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Smooth Lagrangian Crack Band
Model Based on Spress-Sprain
Relation and Lagrange Multiplier
Constraint of Displacement
Gradient
A preceding 2023 study argued that the resistance of a heterogeneous material to the cur-
vature of the displacement field is the most physically realistic localization limiter for soft-
ening damage. The curvature was characterized by the second gradient of the displacement
vector field, which includes the material rotation gradient, and was named the “sprain”
tensor, while the term “spress” is here proposed as the force variable work-conjugate to
“sprain.” The partial derivatives of the associated sprain energy density yielded in the pre-
ceeding study, sets of curvature resisting self-equilibrated nodal sprain forces. However, the
fact that the sprain forces had to be applied on the adjacent nodes of a finite element greatly
complicated the programming and extended the simulation time in a commercial code such
as ABAQUS by almost two orders of magnitude. In the present model, Smooth Lagrangian
Crack Band Model (slCBM), these computational obstacles are here overcome by using
finite elements with linear shape functions for both the displacement vector and for an
approximate displacement gradient tensor. A crucial feature is that the nodal values of
the approximate gradient tensor are shared by adjacent finite elements. The actual displa-
cement gradient tensor calculated from the nodal displacement vectors is constrained to the
approximate displacement gradient tensor by means of a Lagrange multiplier tensor, either
one for each element or one for each node. The gradient tensor of the approximate gradient
tensor then represents the approximate third-order displacement curvature tensor, or
Hessian of the displacement field. Importantly, the Lagrange multiplier behaves as an exter-
nally applied generalized moment density that, similar to gravity, does not affect the total
strain-plus-sprain energy density of material. The Helmholtz free energy of the finite
element and its associated stiffness matrix are formulated and implemented in a user’s
element of ABAQUS. The conditions of stationary values of the total free energy of the struc-
ture with respect to the nodal degrees-of-freedom yield the set of equilibrium equations of
the structure for each loading step. One- and two-dimensional examples of crack growth in
fracture specimens are given. It is demonstrated that the simulation results of the three-point
bend test are independent of the orientation of a regular square mesh, capture the width
variation of the crack band, the damage strain profile across the band, and converge as
the finite element mesh is refined. [DOI: 10.1115/1.4063896]

Keywords: fracture mechanics, continuum mechanics, damage mechanics, sprain energy,
spress-sprain relations, quasi-brittle materials, material heterogeneity, nonlocal
continuum, gradient models, numerical simulation, finite element method, localization
limiters, computational mechanics, failure criteria, constitutive modeling of materials

1 Introduction
In 1962, Clough [1–3] pioneered finite element analysis (FEA) of

continuum bodies. Using his variationally derived constant-strain
finite element (FE) of an elastic continuum [3], he launched

computational fracture mechanics by his finite element solution of
the overall stress state in the cracked Norfolk Dam (Fig. 1),
which mesmerized the structural engineering community of that
time. Yet, after the lapse of 61 years, no completely satisfactory
computational model for fracture exists today. A model in the pre-
ceding 2023 paper [4], which introduced the concept of sprain,
came close except for severe programming and computational
obstacles due to the fact that sprain forces had to be applied on
the nodes adjacent to a finite element. In this paper, an improved
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model, namely Smooth Lagrangian Crack Band Model (slCBM)
overcomes these challenges by introducing the new concept of
spress as a force variable work-conjugate to the sprain, and by con-
straining the actual displacement gradient calculated from the nodal
displacement vectors to the approximate gradient through the use
of Lagrange multipliers. By doing so, finite elements with linear
shape functions for both the displacement vector and for the approx-
imate displacement gradient tensor can be used, thus avoiding the
need of applying sprain forces on adjacent nodes.
By extensive comparisons with numerous experiments, a recent

study in 2022 [5] demonstrated deficiencies of the recently popular
computational fracture models, particularly the peridynamics and
phase field. Relying on 11 different distinctive classical fracture
experiments, including the results of the recently developed gap
test [6–8], that study [5] identified serious inherent limitations of
peridynamics and of all line crack models including the linear
elastic fracture mechanics (LEFM), cohesive crack model, extended
finite element method (XFEM), and phase-field model. It further
highlighted the misleading nature of model “verifications” by “non-
distinctive” tests, i.e., tests that can be fitted closely by very different
models [9], commonly abused in many computational papers.
The adoption of displacement vector curvature (or Hessian) [4] as

a localization limiter was inspired by the recent discovery of the gap
test [6,7] and by comparisons of the classical 1983 crack band
model (CBM) with material characteristic length [10–12] to the
phase-field models and peridynamics [5,9]. The present theory
can also be regarded as a generalization of the classical strain-
gradient models [13–21], which differ mainly by missing the
material rotation gradient that is important for shear fracture.
These theories were developed in the works of Bažant and Jirásek
and Gao et al. [13,22], and culminated in the very effective
mechanism-based strain-gradient theory of Huang et al. [23],
whose objective was hardening plasticity and the effect of geomet-
rically necessary dislocations, rather than damage and fracture. A
strain-gradient theory for damage in concrete was formulated by
Cusatis et al. [14,15]. For comparisons with experiments and for
applications in structural design, it is essential to use a realistic
damage constitutive relation, for which the microplane models are
essential [24–27]. Achieving superior comparisons with distinctive
tests of concrete in Ref. [5] was enabled by the use of not only crack
band model [10–12] but also the microplane model M7. The present
use of displacement vector curvature also implies significant
changes for continuum mechanics of damage in heterogeneous
materials, including the homogenization theories [22,23,28–35].
A more detailed review of the subject, including the history, was

presented in 2023 in the same journal [4], along with a broader his-
torical review from the same perspective as here. Therefore, it
would be superfluous to duplicate it.

2 Spress-Sprain Continuum
As in the preceding study, the total Helmholtz free energy

density, �Ψ(ε, ξ), is defined as the sum of the classical strain
energy, Ψ(ε), and the sprain energy Φ(ξ)—a new concept;

�Ψ(ε, ξ) =Ψ(ε) +Φ(ξ) (1)

where ε is the (linearized) strain tensor with Cartesian components

εij =
1
2
(ui,j + u j,i), ui being the displacements in Cartesian coordi-

nates xi (i = 1, 2, 3 in 3D or 1, 2 in 2D), and ξ is the sprain
tensor, a third-order tensor of components

ξijk = l0ui,jk , ηijk = εij,k , ui,jk = ηijk + ωij,k (2)

Here ηijk is the classical strain-gradient tensor, used in many strain-
gradient theories of plasticity and damage (e.g., Refs. [23,36–38]),

and ωij,k =
1
2
(ui,j − u j,i) is the gradient of the (linearized) material

rotation tensor, which all have the dimension of m−1. The tensor
ξijk was introduced in Ref. [4] as a dimensionless definition of
sprain (note that it was denoted as ηijk but this is now changed
because it conflicted with the long established notation for the
strain gradient). Tensor ωij,k was introduced in the preceding
work [4] as an essential feature of the sprain theory, which is
missing from the classical strain-gradient theories.
For small deformations, the classical definition of stress, σij, and

the presently proposed definition of spress are

σij =
∂Ψ(ε)
∂εij

, sijk =
∂Φ(ξ)
∂ξijk

=
1
l0

∂Φ(ξ)
∂ui,jk

(3)

Here and in Eq. (2), the material characteristic length, l0 (which is
what characterizes the size of the fracture process zone (FPZ) size
and indirectly limits damage localization, through ξ), is introduced
to make the dimensions or σij and sijk the same, i.e., N/m2, and to
conform toΦ having the dimension of J/m3 or N/m2. In the previous
work, the term sprain was borrowed from orthopedic medicine
where it means damage of a ligament that is spread over a finite
length while causing no rupture, and the term spress is introduced
here as the third-order variable work-conjugate to sprain (and anal-
ogous to stress).
The computations in the previous study [4] used, instead of sijk,

the sprain force fn= b An ∂Φ/∂u, which is the derivative of the
sprain energy with respect to the nodal displacement vector u mul-
tiplied by the tributary material volume b An of node n in a regular
finite element mesh (b = body thickness, An = tributary area).
However, this approach required applying self-equilibrated forces
on nodes adjacent to a given finite element, which turned out to
be very cumbersome for programming, especially in commercial

Fig. 1 Clough’s 1962 elastic finite element solution of the overall stress state in the cracked Norfolk Dam [1]: (a) mesh discre-
tization of the dam, (b) vertical stresses σy contour, and (c) shear stresses σxy contour of the dam
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programs such as ABAQUS, and extended the running time by almost
two orders of magnitude. For computations, it is advantageous to
introduce a second-order tensor field, ζ, of components ζij, to
serve as an approximation of displacement gradient field ui,j (dimen-
sionless). Considering the fields of ui and ζij as independent, each of
them may be now represented by C0 finite elements with linear
shape functions, which will greatly simplify FE analysis. To intro-
duce the idea, let us first give a simple example.

3 Inspiration From One-Dimensional Gradient
Constraint
Simple 1D Example: For a one-dimensional (1D) line element of

length h along the axial coordinate x, with nodal displacements ur
and ur+1 at nodes r and r+ 1, the displacement gradient approxima-
tion is obviously given by

ur+1 − ur
h

≈
ζr + ζr+1

2
(4)

where ζr and ζr+1 are the nodal approximate displacement gradients
at nodes r and r+1, respectively. The sprain (or the curvature of the
displacement field in axial coordinate x1= x) can then be simply
approximated without any need for adjacent nodes r− 1 or r+ 2.
Indeed,

ux,xx ≈
ζr+1 − ζr

h
(5)

Generalizations: It will be seen that, for general situations, the
actual displacement gradient tensor ∇u and the approximate
displacement gradient tensor ζ are best matched by imposing an
approximate constraint through a Lagrange multiplier. To this
end, we first note that this approximate constraint, Eq. (4), can be
more generally obtained from the condition∫

V
(∇u − ζ) dV = 0 or

∂
∂λ

∫
V
λ (∇u − ζ) dV = 0 (6)

over volume V of a finite element. Parameter λ is inserted in antic-
ipation of a variational approach in which the derivative ∂/∂λ plays
the role of a minimizing condition of the integral.
Substituting the 1D linear shape (or interpolation) functions

shown in Fig. 2(b) for each of u and ζ, and integrating over

length coordinate x within finite element (r, r+ 1) of length h, we
verify that our approximate constraint may be stated as

∂
∂λ

∫xr+1
xr

λ(∇u − ζ) dx =
ur+1 − ur

h
−

ζr + ζr+1
2

= 0 (7)

which is equivalent to the approximation in Eq. (4).

4 Finite Element With Approximate Displacement
Gradient Constrained by Lagrange Multiplier
In 1D analysis, the match is exact for Eq. (6), but in 2D or 3D

analysis, we must look for the optimum match. Therefore, inspired
by Eq. (7), we now combine the constraint in Eq. (6) having the
form of an extremum stationarity condition, with the minimizing
(or stationarity) condition of the potential energy, Π, of the struc-
ture. For the constrained optimization, the foregoing considerations
suggest adopting the method of undetermined Lagrange multiplier λ
[39, p. 442] (previously used in FE for other purposes, e.g., Refs.
[40–42]). To use the simple C0 finite elements in two (or three)
dimensions (2D or 3D), we introduce, like for 1D, a separate dimen-
sionless second-order tensor field, ζ, of components ζij, which is
equal to the first gradient of the displacement field

ζ = ∇u (8)

and the sprain tensor ξ is then represented through the first gradient
of ζ multiplied by the characteristic length l0

ξ = l0∇ζ (9)

Now we may introduce the following continuous formulation of the
extended potential energy of the whole structural system, which
represents the internal energy, Win, minus the external energy,
Wex (equivalent to the work of given applied loads),

Π(u, ζ, λ) =Win −Wex where (10)

Win =
∫
V
Ψ[ε(u)] dV +

∫
V
Φ[ξ(ζ)] dV −

∫
V
λ(∇u − ζ) dV (11)

Wex =
∫
V
f (x) · u dV (12)

Here V is the structure volume (which is equivalent to the area
multiplied by a unit thickness for 2D analysis), f(x) is the given dis-
tributed applied load vector acting on displacement vector u but is
independent of it. Since ξ is a function of ζ (Eq. (9)), the sprain
energy density Φ is now a function of ζ. To couple the
strain energy and the sprain energy, Eq. (8) is added to the internal
energy expression as the constraint condition in a weak sense,
through the use of the Lagrange multiplier λ, which is a variable
throughout the structure.
Physical Motivation: Looking from a mechanics point of view,

one could often find a physical motivation for the Lagrange multi-
pliers [41,42]. Note the similarity of the last integral in Eq. (11) and
right-hand side of Eq. (12). In the latter, f(x) · u represents the exter-
nal work done on displacement u by a constant gravity force f (inde-
pendent of u) per unit volume. So, in the former, λ (dimension Pa)
can be seen as a generalized moment per unit volume doing external
work on the gradient difference, like some constant pseudo-gravity
(independent of the gradient difference). This external work may be
likened to the applied force term in the potential energy, i.e.,
−
�
V f (x) · u dV . For u, the minimizing condition is ∂W/∂u= 0. By

analogy of pseudo-gravity, this explains physically the last extre-
mum condition ∂W/∂λ= 0. The fact that the work of λ is external,
not part of the internal energy density, is important. This work is
only added to the definition of the internal energy expression in
Eq. (11) as a constraint condition in a weak sense to couple the
strain energy and the sprain energy as explained earlier.
Why not a quadratic penalty? Indeed, one could impose it instead

of using Lagrange multiplier. However, a penalty (with stiffness Kp)

Fig. 2 (a) A row of one-dimensional finite elements with (b)
linear shape functions for both displacement u and its gradient
u,x, and (c) approximate matching of u,x with ζ
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would have to consist of a quadratic form Kp(∇u − ζ)2/2, which
would have the physical meaning of adding fictitious additional
strain energy to the system. If the quadratic penalty is not minimized
exactly to zero, one would end up with a system containing some
non-existent excessive strain energy. The “beauty” of the Lagrange
multiplier method is that it represents a fictitious externally applied
moment density (or pseudo-gravity) and adds nothing to the internal
energy content of the structure.
Remark 1. Another way to implement the sprain theory in FE pro-
grams could be to ensure the field of displacement ui to have at
least C1 continuity, which would also avoid the cumbersome need
for applying curvature resisting forces on the nodes of adjacent ele-
ments. It might seem that the quadratic or cubic elements, which
are usually called theC1 andC2 continuity elements would be suitable
for this approach. However, they actually provide the C1 continuity
only along the element boundaries, while the continuity of displace-
ment gradients ui,j in directions normal to the element boundaries is
not satisfied, which is essential in this problem. The C1 continuity
normal to element boundary could be satisfied only with quartic ele-
ments using the same fourth degree shape functions as those for thin
plate bending [40]. This approach, too, would avoid applying sprain
forces to the adjacent nodes since the resistance to sprain would be
embedded within the element stiffness matrix. However, it would
be computationally inefficient compared to the present approach
and also would be “too smooth” for fracture modeling. ▪

5 Spress-Sprain Relation of the Material
The spress-sprain relation is based on the sprain energy density

whose only purpose is to resist the curvature of the displacement
field. This relation is a material property but it is not a constitutive
relation in the standard sense because it deals with the second gra-
dient of displacement. This was done in a rather hypothetical way in
the preceding study [4], in which it was assumed that what is here
named the spress is controlled through a constant threshold C, after
which each component of the spress tensor grows from zero with a
sprain stiffness κ that decreases with the inelastic volumetric strain
εV . Better understanding of the spress-sprain relation will necessi-
tate discrete particle simulation of sprain.
It is proposed here that only spresses and sprains of the same sub-

script ijk interact (i.e., they are not cross-related). Some possible
forms, which are still being studied in the context of Lagrange mul-
tiplier constraint, are given in tensorially consistent form as follows:

sijk = κ
〈|ξ| − C

〉 ξijk
|ξ| (13)

or sijk = κ
|ξ|
C

( )n ξijk
|ξ| (14)

in which

C = C0 + C1ε
′′
V (15)

where C is the sprain threshold, κ is the sprain stiffness, ε′′V is the
inelastic part of the total volumetric strain εV , while C0, C1, and n
are empirical fitting parameters.
The threshold C and the sprain stiffness κ are here considered as

constants, although it is suspected that the sprain stiffness κ should
be considered as a function of either the total volumetric strain, εV
or of its inelastic part ε′′V (as in Ref. [4]), or |ξ|. The expression for
sijk in Eq. (14) is smooth, which might help the convergence of the iter-
ative scheme. A high exponent such as n=10 may have to be used so
that the sprain would have a negligible effect in the elastic regime.
After further modeling experience, which showed that decreasing

the sprain stiffness κ requires further investigation (and that a sharp
nonzero threshold C might be unnecessary and might even slow the
convergence rate), we consider the relation shown in Eq. (13) with
C= 0 and a constant κ, i.e., sijk= κξijk. Taking C= 0 might be a rea-
sonable simplification because, as argued here, the displacement
curvatures in the elastic range are negligible and the sprain

energy is not big enough to have a substantial influence on the
strain energy and to change the elastic behavior of the structure.
However, this may not hold if the structure contains defects that
cause stress concentration.

6 Variational Formulation
The strain energy and the sprain energy density are rewritten in

indices notation using the material relation between σ(ε) and the
spress-sprain relation s(ξ) as follows:

Ψ =
∫
ε
σ(ε)ij dεij, Φ =

∫
ξ
s(ξ)ijk dξijk (16)

Using Eq. (16), Eq. (10) becomes

Π(ui, ζij, λij)=
∫
V

∫
ε
σij dεij+

∫
ξ
sijk dξijk − fi ·ui − λij · (ui,j− ζij)

{ }
dV

(17)

where i, j= 1, 2, 3. The variational conditions of the minimum of the
potential energy and of the constraint extremum then are

∂Π(ui, ζij, λij)
∂ui

δui =
∫
A
σij δεij − fi δui − λij δui,j
{ }

dV

=
∫
V

−σij,j − fi + λij,j
{ }

δui dV + [ · · · ]V = 0 (18)

∂Π(ui, ζij, λij)
∂ζij

δζij =
∫
V

sijk δξijk + λij δζij
{ }

dV

=
∫
V

−l0sijk,k + λij
{ }

δζij dV + [ · · · ]V = 0 (19)

∂Π(ui, ζij, λij)
∂λij

δλij =
∫
V
− ui,j − ζij
{ }

δλij dV = 0 (20)

Since Eqs. (18)–(20) must also hold for each subpart of the body,
we must require that locally

σij,j + fi − λij,j = 0 (21)

l0sijk,k − λij = 0 (22)

ui,j − ζij = 0 (23)

7 Finite Element Discretization With Sprain Variables
7.1 1D Formulation. We first present the spatial discretiza-

tion by finite element for one-dimensional analysis. For an one-
dimensional finite element which has two nodes of coordinate x1
and x2, respectively, and a constant cross-sectional area A, the dis-
placement field u and the zeta field ζ in each element are approxi-
mated by a linear function interpolated from the corresponding
nodal values at two nodes of the element, while λ will be a constant
across the element.

u = N(x)ũ where ũT = [u1, u2] (24)

ζ = N(x)ζ̃ where ζ̃
T
= [ζ1, ζ2] (25)

For one-dimensional analysis, strain εx = du/dx = d(N(x)ũ)/dx =
N,x(x)ũ and sprain ξx = dζ/dx = d(N(x)ζ̃)/dx = N,x(x)ζ̃. In addi-
tion, ∇u = du/dx = N,x(x)ũ. In order to minimize the total potential
energy Π, we set the partial derivative of the total potential energy
with respect to the degrees-of-freedom (DOF) to be zero

f uint =
∂Π
∂ũT

= A

∫x1
x2

NT ,x(x)σx dx − λ

∫x1
x2

NT ,x(x) dx−
∫x1
x2

NT (x)f (x) dx

{ }
(26)
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f ζint =
∂Π

∂ζ̃
T = A

∫x1
x2

NT ,x(x)sx dx+ λ

∫x1
x2

NT (x) dx

{ }
(27)

f λint =
∂Π

∂λ̃
T = A

∫x1
x2

N,x(x)ũ −N(x)ζ̃
{ }

dx (28)

From Eqs. (26)–(28), the element stiffness matrices can be formu-
lated. The stress–strain stiffness formulation, based on the first var-
iational term of the foregoing equation, is standard and need not be
discussed. To use more realistic and more complex damage consti-
tutive relations such as the microplane model, this must be done
incrementally.
Because the number of nodes is greater than the number of ele-

ments, the programming gets simpler by considering all λij to be
the nodal properties rather than the element properties. In one-
dimensional analysis, this is done by using a linear function to
approximate the Lagrange multiplier field λ in each finite element

λ = N(x)λ̃ where λ̃
T
= [λ1, λ2] (29)

Equations (26)–(28) now become

f uint =
∂Π
∂ũT

= A

∫x1
x2

NT ,x(x)σx dx −
∫x1
x2

NT ,x(x)N(x)λ̃ dx −
∫x1
x2

NT (x)f (x) dx

{ }
(30)

f ζint =
∂Π

∂ζ̃
T = A

∫x1
x2

NT ,x(x)sx dx +
∫x1
x2

NT (x)N(x)λ̃ dx
{ }

(31)

f λint =
∂Π

∂λ̃
T = A

∫x1
x2

NT (x) N,x(x)ũ − N(x)ζ̃
{ }

dx (32)

7.2 2D Formulation. Consider now a 2D linear quadrilateral
element of constant thickness b. If we set λ to be an element prop-
erty, then, aside from nodes 1, 2, 3, and 4 serving as vertex nodes,
node 5 is needed to store λ. This node is imagined to reside at the
center of the element, denoted by coordinates (x, y). If we consider
λ as the DOF at node 5, there are six DOF at each of nodes 1–4,
forming the vector (or column matrix)

�u j = [u j, v j, ζ
u,x
j , ζu,yj , ζv,xj , ζv,yj ]T where j = 1, 2, 3, 4 (33)

and four DOF for node 5, forming the vector

�λ5 = [λu,x, λu,y, λv,x, λv,y]T (34)

Here ζu,x, ζu,y, ζv,x, and ζv,y (dimensionless) are the approximations
of displacement gradients ux, uy, vx, and vy, respectively, weakly
imposed by the corresponding Lagrange multiplier λu,x, λu,y, λv,x,
and λv,y (dimension Pa); see Fig. 3 (the notation u is reserved for
(u, v)T). Therefore, we have 28 DOF per element.
For u and v, the linear field of the generalized displacements

within the quadrilateral is defined by the shape (or interpolation)
functions N(x, y) for displacements u and v, and Nζ(x, y) for the ζ
field. In matrix form,

u(x, y) = N(x, y) · ũ where (35)

ũT = [u1, v1, u2, v2, u3, v3, u4, v4] (36)

ζ(x, y) = Nζ(x, y) · ζ̃ where (37)

ζ̃
T
= [ζu,x1 , ζu,y1 , ζv,x1 , ζv,y1 , ζu,x2 , ζu,y2 , ζv,x2 , ζv,y2 , ζu,x3 , ζu,y3 , ζv,x3 , ζv,y3 , ζu,x4 , ζu,y4 , ζv,x4 , ζv,y4 ] (38)

We can now minimize the total potential energy Π by setting the partial derivative of the total potential energy with respect to the
degrees-of-freedom to be zero

f uint =
∂Π
∂ũT

= b

∫
A
BT
1 σ dA −

∫
A
BT
3 λ dA −

∫
A
NT (x, y)f (x, y) dA

{ }
(39)

f ζint =
∂Π

∂ζ̃
T = b

∫
A
BT
2 s dx +

∫
A
NT

ζ (x, y)λ dA
{ }

(40)

f λint =
∂Π
∂λT

= b

∫
A
B3ũ − Nζ(x, y)ζ̃

{ }
dA (41)

where B1=L1N(x, y), B2=L2Nζ(x, y), and B3=L3N(x, y). The definition of the matrices L1, L2, and L3 are given as follows:

LT
1 =

∂/∂ x 0∂/∂y
0 ∂/∂y ∂/∂x

[ ]
(42)

LT
2 =

∂/∂x ∂/∂y 0 0 0 0 0 0
0 0 ∂/∂x ∂/∂y 0 0 0 0
0 0 0 0 ∂/∂x ∂/∂y 0 0
0 0 0 0 0 0 ∂/∂x ∂/∂y

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (43)

LT
3 =

∂/∂x ∂/∂y 0 0
0 0 ∂/∂x ∂/∂y

[ ]
(44)

If we consider λ to be a nodal property, then for each node, there will be four nodal values of λ corresponding to each component of the
ζ tensor

λ = NT
λ (x, y) · λ̃ where (45)

λ̃
T
= [λu,x1 , λu,y1 , λv,x1 , λv,y1 , λu,x2 , λu,y2 , λv,x2 , λv,y2 , λu,x3 , λu,y3 , λv,x3 , λv,y3 , λu,x4 , λu,y4 , λv,x4 , λv,y4 ] (46)
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Equations (38)–(40) can now be rewritten as

f uint =
∂Π
∂ũT

= b

∫
A
BT
1 σ dA −

∫
A
BT
3Nλ(x, y)λ̃ dA −

∫
A
NT (x, y)f (x, y) dA

{ }
(47)

f ζint =
∂Π

∂ζ̃
T = b

∫
A
BT
2 s dx +

∫
A
NT

ζ (x, y)Nλ(x, y)λ̃ dA
{ }

(48)

f λint =
∂Π

∂λ̃
T = b

∫
A
NT

λ (x, y) B3ũ − Nζ(x, y)ζ̃
{ }

dA (49)

In ABAQUS, one must use the user element (UEL) feature. For com-
putations, the tensors and vectors are represented by matrices.
However, keep in mind that ui,j, and also λij, are generally nonsym-
metric and must be represented by 4 × 1 column matrices. The inte-
gral can be evaluated for each finite element, which results into the
expressions for stiffness matrices of the finite element.
Remark 2. Since the spress, sijk, does not work on strain εij and
stress σij does not work on sprain ξijk, we can look at our finite
element system as two separate systems of four-node C0 elements:

• One system with two nodal variables u and v, which has ele-
ments of C0 continuity.

• The other system with four nodal variables ζu,x, ζu,y, ζv,x and
ζv,y each node (Fig. 3). Taken alone, the elements of this
system have also C0 continuity, but since here the variables
are the approximate displacement gradients, the C1 continuity
(across the element boundaries) is ensured (in the approximate
sense) for the finite element system as a whole. The approxi-
mate displacement gradients are transmitted to the adjacent
element.

• The two systems interact only through the Lagrange multiplier
λ, as described by the term λ(∇u − ζ) in Eq. (11), which
may be regarded as the external work Wζ = λΔζ . It may be
perceived as the pseudo-gravity λ (a constant generalized
moment per unit volume) working on the gradient difference
Δζ =∇u − ζ. If Δζ � 0, then the external work Wζ � 0. ▪

8 Examples of Numerical Simulations of Fracture
This paper is focused on the computational aspects of the sprain

theory, while the physical aspects with the comparisons to the
results of various types of fracture test are relegated to a subsequent
article. Computer simulation results for the uniaxial tension of a 1D
bar and the three-point bend fracture test are presented.

8.1 1D Bar Under Uniaxial Tension. Consider a one-
dimensional bar of length L= 100 mm using a material

Fig. 3 Physical motivation: The actual displacement gradient tensor is contrained to the
approximate displacement gradient tensor ζ through the use of the Lagrange multiplier
tensor λ, which is an unknown constant moment density acting as "pseudo-gravity"
working on the difference between the actual and the approximate gradient tensor. Linear
shape functions are used for both the displacement field u and the approximate displacement
gradient field ζ. Here, both ζ and λ are expressed in matrix form, and r,s are the generalized
nodal numbers in the x and y directions.

Fig. 5 Reaction force versus displacement at the boundary of
the bar when it is discretized into 5, 21, 101, and 501 elements

Fig. 4 Bilinear stress versus strain response of the material of
the 1D bar under uniaxial tension
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following a simple bilinear elastic softening stress–strain relation
with a Young’s modulus of E= 30 GPa and a tensile strength of
ft = 4 MPa (Fig. 4). The corresponding elastic strain at the
tensile strength limit is ε0 = ft/E and the strain after complete soft-
ening, εc, is chosen such that εc/ε0 = 3. The characteristic length l0
is 20 mm. In the original CBM, the crack bandwidth is equal to the
characteristic length l0 and the strain, ε = u′, is uniform across the
band. Here, l0 is subdivided into several uniform-strain elements
and the width of the crack band is roughly equal to the character-
istic length. Specifically, the bar is discretized into 5, 21, 51, 101,
201, and 501 elements, and the characteristic length l0 is thus
divided into 1, 5, 11, 21, 41, and 101 elements, respectively.

The middle element of the bar will have a slightly reduced
tensile strength of 0.99 ft, in order to induce strain localization at
the middle of the bar. The spress-sprain relation used is based
on the Eq. (13) with the threshold C= 0 and the sprain stiffness
κ = 127.5 GPa.
This is a static problem, and an implicit static algorithm is used.

To capture the snapback behavior, a simple algorithm inspired by
the crack mouth opening displacement control is used. First, since
it is known that the middle (weakest) element is always stretched
after each increment, a pair of displacement increments equal in
magnitude but opposite in direction is prescribed at the two nodes
of the middle element. After that, the nodal displacements at the

Fig. 6 From left to right: Displacement profile u, strain profile ε, and approximated sprain
profile dζ/dx of the 1D bar under uniaxial tension that is discretized into (from top to
bottom) 5, 21, 51, 101, and 201 elements
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two boundaries (along with the rest of the DOF) will be obtained
using standard Newton–Raphson algorithm with the conditions
that the reaction forces at the two nodes of the middle element
equal to zero.
The displacement field, strain field, and the approximate sprain

field which is the gradient of ζ of the bar are discretized into dif-
ferent numbers of elements, as shown in Fig. 6. The original CBM
is used when l0 is equal to the width of the element (Figs. 6(a),
6(b), and 6(c)). As the bar is discretized into more elements,
through the use of the localization resisting sprain energy, the
damage gets spread over the characteristic length l0 with a
smooth bell-type distribution using a proper chosen sprain stiffness
κ. Figure 5 shows the force versus displacement curves as the bar
is discretized into different numbers of elements. Because the
strain field is uniform during elastic loading, the elastic response
is the same with or without using the sprain energy; therefore,
setting the threshold C to be zero is justified. Note that the local-
ization resistance should decrease as the damage increases and
vanish when the material is totaly broken, since there will be resid-
ual stresses in the bar if a constant sprain stiffness κ is used for
post-peak damage [4]. The simulation using a constant sprain

stiffness κ is thus terminated near post-peak damage before the
residual stresses become large enough to affect the force versus
displacement curve.
The strain field (Figs. 6(b), 6(e), 6(h), 6(k), and 6(n)) and

the approximate sprain field (Figs. 6(c), 6( f ), 6(i), 6(l ), and
6(o)) smooth and converge as the number of finite elements
increases. The convergence can also be shown by the plot of the
L2 norm of the error of the reaction force of the system, i.e.,
L2 = ‖F−Fasympt‖2. Here Fasympt would be the exact loading
force for the given load-point displacement if the exact value
were known a priori. Since it is not known, we determine the
value Fasympt so that the computed value in the log-log plot of
Fig. 10(a) falls into a straight line, and a straight line in the
log-log scale represents a power law. A linear regression fitting
line shows that the rate of convergence is at least quadratic.

8.2 2D Three-Point Bend Test Simulation. The specimen
geometry for the three-point bend test simulation is similar to that
used in Ref. [4] but the material model is the M7 microplane
model for concrete. Note that different parameter combinations
for M7 microplane model correspond to different material proper-
ties; it is an important process for objectively describing a quasi-
brittle material, which is also detailed in Ref. [43]. Here the
elastic (Young’s) modulus is E= 38.3 GPa, the Poisson ratio is
ν = 0.18. The calibrated M7 (implicit) parameters were k1=
0.00015, k2= 110, k3= 30, k4= 100. The threshold C= 0 and the
sprain stiffness κ= 1.9 GPa. The span-to-depth ratio is L/D= 3.8
and the notch depth is a/D= 0.197.
Figure 7 shows the simulation results when a fine square mesh in

a zone surrounding the growing crack is deliberately inclined from
the notch line at various angles equal to 0 deg , 5 deg , 15 deg, and
30 deg. The mesh size in the near-tip zone is l0/20. Each element
is a four-node finite element with linear shape functions for u, ζ
and the Lagrange multiplier λ, as already described. Figure 7 com-
pares the widths and shapes of the fracture process zone and dem-
onstrates that the contours of constant transverse strains εxx of
different magnitudes are virtually identical. Similarly, the difference
between the values of the center-span equilibrium loading force
as a function of the vertical load-point displacement for different
mesh inclinations is negligible (Fig. 8).

Fig. 7 Three-point bend simulations with different mesh inclinations using the slCBM and M7

Fig. 8 Reaction force versus displacement of the loading point
at the top of the specimen with different mesh inclinations

Fig. 9 Convergence check of the slCBM, from left to right the mesh gradually becomes
denser with the same geometry
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Figure 9 shows the effect of changing mesh size near the crack
tip, considering the same identical three-point bend fracture speci-
mens and simulation setup. The square element sizes are chosen
as 5 mm, 2.5 mm, and 1 mm, respectively. The results are not
only stable but also almost independent of the element size, over-
coming the mesh bias. Figure 9 is a practical demonstration of con-
vergence of the present method with linear shape functions and
Lagrange multipliers. Figure 10(b) shows the plot of the L2 norm
of the error of the reaction force of the system. Similar to the 1D
simulation, here Fasympt is determined as the force value for
which the L2 norm of the error of the reaction force falls into the
straight line in the log-log plot, representing a power law. An
approximate power law must be expected because of the nearly
perfect similarity of the three meshes of different refinements.

9 Conclusions

(1) Computer implementation of the previously proposed
concept of limiting damage localization by applying
sprain forces on adjacent nodes of a finite element [4]
runs into formidable obstacles. It is tedious to program
and extends the running time on commercial FE codes
such as ABAQUS by almost two orders of magnitude.

(2) What helps to eliminate this problem is to consider both the
displacement vector u with components u and v and the
approximate gradient tensor ζ with components ζu,x, ζu,y,
ζv,x, ζv,y as independent nodal variables.

(3) The approximate gradient components are constrained to
the actual gradient components ux, uy, vx, vy by means of
Lagrangian multipliers λu,x, λu,y, λv,x, λv,y applied to the dif-
ference between the actual and approximate gradients.
Zeroing of the derivatives of the Helmholtz free energy of
the structure with respect to the Lagrange multipliers of
all the nodes gives the optimum constraint yielding the
best approximation of the actual displacement gradient
tensor.

(4) The gradient tensor of the approximate gradient tensor rep-
resents the approximate curvature of the displacement
vector. Their limitation by means of the spress-sprain rela-
tion based on the sprain energy prevents spurious damage
localization at, and behind, the fracture front of finite
width. In the generalized stiffness matrix, this is effected
by the matrix components representing spress-based resis-
tance to sprain.

(5) The Lagrange multipliers can be considered as element
properties or the nodal properties. The former is more

efficient by reducing the total number of DOF, while treat-
ing the Lagrange multipliers as nodal properties aid the pro-
gramming in commercial FEA software such as ABAQUS.

(6) Thanks to adopting approximate displacement gradients
as independent nodal variables and constraining them by
Lagrangian multipliers, there is no need for localization
control by sprain forces applied on the nodes of the adjacent
elements.

(7) Physically, the Lagrange multipliers represent applied gen-
eralized moments per unit volume working on the gradient
differences. It is important that their work is not part of the
internal Helmholtz free energy stored in the material but is
external, like the work of gravity forces.

(8) In two-dimensional fracture modeling, there are ten unknown
degrees-of-freedom per node: two nodal displacement com-
ponents, four approximate displacement gradients, and four
Lagrange multipliers. The increased number of variables
requires introducing into a user’s element of ABAQUS a larger
and more complex stiffness matrix.

(9) A severe test in computer simulations is the mesh bias
and convergence when the material characteristic length
is subdivided into more elements. FE simulations with
ABAQUS show both tests to be verified. If the material
characteristic length l0 is subdivided into five elements
or more, the directional bias of a square mesh is totally
eliminated.

(10) In contrast to the CBM, the slCBM can simulate the var-
iation of the crack band width due to loading and to
crack growth. Importantly, the width of the crack band
(or damage zone) remains nearly the same for different
subdivisions. Mesh rotations by 5 deg, 15 deg, 30 deg
make no discernible difference. Although the mesh orien-
tation independence was demonstrated in the preceding
study, it was at the cost of great programming difficulties
as well as huge computational burden and enormous
running time.
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determined so that the computed value in the log-log plot falls into a straight line, representing
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[19] Bažant, Z. P., and Christensen, M., 1972, “Analogy Between Micropolar

Continuum and Grid Frameworks Under Initial Stress,” Int. J. Solids Struct.,
8(3), pp. 327–346.

[20] Fleck, N., and Hutchinson, J., 1993, “A Phenomenological Theory for Strain
Gradient Effects in Plasticity,” J. Mech. Phys. Solids, 41(12), pp. 1825–1857.

[21] Cosserat, E., and Cosserat, F., 1909, Théorie Des Corps Déformables (Theory of
Deformable Bodies), A. Hermann & Fils, Paris.

[22] Gao, H., Huang, Y., Nix, W., and Hutchinson, J., 1999, “Mechanism-Based
Strain Gradient Plasticity–I. Theory,” J. Mech. Phys. Solids, 47(6), pp. 1239–
1263.

[23] Huang, Y., Gao, H., Nix, W., and Hutchinson, J., 2000, “Mechanism-Based
Strain Gradient Plasticity–II. Analysis,” J. Mech. Phys. Solids, 48(1), pp. 99–128.
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