no size effect. A similar horizonal
asymptote is observed by the effect of crack-blunting damage
(Di Luzio and Cusatis 2018).

Shrinkage and Temperature Reinforcement

The shrinkage and temperature reinforcement ratio of ρ ¼ 0.18% is
required by the current code, ACI 318-2019, for all situations. This
is a safe approximation, but the reinforcement ratio and yield limit
still have some effect, which is the reason for the discrepancy be-
tween the codes of practice (Shehata et al. 2003).

Consider now the steel yield limit to be decreased to 250 MPa
and run the computations for the 0.18% case. Fig. 9(a) shows the
calculated curve of nominal stress versus deformation. The marked

Fig. 3. Linear regression of size effect data yielding fracture energyGf

of plain concrete.

(a) (b)

Fig. 4. Nominal stress versus relative displacement for three-point bend simulations of beams with (a) 0.10%; and (b) 0.18% reinforcement.

Fig. 5. Double-log size effect plot of the 0.10% and 0.18% reinforce-
ment beams.

© ASCE 04020120-4 J. Eng. Mech.
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softening seen on the curve for D ¼ 400 mm would cause locali-
zation of cracking into a distinct crack. The maximum load is con-
trolled by concrete for small sizes, and that is why the failure stress
is the same for both cases. Fig. 9(b) shows how, at large sizes, the
size effect curve depends on the yield limit of reinforcement.

The comparisons in Figs. 9(a and b) show that even for
ρ ¼ 0.18%, one must expect distinct cracks to form in slabs of
walls of larger sizes. Obviously, for low fy and large D, it would
be desirable to replace 0.18% with a formula for ρ as a function of
both fy and fte, and ρ having the form

ρmin ¼
fte
fy

ð7Þ

where fte = effective tensile strength of concrete which depends
on D, due to the size effect. The requirement for the minimum
of 0.18% is accurate only for normal concrete and yield limit
fy ¼ 413.7MPa ð60,000 psiÞ.

Conclusions

Based on the study carried out and the results obtained, the follow-
ing conclusions can be drawn:
• Cracking localizes into larger cracks if and only if

the size effect occurs. This is the premise of the present
approach.

Fig. 6. Nominal stress versus relative displacement for three-point bend simulations of beams with (a) 0.5%; (b) 1%; (c) 2%; and (d) 5%
reinforcement.

Fig. 7. Constitutive behavior of mesh-reinforced concrete.

© ASCE 04020120-5 J. Eng. Mech.
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• Quasibrittle fracture mechanics explains and supports the
92-year-old empirical requirement of ACI design code for mini-
mum reinforcement ratio of concrete slabs and walls, called the
shrinkage and temperature reinforcement, which is 0.18%.

• Fracture mechanics shows that weaker reinforcement cannot
suppress the size effect with the accompanying formation of
large localized cracks, and it cannot prevent postpeak softening.

• The minimum of 0.18% is only approximate. Knowing that the
shrinkage and temperature reinforcement has a fracture mechan-
ics justification validates the use of fracture mechanics to deter-
mine the minimum more precisely. The minimum reinforcement
required for suppression of fracture and the size effect depends
nonnegligibly on the steel yield limit, concrete strength, and
fracture properties. It undoubtedly also depends on the loads
applied in addition to shrinkage and temperature.

• The constitutive behavior of the homogenized steel–concrete
composite with mesh reinforcement varies strongly with the
reinforcement ratio. The concrete controls the fracture behavior
of this composite only for low enough reinforcement ratios.

• The size effect can be avoided only if, for the same cross-section
area, the tensile strength of yielding reinforcement exceeds the
tensile strength of concrete.

Appendix I. Brief Review of Previous Studies

Previous theoretical studies (Shehata et al. 2003) generally did not
consider the quasibrittle fracture and size effect. Baluch et al. (1992)

proposed an expression to predict the minimum flexural reinforce-
ment to avoid unstable crack propagation. Rao et al. (2008) docu-
mented that the beam size and flexural reinforcement percentage
matter, and also concluded that the necessary minimum percentage
of flexural steel reinforcement is inversely proportional to the beam
depth. Fayyad and Lees (2015) reached similar conclusions. Ozbolt
and Bruckner (1999) conducted numerical studies of reinforced con-
crete beams of different sizes and concluded that the requirement on
the minimum reinforcement depends on the beam size as well as the
material properties.

Rao et al. (2008) showed that the minimum reinforcement
ensures ductility of concrete structures. As documented by
Rasoolinejad and Bažant (2019), ductile response is controlled
by steel and does not show a size effect. For example, in a study
by Ghorbani-Renani et al. (2009), the walls exhibited ductile
behavior and no size effect, whereas in another study by Maier
and Thürlimann (1985), walls showed nonductile behavior for
which a size effect must be expected (Rasoolinejad and Bažant
2019). During the Canterbury earthquake, some reinforced con-
crete walls formed a single crack in the plastic hinge region as
opposed to distributed cracking (Henry 2013), which indicated lack
of proper reinforcement of the wall.

Determining the minimum reinforcement ratio is critical for the
design of concrete pavements (McCullough et al. 1976). Pavements
are continuously under environmental stress, and minimum thermal
and shrinkage reinforcement ensures ductile behavior and sup-
presses crack localization. This reinforcement is usually provided

Fig. 8. Size effect of mesh-reinforced concrete.

(a) (b)

Fig. 9. Simulation results of 0.18% reinforced beams: (a) nominal stress versus relative displacement for three-point bend beams with 0.18% re-
inforcement ratio and fy ¼ 250 MPa; and (b) size effect plot for beams with 0.18% reinforcement.

© ASCE 04020120-6 J. Eng. Mech.

 J. Eng. Mech., 2020, 146(10): 04020120 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Is
ta

nb
ul

 T
ek

ni
k 

U
ni

ve
rs

ite
si

 o
n 

08
/1

1/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



by a steel mesh inside the concrete slab. In the case in which fiber-
reinforced concrete (FRC) is used, the size effect exists but it may
depend on the fiber type and geometry (Bažant et al. 2019).

Appendix II. Explanation and Advantages of
Microplane Model

In this model, the microplane strains are assumed to be the projec-
tion of the continuum strain tensor. In an explicit algorithm, a vec-
torial constitutive law is used to calculate the stress vectors from the
strain vectors on each microplane, which represents a kinematic
constraint. The stress vectors are then used in the principle of
virtual work to obtain the continuum stress tensor at each integra-
tion point of finite element. The idea of expressing the constitutive
law in terms of vectors instead of tensors was first introduced by
Taylor (1938) for the plastic (nonsoftening) polycrystalline metals.
It was refined by Batdorf and Budiansky (1949) and others, and has
been used until today in the so-called Taylor models for metals,
in which microplane stress (rather than strain) vectors are calcu-
lated from the continuum stress tensor. This represents a static
rather than kinematic constraint. However, in 1983, it was found
at Northwestern that for softening damage, the static constraint
must be replaced by a kinematic constraint (cf. Caner and
Bažant 2012a). This led to microplane models for concrete, soils,
rock, and composites, among others. The microplane model has
five main advantages over the classical tensorial models such as
Mohr-Coulomb or Drucker-Prager:
1. The vectorial, rather than tensorial, form of the microplane

constitutive model has the advantage that constitutive behavior
can be directly related to tensile crack opening, compression
splitting, and frictional dilatant slip.

2. In tensorial constitutive laws, internal friction is expressed
vaguely as a relation between the first stress invariant and
second deviator invariant. In reality, the frictional slip happens
only on one or two planes of distinct orientations, which is re-
produced by the microplane model. Consequently, in the micro-
plane model, the dilatancy ratio can be different from the friction
coefficient without violating thermodynamic restrictions, and
thus there is no need for nonassociated tensorial plasticity mod-
els violating thermodynamics, which lead to convergence loss
(the microplane model is perfectly robust in computations).

3. A big practical advantage is that the microplane model can cap-
ture the vertex effect, e.g., the fact that a shear-stress increment
that is superposed on large uniaxial compression and is parallel
to the loading surface in the stress space has an incremental
stiffness much softer than elastic (even three times lower for
concrete), whereas all the classical tensorial models, such
as, Mohr-Coulomb, Drucker-Prager, von Mises, as well as
the models currently in commercial software such as ABAQUS,
give, incorrectly, the elastic incremental stiffness.

4. As another advantage, the microplane model captures the fact
that for hydrostatic compression, as well as uniaxial compres-
sive strain, no strength limit and no postpeak softening exist,
whereas in lesser confinement, it does.

5. A further advantage is correct modeling of hysteretic loops,
response to cyclic loading, and subcritical fatigue crack pro-
pagation up to several thousand cycles (in agreement with
Paris law).
An early objection to the microplane model was its computa-

tional demands. Indeed, for a system of 10 finite elements, the
microplane model may run 10 times longer than a tensorial con-
stitutive law. But for a system of 10 million finite elements,
routinely used today, the difference in running time is <1% because

the computer time increases only linearly with the constitutive law
but quadratically with the number of unknowns.

Appendix III. Alternative Calculation of Minimum
Reinforcement from Tolerable Crack Opening Width

Consider a macrocrack in an infinite slab of unit thickness sub-
jected to remote uniaxial or biaxial tension σN . The length of open
crack, 2a0, is considered as variable. The half-length of the FPZ at
the crack front is cf , and the length of the equivalent LEFM crack is
2a, where a ¼ a0 þ cf . Because concrete undergoes distributed
through-thickness cracking, its stress may be taken equal to its ten-
sile strength, ft, which means one neglects the postpeak softening
in concrete. Equating σ2

N , expressed from the size effect law, to σ2
N ,

expressed from the sum of stresses in concrete and steel, yields the
following condition:

EefGf

kða0 þ cfÞ
¼ ðft þ ρσsÞ2; σs ¼ minðfy; fsÞ ð8Þ

where Eef ¼ Ec þ ρEs; fs ¼ Esε̄s; ε̄s ¼ wc=l0 ð9Þ

where a0, being the only length present, plays the role of structure
size D; k = constant characterizing the structure shape, where for
the case of infinite space, k ¼ π, which is derived from the fact that
for LEFM, the stress intensity factor is KI ¼ σ

ffiffiffiffiffiffi
πa

p
; ε̄s = average

strain in steel bars crossing the cracks; fy and fs = yield and elastic
stresses in steel; the command min is used to decide whether
the steel is elastic or yielding; l0 = length of the embedded steel
bar segments along which the bars slip against concrete; and wc =
average crack width, which can be approximated from the asymp-
totic near-tip field of a LEFM crack

wc ¼
ffiffiffiffiffiffiffiffiffiffi
32=π

p
KI;efa0=Eef; KI;ef ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

EefGf

p − KI;s;

KI;s ¼ σs
ffiffiffiffiffiffiffiffi
πa0

p ð10Þ

where KI;s = stress intensity factor due to stress σs in steel approx-
imately treated as a uniform closing pressure acting on the concrete
crack faces.

The objective is to calculate the reinforcement ratio for which
the crack width would not exceed a specified value, e.g., wc ¼
0.2 mm. The values of Ec, ft, Es, fy, Gf , and cf must be given
as the input. The problem is nonlinear and can be reduced to
coupled quadratic equations with inequality constraint due to the
min. The solution appears to be too complex to offer good insight.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository online in accordance with funder
data retention policies. Some or all data, models, or code that sup-
port the findings of this study are available from the corresponding
author upon reasonable request.

The coding of M7, directly usable as a material subroutine in,
e.g., VUMAT of ABAQUS, can be freely downloaded from
Bažant’s website: www.civil.northwestern.edu/people/bazant.
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