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Abstract: In shear failure, reinforced concrete (RC) beams always develop, in a stable manner, a finite length crack before the maximum
load is reached. Thus, the crack tip location cannot sample a large volume of material with random strength because a small region in which
the crack tip can lie is fixed by fracture mechanics. Consequently, the size effect on the mean strength cannot be statistical. It must be
predominantly energetic or deterministic and, thus, must follow the Type-2 size effect law. What has not yet been clarified is the size effect
on the coefficient of variation (CoV) of beam strength, which is important for anchoring the probability distribution of shear strength and
choosing the safety factor. In this study, we run thousands of explicit finite element simulations using Abaqus-Explicit version 6.14 with
microplane model M7, each with a random input of material strength and Young’s modulus for each finite element in the structure. The CoV
of beam strength is found to decrease with the structure size when geometrically similar beams are compared, although the CoV tends to a
constant for large sizes. This size effect on the CoV is similar to that in ductile failure governed by a Gaussian distribution of strength and
contrasts with that in brittle failures following the Weibull distribution, for which the CoV is size independent. To characterize the size
dependence of the strength CoV, an analytical formula is developed based on the statistics of the sample quantiles of a series of random
variables. DOI: 10.1061/(ASCE)EM.1943-7889.0001879. © 2020 American Society of Civil Engineers.

Introduction

The reliability of reinforced concrete (RC) structures is a major
concern in modern structural design. When assessing the strength
and reliability of RC beams, one crucial aspect size is the size ef-
fect. How structural strength scales with structure is already known
reasonably well (Bažant and Yu 2009). However, how does the
strength scatter scale?

A large majority (in fact, 87%) (Yu et al. 2016) of all available
laboratory test data are based on relatively small beams, with a
depth smaller than 20 in. (508 mm), whereas in practice, much
larger beams are critical and often designed. Due to this discrep-
ancy between laboratory and practice, relying on a theoretical and
realistic size effect law to extrapolate from smaller beams tested in
the lab to much larger ones in practice is inevitable.

When studying the deterministic failure of quasi-brittle materi-
als, two types of size effects exist on structural strength. The Type 1
size effect (Bažant and Yu 2009; Yu et al. 2016; Dönmez and Bažant
2019) occurs in structures that fail (under load control) catastrophi-
cally as soon as a macrocrack initiates somewhere in the structure.

Particularly relevant to the current paper is the Type 2 size ef-
fect law (Bažant and Kazemi 1990; Bažant 1984), which is typical
for RC structures and has recently been incorporated into the ACI
design code (ACI 2019) for beam shear, punching, and strut-and-tie
design. The Type 2 size effect occurs when geometrically similar
cracks develop stably prior to the peak load, which is common for
RC structures due to the reinforcement action (Kim and Park 1994;
Kwak et al. 2002; Kuo et al. 2014; Chao 2020; Daluga et al. 2017;
Sherwood 2008; Mahmoud and El-Salakawy 2016; Ghannoum
1998). It also applies to specimens with pre-existing large notches.
The Type 2 size effect is caused by the size dependence of the strain
energy release rate due to crack advance at the critical state of maxi-
mum load.

Apart from the deterministic size effect laws, also important is
the statistical size effect that arises from the random heterogeneity
inherent to the material (Le et al. 2011; Bažant 2002). This leads
to a scaling relation for the mean strength and its coefficient of
variation (CoV). Knowing such scaling is necessary to evaluate the
reliability of engineering structures, especially at the one-out-of-
one-million (10−6) failure risk level required for structural safety.

In concrete, its heterogeneity and the irregular geometry of
grains lead to considerable variability in the overall structural re-
sponse. As is typical of quasi-brittle materials, the strength of plain
concrete follows the Gauss-Weibull statistical size effect. This size
effect means that the strength decreases as the structure size grows,
terminating with the asymptotic slope −n=m in the plot of the log-
mean of strength versus logD. Here,m is the Weibull modulus, and
n ¼ 1, 2, or 3 is the number of spatial dimensions in which the
structure is scaled. For not too wide beams, the proper choice is n ¼
2 because the shear fracture must advance simultaneously through
the entire beam thickness. The CoV of material strength is a con-
stant for the large size limit, which is a consequence of the Weibull
tail of the strength distribution.

The Weibull statistical size effect is not directly applicable to
reinforced concrete structures. Because of the reinforcement effect,
the fundamental hypothesis of Weibull statistics (Fisher and Tippett
1928; Weibull 1939; Bertin and Györgyi 2010) is invalid—the local
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failure of any representative volume element (RVE) can no longer
trigger a catastrophic failure of the entire structure. Because the
reinforcement stabilizes the shear crack propagation, the peak load
is reached only after the growth of a long crack. Consequently, the
strength variability and its statistical distribution do not follow
Weibull statistics and need to be studied.

As the continuation of a previous work in ICOSSAR proceed-
ings (Bažant et al. 2013), this paper studies the scaling of the failure
probability of RC beams without stirrups and analyzes the CoV
of structure strength. We first introduce the concept of sample
p-quantiles (Walker 1943; Stigler 1973; Mood 1950; Samuel-Cahn
1994; Leadbetter et al. 2012) of strength statistics to model the fail-
ure probability of RC beams, and then combine it with Monte Carlo
numerical simulations. Finally, we analyze the large size limit of the
CoVof strength that helps evaluate the reliability of reinforced con-
crete structures.

For the numerical simulations of stochastic damage and crack
evolution in quasi-brittle materials, the discrete models (Bolander
and Saito 1998; Cusatis et al. 2011) have been favored because they
can directly represent a lattice system with the randomly irregular
intergranular connectivity on the mesoscale. Some valuable quali-
tative findings on random behavior can be obtained from such sim-
ulations. For instance, a large amount of microcracks are found at
the peak load in plain concrete simulations (Man and Van Mier
2011). The randomness in notched beams affects only the variability
of their strength but not the mean behavior (Eliáš et al. 2015). Rep-
lication of the mesoscale structure of concrete in these models helps
obtain realistic results. However, this comes at the price of the high
computational cost of the simulations of large structures.

To reduce the computational cost and enable running fast
enough numerous Monte Carlo experiments, we opt for an explicit
model, the microplane model M7 (Caner and Bažant 2013a, b) em-
bedded in the framework of finite element analysis. Instead of mod-
eling the random intergranular connectivity on the mesoscale, we
use regular finite elements with random material properties to ac-
count for the material heterogeneity of concrete. The random prop-
erties are sampled from a Gauss-Weibull distribution with the
m-value (Weibull modulus) being less than the macroscale value of
24 according to the hierarchical probabilistic model (Bažant and
Pang 2006, 2007; Le et al. 2011).

For mechanicians, the term “beam shear” calls for an explana-
tion. The shear crack actually grows as a Mode I (opening) crack.
It is called a shear crack because it is created by shear force in the
RC beam.

Model Configuration

Because the size effect is a quintessential property of concrete
fracture, we consider beams of three total depths: H1 ¼ 200 mm,
H2 ¼ 400 mm, and H3 ¼ 800 mm (Fig. 1). The corresponding
effective beam depths (from top face to steel centroid, excluding
the concrete cover) are D1 ¼ 160 mm, D2 ¼ 360 mm, and D3 ¼
740 mm. The beams of all sizes are geometrically similar in two

dimensions; that is, only the lengths and depths are scaled, whereas
the thickness b is kept constant at 20 mm. This avoids the minor but
nonnegligible wall effect, which would complicate the evaluation.
The choice of dimensions is based on important previous test data
for shear failure of reinforced concrete (RC) beams (Syroka-Korol
et al. 2014). Because the concrete cover, H −D, does not appreci-
ably contribute to the beam strength, D rather than H is considered
as the characteristic dimension. The relative shear span a=D ¼ 3 is
kept constant to ensure geometric scaling.

The RC beams are subjected to four-point loading under dis-
placement control. For simplicity, the rebar is modeled by truss el-
ements using Young’s modulus of 200 GPa. The truss elements’
nodes rigidly attached to the concrete elements’ nodes. To reduce
the computational cost, the reinforcing bar is attached to only one
surface of the specimen on which the boundary condition of sym-
metry is applied; thus, the equivalent specimen thickness is 40 mm.
The reinforcement ratio ρ is set to 1.2% for all three beam sizes and
is chosen the same as in the experiments in (Syroka-Korol et al.
2014). This ratio prevents the steel from yielding. As a conse-
quence, almost all specimens fail right after the peak load if load
control is used. The simulation results subsequently indicated here
confirm this behavior.

In simulations with the crack band model (Bažant and Oh 1983;
Bažant and Planas 1998), which we adopt to avoid spurious mesh
sensitivity, the element size is dictated by the fracture energy, Gf .
Based on the aggregate size and experience with typical concrete,
we use finite cubical elements of dimensions 20 × 20 × 20mm.
The element type is C3D8R, that is, a cubic element with reduced
integration. The damage constitutive law of concrete is the micro-
plane model M7, which is implemented in ABAQUS as a VUMAT
subroutine for damage and failure of concrete (Caner and Bažant
2013a, b).

Young’s modulus, E, and radial scaling parameter, k1, of the
microplane model, which jointly controls material compression
strength, are here randomized on the basis of the grafted Gauss-
Weibull distribution (Le et al. 2011; Bažant and Pang 2007). Even
though both Young’s modulus and strength are random, they are
strongly correlated. For simplicity, we consider them to be perfectly
correlated, related by the approximate ACI formula E ¼ 4735

ffiffiffiffiffi
f 0
c

p
(fc;E in psi). This means that, for instance, an element of high
strength will also have a high Young’s modulus. Furthermore,
based on experience, we assume the autocorrelation length of the
random field to be equal to the width of the fracture process zone,
which is approximatley equal to the element size. Therefore, the
autocorrelation need not be considered in the finite element simu-
lations as long as the element size does not change, which ap-
plies here.

At the beginning of each run, random numbers are first gener-
ated for each element (and for each Gauss point due to reduced
integration). They are based on a grafted distribution with Gaussian
core of mean μ ¼ 9 and standard deviation s ¼ 1.843, and with a
remote lower Weibull tail.

Because the magnitude of the M7 model parameter k1 in deter-
ministic simulations is on the order of 10−4, the random value of k1
for each element is evaluated by dividing the generated random
numbers by 105. Young’s moduli are generated in a similar fashion.
To guarantee that each element has a unique pair of randomized
strength and modulus, the random properties are assigned according
to the element index that has passed into the VUMAT subroutine.

Fig. 2 indicates one random realization of the material properties
of the beam. To visualize the result, the dimensionless random num-
ber is stored in the state variable SDV190 in Abaqus. The darker
the shade, the stronger (and also stiffer) the element. Apart from theFig. 1. Geometry of RC beam.
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randomized model parameter k1, other major M7 parameters are
given in Table 1.

For each beam size, one thousand Monte Carlo finite ele-
ment simulations of shear failure with random parameters were run.
The maximum shear forces V are obtained from the recorded load-
displacement curves, after which they are normalized to the nomi-
nal strength of the beam according to σN ¼ V=bD, where b = beam
thickness.

Size Effect on Mean and CoV of
Nominal Shear Strength

Is Crack Growth a Random Process?

The diagonal shear crack initiates at the longitudinal reinforcement
at the bottom of the beam and then propagates upwards in a stable
manner under increasing load. At peak load, the crack front lies
approximately at a 0.2D distance from the top face of the beam.
The location of the crack initiation at the bottom is random over a
much broader range, as observed in Fig. 3, in which the crack paths
from tests at various beams sizes, scaled to one size, are collected.
In perfunctory discussions, it was sometimes thought that the crack

should be treated like a Markov process, or some other random
process, leading to an even greater spread of the random tip loca-
tions at peak load.

However, the opposite is true, as experimentally best demon-
strated by Syroka-Korol and Tejchman; see Fig. 3. If no random
scatter is considered, fracture mechanics forces the crack tip to
lie at peak load at a certain precise location. If the random scatter
is considered, fracture mechanics forces the tip to lie in a rela-
tively small region—much smaller than the region of crack initia-
tion points at the bottom. Thus, the cracks widely scattered at the
bottom tend to converge to this region. Therefore, the random
spread of the crack tip location at peak load is much smaller than
the random spread of the crack initiation point. Therefore, random
process modeling of shear crack growth would not be realistic un-
less subordinated to fracture mechanics, which would be difficult
and is unnecessary.

Mean Size Effect on Strength

Despite the randomness considered in the model, we must consider
the mean behavior of the RC beam to be dominated by the quasi-
brittle fracture mechanics (Bažant and Kazemi 1990; Bažant and
Planas 1998) and analyze it deterministically. Fig. 4 indicates the
idealized diagonal shear crack at peak load. As argued in Bažant
(1997) and demonstrated in Yu et al. (2016) and Dönmez and
Bažant (2019), the tensile stress across the crack (called aggregate
interlock stress), as well as the Mode I fracture energy, is at peak
load reduced virtually to zero, and the failure at peak load is caused
by crack-parallel compression. This is documented by the field of
vectors of principal compressive stress at peak load, computed in
(Dönmez and Bažant 2019) and displayed in Fig. 5. The shear-
compression crushing of element Δa in Fig. 4 causes a slip of the
cross-hatched wedge-shaped zone and diminishes the compression
stress and strain energy in that wedge.

Fig. 2. One realization of random strength and modulus of median-size RC beam (H ¼ 400 mm). The darker the shade, the stronger the element
(in terms of strength and stiffness).

Table 1. Microplane M7 model parameters for concrete

Parameter Value

E ðMPaÞ ∼2.5 × 104

ν 0.18
k1 ∼1 × 10−4
k2 110
k3 30
k4 100

Fig. 3. Crack patterns documented in scaled beams of different sizes. Fig. 4. Idealized intuitive fracture increment at peak load.
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Imagine the shear crack to extend by the distanceΔa. Similar to
all quasi-brittle materials, the width, wc, of the fracture process
zone (FPZ) of the crack, simulated as a propagating crack band,
is approximately a material constant and is size independent. To
satisfy the energy balance of the fracture process, the elastic energy
released in the entire structure during incremental crack advance
Δa must equal (per unit beam thickness) the work of the fracture
dissipated by Δa

−ŪðΔAc þΔAÞ ¼ GfwcΔa ð1Þ
where Ū = strain energy increment at peak load; A = area of major
strain energy release; ΔAc = area of increment crack band; and
Gf = average fracture energy of concrete (mixture of mode-I).
The region of significant energy release is a band above the crack
increment (see shaded area in Fig. 4). We then express the average
energy density change as Cσ2

N=2E, where C = constant due to geo-
metric similarity, to take account of the spatial variation of the strain
energy. Let the length of the energy relief band be ac; then, Eq. (1)
reduces to

C
σ2
N

2E
ðkacΔaþ wcΔaÞ ¼ GfwcΔa ð2Þ

where k = direction cosine that projectsΔa to the width direction of
the compressive strain energy release band. Rearranging Eq. (2)
and leaving σN on the left gives

σN ¼ σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD=D0

p ð3Þ

where σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EGf=C

p
, D0 ¼ wc=ðkαcÞ, and αc ¼ ac=D. This is

the classical Type 2 deterministic size effect (Bažant 1984; Bažant
and Kazemi 1990; Bažant 2002). Note that Young’s modulus E and
fracture energy Gf are actually random variables for each element;
therefore, the quantities in this mean size effect relation [Eq. (3)]
are their expected values.

Size Effect of CoV of Strength

Sample p-Quantiles
Although the size effect on the mean shear strength of RC beams is
dictated by fracture mechanics, the scatter of nominal strength, in
terms of the variance and coefficient of variation, is rooted in the
randomness of the material. We start from the mean size effect
relation, Eq. (3), and allow its parameters to take random values.
For instance, we let σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EGf=C

p
be random, where E and Gf

no longer take the mean values. Because the parameters in the size
effect relation do not refer to an arbitrary element in the structure

but to the critical shear crack increment when the peak load is
reached, we cannot directly use in our model the distribution of E
and Gf previously defined for every single finite element.

The critical element that triggers the peak load only shows up in
a relatively small region along the major diagonal shear crack close
to the load point on top. To get the size effect on the strength CoV,
we first need a rough estimate of the probability distributions of the
local material parameters critical for σ0 and D0 in the size effect
relation. As the shear crack propagates, its local crack tip trajectory
tends to grow in the direction of relatively weak elements in the
randomly heterogeneous material, making the crack trajectory pos-
sibly deviate from the direction of the maximum tensile stress. In
contrast, the overall crack trajectory must still roughly follow the
deterministic solution, which is governed by fracture mechanics.

As a consequence, the properties of the extremely strong ele-
ments do not directly affect the peak load. The reason is that the
critical element is very unlikely to be among those extremely strong
ones unless the elements surrounding the crack tip are all strong, in
which case it simply means that the mean strength is on the high
side. In contrast, some extremely weak element is also unlikely to
be the critical one because the elements neighboring the weak one
are likely to be much stronger. Therefore, the overall load, as well
as the nominal stress, will continue to increase as the crack keeps
growing after the failure of an extremely weak element. Intuitively,
neither the extremely strong nor the extremely weak elements de-
termine the peak load.

Based on this reasoning, we adopt the p-th sample quantile,
σ0ðpÞ (where 0 < p < 1), of n i.i.d. (independent identically distrib-
uted) random variables, to approximate the ductile limit of the
Type 2 size effect, σ0, in Eq. (3). The value of p should lie some-
where between the quantile limits, 0 and 1, standing for the weakest
and strongest element in the structure. The sample size n represents
the number of elements potentially critical for the peak load.

The distributions of sample quantiles are closely related to those
of the order statistics. Both are random variables arising from an
ordered list of random variables. The sample quantile is character-
ized by the relative order percentage (p) in the list of all variables,
rather than the absolute order considered in the order statistics.

To further compare the two random variables, consider a list of
i.i.d. random variables arranged in ascending order, X1;X2; : : : ;Xn,
where Xk ¼ kth order statistic. The sample p-quantile corresponds
to the ðnpÞth order statistic, Xnp. Fig. 6 illustrates the relation of the
limiting distributions of sample quantiles and order statistics. If we
fix the order k and let n → ∞, we obtain the limiting distribution of
order statistics; whereas, if we fix the ratio k=n ¼ p and let the order
k increase with n, we obtain the limiting distribution of the sample
p-quantile, which is known to be the normal (or Gaussian) distri-
bution regardless of the distribution of Xi [see Kendall et al. (1948)].
In the special case of p ¼ 0.5, the corresponding sample quantile is
simply the median of n i.i.d. random variables.

The strength of the critical element, σ0, is approximated by the
ðnpÞth weakest element in the entire critical region. As the RC
beam becomes larger, the size of the possible region for the critical
crack tip, n, also grows. For increasing sample size n, the distribu-
tion of the p-th sample quantile converges to the normal distribu-
tion with mean xp ¼ F−1ðpÞ and variance pð1 − pÞ=ðnfðxpÞ2Þ,
where fðxpÞ ¼ F 0ðxpÞ is the value of the probability density func-
tion (p.d.f.) of material strength evaluated at the p-th theoretical
quantile.

In cases the variation of D0 is negligible compared with that
of σ0, we simply treat D0 as a deterministic constant. Then, the
nominal strength of the RC beam follows the asymptotically nor-
mal distribution

Fig. 5. Minimum principal compressive stresses in RC beam.
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σN ∼ N
F−1ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD=D0

p ;
pð1 − pÞ

nfðxpÞ2ð1þD=D0Þ

!
ð4Þ

where FðxÞ = cumulative distribution function of the element
strength; and N = unit normal distribution function.

For cases in which the randomness of D0 is not negligible,
its effect on the scatter of σN is subsequently discussed. For the
derivation of the distribution of sample quantiles of i.i.d. random
variables, see Kendall et al. (1948).

Critical Region of Possible Crack Tip Locations
Since we are interested in the relation between the CoV of
the nominal shear strength and the structure size D, the natural
question is: How does the size of the critical region n of all possible
crack tip locations scale with structure size D? There are three
possibilities.
1. The critical region size, n, does not depend on structure size D

and remains constant, in which case the critical region becomes
negligibly small compared with the entire structure asD tends to
infinity.

2. n is proportional to D2, that is, the area of the critical region
grows proportionally with the specimen area.

3. n increases with the growth of D but the rate is slower than D2.
To figure out the correct case, we conduct FE Monte Carlo sim-

ulations of the RC beams and attempt to obtain the histogram of the
vertical coordinates of the critical crack tips. Because the maximum
principal log-strain (LE-MaxPrincipal in Abaqus) is normally used
to indicate the location of a crack, we superimpose for each beam
size the logarithmic strain field at peak load for all 1,000 random
simulations and then take their average. This averaged superposi-
tion of strain fields reflects the relative likelihood (or probability
density) that cracks/damages will appear at each location in the

beam given that elastic deformations are negligible relative to those
due to crack opening. To focus on the vertical location distribution
of the critical crack tip, we add up the strain values for each finite
element in the same row after removing elements that remain purely
elastic, as indicated by setting a threshold strain. Then, we obtain an
average strain field that only depends on the vertical coordinate
along the beam depth direction.

Note that many parallel cracks appear close to the dominant
shear crack (Fig. 7) and that the crack density gradually decreases
as widely spread parallel cracks at the bottom of the beam gradually
localize into a single major diagonal shear crack when progressing
toward the top. As a result, the summed strain continues to increase
from the top to the bottom of the beam. It even grows below the
reinforcement bar without plateauing.

Interpreting such a strain field as the cumulative probability
for the location of the critical crack tip would lead to the wrong
conclusion that the structural failure could be triggered by elements
in the concrete cover at the bottom. To obtain the vertical location
distribution purely for the critical diagonal crack tip, we must re-
move the strain contribution from the densely populated parallel
cracks at the concrete cover.

To do so, we subtract from the summed strains a linearly in-
creasing function of the distance measured from the top of the
beam. The parameters of this linear function are chosen such that
the strain values at the bottom of the beam plateau, whereas the
entire function is still monotonically increasing. Finally, we nor-
malize the summed strains for each row to the range of 0–1, such
that it becomes a cumulative probability measure. By fitting the
normalized strain field, we obtain a cumulative probability distri-
bution function (c.d.f.) for the vertical location of the critical crack
tip. The probability density can then be easily calculated by taking
the derivative of the c.d.f.

Fig. 6. Relation between sample quantiles and order statistics.

Fig. 7. Crack pattern of one random realization for each beam size.
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The visualization of the averaged strain field is conducted using
Paraview version 5.5.2. Fig. 8 indicates the mean strain fields for
specimens of three sizes and the fitted probability distribution of the
vertical location of the critical crack tip. Now that we are interested
only in the scatter (or standard deviation) of the crack tip location, it
is not necessary to figure out exactly the type of distribution that it
follows. Due to a slight positive skewness of the data (measured
from top to bottom), we choose the lognormal distribution to fit it.

From this figure, one can observe that, as the structure size in-
creases, the critical crack tip tends to concentrate on smaller regions
after the structure is rescaled to the chosen reference size. In con-
trast, if we directly compare the distributions before rescaling, the
standard deviation increases as the structure size grows. More
specifically, the standard deviations for the scatter of the crack
tip locations are 19.5, 32.0, and 44.4 mm for D1, D2, and D3,
respectively.

These observations indicate that the size of the critical crack tip
region n grows as D increases, but the rate of growth is slower than
D2. Therefore, we replace n by ðkDÞc, where 0 ≤ c ≤ 2 is the ex-
ponent introduced to capture the growth rate of n as D increases;
and k = ratio of the critical region height toD for the smallest beam.
The typical value for k is approximately 1=4. Then, substituting this
into the variance of the nominal strength, we obtain its CoV by
dividing the standard deviation by the mean:

CoVðσNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞp
xpfðxpÞ

ðkDÞ−c=2; where xp ¼ F−1ðpÞ ð5Þ

For simplicity, this formulation is based on one single sample
p-quantile of the material strengths in the critical region. In reality,
it could be a linear combination of several sample quantiles near the
theoretical p-quantile. Then, the calculation of CoV must rely on
the limiting joint distribution of different sample quantiles, which
are multivariate normal distributions, but does not alter the critical
scaling exponent −c=2 in the expression for the strength CoV. To
see this, consider the limiting joint distribution of two different
sample quantiles X½np� and X½nq�:

"
X½np�
X½nq�

#
→
d
N

0
BBB@
� xp
xq

�
;
1

n

2
6664
pð1 − pÞ
fðxpÞ2

pð1 − qÞ
fðxpÞfðxqÞ

pð1 − qÞ
fðxpÞfðxqÞ

qð1 − qÞ
fðxqÞ2

3
7775
1
CCCA ð6Þ

where the first vector is the mean, and the second matrix is the
covariance matrix. The distribution of the linear combination of
X½np� and X½nq� is essentially a double integral of the multivariate
normal density function, in which the factor 1=n is a constant
that carries over to the variance. Because n ∼D−c=2, the scaling

(a)

(b)

(c)

Fig. 8. Average log strain field (LE) at peak load of 1,000 samples for each of the three beam sizes obtained by superposition: (a) smallest size D1;
(b) medium sizeD2; and (c) largest sizeD3. Indicated on the side are the probability density and cumulative distribution of the vertical location of the
critical crack tip. The beams of three sizes are rescaled to the same size, for comparison. The mesh sizes are kept the same for all specimens, although
they look different in this figure because of rescaling.
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exponent −c=2 is preserved even if σ0 is the linear combination of
several sample quantiles.

The current formulation bears some resemblance to that of
the strength distribution of quasi-brittle fishnets (Luo and Bažant
2018; 2019). Indeed, by counting the damages at the peak load for
either fishnets or fiber bundles under transverse scaling, it is clear
that the average critical order k that determines the peak load in-
creases linearly with the number of links n. In other words, their
ratio p ¼ k=n, which is the sample p-quantile of link strengths,
tends to a constant.

As a result, the large size limiting strength distributions of both
fishnets and fiber bundles are normal distributions. For the same
reason, the strength distribution of RC beams in the present study
also follows the normal distribution.

In contrast, the two cases are not exactly the same. For RC
beams, the peak load will be triggered by material failure only in
a small zone in the RC beam. However, for fishnets under uniaxial
tension, the failure at any place in the structure could potentially
lead to the peak load.

Strength Histogram

One thousand simulations have been run for each of the three beam
sizes. The normalized load-displacement curves σN versus u=u0 are
shown in Fig. 9 [σN ¼ V=ðbDÞ, V = shear force]. The normalizing
constant u0 is chosen for each size such that all curves have the
same initial stiffness. It is clear from the figure that both the critical
load-point displacement and the peak load are random and that
there is a size effect, that is, the nominal strength decreases as the
structure size increases. All of the curves can be divided into four
major sections according to the decrease in the slope, depicting four
distinct stages of the failure process: (1) initial linear elastic re-
sponse; (2) development of tensile cracks at the bottom of the
beam; (3) development of the major diagonal shear crack (peak
load); and (4) catastrophic failure of the entire RC beam if the load
is controlled (postpeak). Additionally, the figure indicates that
the scatter of the nominal strength decreases as the structure size
increases.

Before analyzing the scatter of the nominal strength, we first
verify the Type 2 size effect law (Bažant 1984; Bažant and Kazemi
1990) [Eq. (3)] for the mean strength of the RC beams. Eq. (3) can
be rearranged to the linear regression plot (Bažant and Planas 1998)

y ¼ Axþ C ð7Þ
where x ¼ D and y ¼ 1=σ2

N . The parameters σ0 and D0 in the size
effect relation can be expressed in terms of A and C: σ0 ¼ 1=

ffiffiffiffi
C

p

and D0 ¼ C=A. The optimal values for A and C obtained by fitting
the simulated data of 1=σ2

N are A ¼ 0.001006 and C ¼ 0.143, from
which we obtain the values of the size effect parameters: D0 ¼
142 mm and σ0 ¼ 2.65 MPa. Fig. 10 indicates the mean size effect
curve of the scaling of RC beams together with all of the simulated
beam strengths. Despite the randomness of the nominal strength, the
mean value follows the Type 2 size effect as expected, confirming
that such behavior is dominated by the deterministic energy release
during diagonal crack propagation.

Fig. 11 indicates the histograms normalized to a probability den-
sity of the nominal shear strength for the three beam sizes. Indicated
in the subplots on the right are the same histogram data in normal
probability papers. The data form nearly straight lines for all three
sizes, indicating that the histograms follow a normal distribution
(although nothing can be inferred for the tails). The fitted normal
distributions are plotted as solid curves on top of the histograms.
The histograms clearly indicate that the variance of the nominal
shear strength decreases as the structure size increases.

Because the mean strength also decreases as the structure size
increases, we are interested in the change in the CoV, which is the
standard deviation normalized by the mean. Therefore, we plot the
CoV against D in a log-log scale (Fig. 12). Now, it is clear that the
CoV also decreases as the structure size increases, which confirms
the analysis based on the scatter of the critical crack tip location.
The average slope in the log-log plot is −0.285.

To compare this with the classical statistical strength models, the
infinite weakest-link chain model with Gauss-Weibull link strength
distribution has a constant CoV under size scaling, and the fiber
bundle model has a CoV that scales as 1=

ffiffiffiffi
D

p
. The slope of

−0.285 found here for the RC beams lies between the slopes for
these two models.

Worth noting is that the slope of the strength CoV for the RC
beam is smaller in magnitude than the slope for the ductile fiber
bundle. This is mainly because the size of the critical crack-tip
region, n, does not grow linearly with the structure size, D, but
rather n ∝ D0.57. Aside from the fact that the histograms follow
normal distributions (Fig. 11), there clearly does not exist any
“weakest-link” type behavior in the RC beams under shear load-
ing. Otherwise, the tinyWeibull tail of the distribution of the inputs
(k1 and Young’s modulus E) would dominate under the action of
the weakest-link, leading to Weibull distributions for the nominal
strength, which clearly is not the case. Despite the quasi-brittleness
of concrete, the reinforcement prevents a sudden chain-like failure
of the entire structure and ensures a stable propagation of the
diagonal shear crack through approximately 80% of the cross-
section depth up to the peak load. This is the major reason for the

Fig. 9. Normalized stress-displacement curves of 1,000 samples of
structure of size D2. Dark points indicate peak load locations.

Fig. 10. Size effect plot for two-dimensional scaling of RC beam. Solid
curve indicates Type 2 size effect law (SEL) and overlapping circles are
simulated nominal strengths (1,000 points for each size).
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structure strength to have a Gaussian rather than a Weibull strength
distribution.

Now that we know the scaling relation of CoV, we could use this
information to roughly infer the quantile p that governs the strength
of the beam using Eq. (5). The slope in the log-log plot, −0.285,
corresponds to the exponent −c=2. Thus, c ¼ 0.57. In other words,
the number n of the potential critical crack tip locations scales
as D0.57.

Large Size Limit of Strength CoV

Up to now, we have studied the CoV of shear strength under the
assumption that only σ0 in Eq. (3) is random. This assumption is
valid when D=D0 is not too large compared with 1. Because of the
square root and constant 1 in the denominator of the mean size
effect relation, the effect of the randomness of D0 is not as large
as that of σ0. In other words, the scatter of nominal shear strength
σN is mainly affected by the randomness of σ0 for small and
medium-size RC beams. However, when the size increases, the ef-
fect of random D0 could become nonnegligible.

Therefore, we need to study the large-size limit behavior of the
RC beam by considering also the randomness ofD0. Because thou-
sands of Monte Carlo simulations for extremely large RC beams
would take an impracticably long time to finish, we need a math-
ematical estimation of the scaling of strength CoV for extremely

large sizes. With the notation D0 ¼ wc=ðkαcÞ, Eq. (3) for D → ∞
reduces to

σN ≃ σ0

ffiffiffiffiffiffi
D0

pffiffiffiffi
D

p ð8Þ

In the expression of D0, both the normalized length of the en-
ergy release band, αc, and the characteristic length, wc, could be
considered as random variables. However, because the individual
distributions of wc and αc are not known any better than that ofD0,
it is appropriate to assign a distribution directly to D0. Then, we
analyze how the variance and CoV will change if D0 in Eq. (8)
is random. Because D0, as the transitional size, refers to the entire
structure, and D=D0 is an indicator of the brittleness of the entire
structure, the distribution of D0 should not scale with the effective
structure size D.

Denote the mean and variance of
ffiffiffiffiffiffi
D0

p
by μ ffiffiffiffiffi

D0

p and s2 ffiffiffiffiffiD0

p , and

the mean and variance of σ0 by μσ0
and s2σ0 . To estimate them, we

first considerD0 and σ0 to be independent, and then the variance of
the product σ0

ffiffiffiffiffiffi
D0

p
can be calculated

Varðσ0

ffiffiffiffiffiffi
D0

p
Þ ¼ E½ðσ0

ffiffiffiffiffiffi
D0

p
Þ2� − E½σ0

ffiffiffiffiffiffi
D0

p
�2 ð9Þ

¼ E½σ2
0�E½D0� − E½σ0�2E½

ffiffiffiffiffiffi
D0

p
�2 ð10Þ

¼ ðs2σ0 þ μ2
σ0Þðs2 ffiffiffiffiffiD0

p þ μ2 ffiffiffiffiffi
D0

p Þ − μ2
σ0μ

2 ffiffiffiffiffi
D0

p ð11Þ

Because we assumed that the distribution of D0 does not scale
with size D, we let α ¼ μ2 ffiffiffiffiffi

D0

p and β ¼ s2 ffiffiffiffiffiD0

p . The variance of the

product reduces to

Varðσ0

ffiffiffiffiffiffi
D0

p
Þ ¼ ðαþ βÞðs2σ0 þ μ2

σ0Þ − αμ2
σ0

¼ ðαþ βÞs2σ0 þ βμ2
σ0

ð12Þ

Following from μσ0 ¼ xp ¼ F−1ðpÞ and s2σ0
¼ pð1 − pÞ=

ðnfðxpÞ2Þ, this expression can be rewritten as

Varðσ0

ffiffiffiffiffiffi
D0

p
Þ ¼ ðαþ βÞpð1 − pÞ=ðnfðxpÞ2Þ þ βx2p ð13Þ

Using Eq. (13), the standard deviation of σN can be obtained
by multiplying the square root of variance Var ðσ0

ffiffiffiffiffiffi
D0

p Þ with the
factor 1=

ffiffiffiffi
D

p

Fig. 12. Coefficient of variation (CoV) of shear strength of RC beams
for three different beam sizes, and comparison with weakest-link model
and fiber bundle model.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

(a) (b)

Fig. 11. (a) Histograms of nominal strengths for beams of three sizes (1,000 samples for each size); and (b) their normal probability plots.
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sσN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ βÞpð1 − pÞ=ðnfðxpÞ2Þ þ βx2p

q
ffiffiffiffi
D

p ð14Þ

Meanwhile, the mean value of σN follows the large size limit of
the Type 2 size effect, which is essentially the size effect of linear
elastic fracture mechanics (LEFM)

μσN ¼ E½σ0

ffiffiffiffiffiffi
D0

p
=
ffiffiffiffi
D

p
� ¼

ffiffiffi
α

p
xpffiffiffiffi
D

p ∝ D−1=2 ð15Þ

Normalizing the standard deviation of σN by its mean provides
the large-size scaling relation for the strength CoV

CoVðσNÞ ¼
sσN
μσN

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β=αÞpð1 − pÞ

nx2pfðxpÞ2
þ β=α

s
ð16Þ

where
ffiffiffiffiffiffiffiffiffi
β=α

p ¼ CoVð ffiffiffiffiffiffi
D0

p Þ, which is a constant. As D → ∞, the
region size n of the possible diagonal crack tip also tends to infinity.
As a result, the first quotient under the square root vanishes. There-
fore, for extremely large beams, CoVðσNÞ tends to the constantffiffiffiffiffiffiffiffiffi

β=α
p

, which is the coefficient of variation for
ffiffiffiffiffiffi
D0

p
.

Two remarks about this result should be made. First, we do not
assume any specific type of distribution for D0 or

ffiffiffiffiffiffi
D0

p
in the fore-

going derivation. The result is valid as long as
ffiffiffiffiffiffi
D0

p
has a finite

mean and variance. Second, this result relies on the assumption that
σ0 and D0 are statistically independent. In reality, D0 should have
some degree of correlation with σ0. Therefore, the large size limit
of the strength CoV might not be exactly

ffiffiffiffiffiffiffiffiffi
β=α

p
. Because D0 does

not scale with D, D0 and σ0 cannot be fully coupled (D0 ∝ σ0).
According to this argument, the constant mean and standard
deviation of D0 will show up in the expression of CoV(σN) in a
similar way as in the case of independence, which will lead to a
nonzero strength CoV for D → ∞.

With this large size constant CoV, we propose an approximate
size effect equation for the nominal strength CoV, ω, for RC beams

ω ¼ ω0

�
1þ

�
Db

D

�
r
� 1

2r ð17Þ

where Db = characteristic length; and r = positive empirical con-
stant. This formula can be seen as the asymptotic matching of two
limiting cases: (1) ductile limit for small sizes (D → 0), character-
ized by the ductile fiber bundle model with its strength CoV scaling
as D−1=2, and (2) constant CoV for large sizes (D → ∞) with
ω0 ¼

ffiffiffiffiffiffiffiffiffi
β=α

p ¼ CoVð ffiffiffiffiffiffi
D0

p Þ. The three typical beam sizes that we
used in the simulations fall in the intermediate range of the size
effect relation. Combining this with the Freudenthal reliability in-
tegral (Freudenthal 1956; Freudenthal et al. 1964), the current size
effect relation [Eq. (17)] for strength CoV could further be used in
the structural reliability analysis presented in Le and Bažant (2020)
for the safety factor in RC beam design.

Conclusions

1. The simulations confirm that the ultimate failure of the RC beam
is triggered by the compression-shear failure of a small region at
the top of the beam. This is similar to the failure of the com-
pression strut in the strut-and-tie model, which was observed to
occur near the top of the beam and close to the tip of the diago-
nal crack (Yu et al. 2016; Dönmez and Bažant 2019; Bažant and
Planas 1998).

2. Despite the fact that concrete is quasi-brittle, the reinforcement
enables a stable propagation of the diagonal shear crack before
the peak load is reached. Therefore, the weakest-link model for
plain concrete does not apply.

3. The mean nominal strength of the RC beams follows the Type-2
size effect, which is deterministic and energetic.

4. Based on Monte Carlo simulations, the zone of the possible
critical shear cracks becomes larger as the structure size in-
creases, and its growth rate is smaller than D2. Equivalently, as
we rescale the structures strictly to the same size, the critical
zone for the largest structure reduces to a point.

5. The basic idea advanced here is that the shear strength follows
the distribution of the sample p-quantile of strengths in a small
critical region, leading to a normal distribution for the large size
limit.

6. The justification for this idea is that the number of critical mate-
rial elements of random strength that can trigger failure grows
with the size of the near-tip critical region. This region, in turn,
is not constant but grows with structure size. Therefore, what
matters is not the number but the percentage, or quantile, of the
elements of random strength in the structure.

7. There is a significant size effect on the CoV of strength. The
CoVof strength decreases as the structure size increases. How-
ever, the CoV decrease weakens at large sizes, and the large size
limit of the CoV of strength is a constant.
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