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This interesting study is similar to the study by Bazant and 
Najjar (1973) [extensively reviewed in Section 5.5 of Bazant 
(1975)], which apparently escaped the attention of the authors. 
However, the conclusion in which the authors recommend the 
effective modulus method, is different. It appears unwarranted 
and conflicts with more extensive evidence. 

The authors dismiss the age-adjusted effective modulus 
method on the basis that it requires evaluation of the relaxation 
function. However, it must be pointed out that this function 
can be easily and quite accurately evaluated from an approx­
imate formula by Bazant and Kim (1979), also reported in 
BaZant (1988) and other review works. Contrary to what the 
authors say, solution of the integral equation need not be car­
ried out. (An accurate calculation of the relaxation function by 
a computer solution of the integral equation is nevertheless an 
almost trivial matter.) 

In a broad range of examples worked out by BaZant and 
Najjar (1973), including stress redistributions due to changes 
of the structural system, stress redistributions in composite 
cross sections, differential creep of a structure with concretes 
of different age, shrinkage stresses, effect of settlement of sup­
ports, creep buckling, etc., the age-adjusted effective modulus 
method gave results overall far closer to the exact solution 
according to the principle of superposition than other algebraic 
methods. 

The differences between various solutions happen to be for 
the problem considered by the authors, considerably less than 
in some other creep and shrinkage problems, e.g., those ana­
lyzed by BaZant and Najjar (1973). This means that the ex­
amples they considered are not the cases most sensitive to 
creep, and therefore not the cases most suitable for comparison 
of various methods. 

Furthermore, the accuracy of the application of the age-ad­
justed effective modulus method to shrinkage stresses in a con­
crete slab strongly depends on the shrinkage function. The 
function given by "CEB FIP Model Code 1990" (1988) is 
not quite realistic, showing a much higher overall deviation 
from the bulk of available test data than the B3 model (BaZant 
and Baweja 1995). The accuracy of the age-adjusted effective 
modulus method for shrinkage is high only when the average 
rate of shrinkage, compared to the long-term value, is roughly 
the same as the rate of creep, in which case the assumption 
that the shrinkage curve should be approximately a linear func­
tion of the compliance function for creep is a good approxi­
mation. Anyway, the authors would obtain very different con­
clusions if they studied a range of possible shrinkage curves, 
as predicted by the B3 model for concretes of different dif­
fusivities and various thicknesses. It makes little sense to draw 
a general conclusion from an isolated example, especially if 
an unrealistic shrinkage function is used. 

Regarding the mean stress method, its apparently good per­
formance for shrinkage problem must be due to the high rate 
of shrinkage, in their chosen shrinkage function. This rate var-
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ies greatly with the thickness of the cross section and the type 
of concrete. Overall, the mean stress method is not as good as 
the age-adjusted effective modulus method, even if the aging 
coefficient is taken as a constant equal to 0.8. Fixing this co­
efficient as constant gives the same simplicity as the mean 
stress method but usually a better accuracy. 
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Closure by Luigino Dezi,s Graziano Leoni,6 
and Angelo Marcello Tarantino' 

The writers wish to thank the discusser for his interest in 
their paper and for having stimulated an extension of the anal­
ysis to the B3 model, thus allowing a further generalization of 
their results. The closure is organized under the following 
three points. 

The paper by BaZant and Najjar (1973) is not similar to the 
writers' paper. In their work, BaZant and Najjar evaluated the 
effectiveness of the algebraic methods on a broad set of ele­
mentary problems that can be encountered in the viscoelastic 
theory. A very marginal space was dedicated to composite 
structures (only 10 lines on page 1864), examining the simple 
case of a steel-concrete cross section subjected to an external 
bending moment constant in time. On the contrary, the analysis 
developed by the writers, which is far more complete and ex­
haustive, focuses attention exclusively on the class of com­
posite structures. A global analysis was in fact performed for 
statically indeterminate composite structures, taking into ac­
count the deformability of the shear connection with the final 
aim of estimating the validity of the algebraic methods for 
each type of external action considered separately (namely, for 
the following four types of actions: static, geometrical, shrink­
age, and prestressing of the slab). Such a separation (which is 
very important in structures such as bridges, where each single 
action may assume a fundamental role) permits substantially 
to better understand the approximations induced by application 
of the algebraic methods to composite structures. 

With reference to the age-adjusted effective modulus 
(AAEM) method, in many parts of the paper, it is clearly de­
clared that such a method provides excellent results, except 
for the shrinkage problem. It is also stated that the principal 
technical codes for practical purposes tend to recommend the 
modular ratio method, with time-independent coefficients de­
pending on the type of external action, following the simpler 
applicative philosophy of the effective modulus (EM) method. 
In the paper it is pointed out that even if the EM method gives 
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less accurate results than the AAEM method it still maintains 
a level of accuracy that is acceptable for practical applications. 

Finally. the crucial question of the discussion. concerning 
the validity of the algebraic methods for the shrinkage prob­
lem. is examined. The discusser contests the writers' conclu­
sions. which establish that the mean stress (MS) method is the 
best algebraic method in evaluating the effects due to shrink­
age of the concrete slab. conjecturing that such a good per­
formance of the MS method (shown in the writers' paper) 
depends on the particular creep and shrinkage models used 
(CEB model). Moreover. he states that when the B3 model is 
adopted. the AAEM method would always be the best alge­
braic method. even in its simplified form with X = 0.8. 

To check this assertion. the writers. who had previously 
tested the validity of the algebraic methods by using the CEB 
model for a large class of composite structures (as clearly 
stated at the end of section 5). have extended the numerical 
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TABLE 2. Absolute Values and Relative Errors of Middle Sup­
port Reaction Obtained with Different Algebraic Methods [Influ­
ence of CrossoSectlon Type (CEB Model-fok = 30 MPa; RH = 
80%)] 

Type of Method 
cross 

section G EM MS AAEM X = 0.8 
(1 ) (2) (3) (4) (5) (6) 

lA 149.07 112.58 148.53 128.89 123.37 
(-24.5%) (-0.4%) (-13.5%) (-17.2%) 

IB 193.50 148.99 186.81 168.30 160.72 
(-23.0%) (-3.5%) (-13.0%) (-16.9%) 

lC 223.89 176.84 214.03 197.39 188.62 
( -21.0%) (-4.4%) (-1.8%) (-15.8%) 

2A 135.38 107.60 134.80 120.29 116.06 
(-20.5%) (-0.4%) (-11.1%) (-14.3%) 

2B 171.92 140.40 167.35 154.49 149.04 
(-18.3%) (-2.7%) (-10.1%) (-13.3%) 

2C 198.12 165.97 191.65 180.45 174.38 
(-16.2%) (-3.3%) (-8.9%) (-12.0%) 

Note: Relative errors are in parentheses. 

TABLE 3. Absolute Values and Relative Errors of Stress at the 
Cross Section over the Middle Support Obtained with Different 
Algebraic Methods [Influence of Cross-5ectlon Type (CEB 
Model-f.k= 30 MPa; RH = 80%» 

Slab Beam 

O'T"" 0'_ O'Top 0'_ 

Method [MPa (%)] [MPa (%)] [MPa (%)] [MPa (%)] 
(1 ) (2) (3) (4) (5) 

(a) Section lA 

G 3.36 3.06 -15.01 -48.44 
EM 2.46 (-27.0) 2.29 (-2S.0) -9.3S (-37.7) -37.06 (-23.S) 
MS 3.3S (-0.3) 3.0S (-O.S) -14.96 (-0.4) -48.26 (-0.4) 
AAEM 2.86 (-IS.1) 2.64 (-13.8) -11.82 (-21.2) -42.16 (-13.0) 
X = 0.8 2.72 (-19.1) 2.52 (-17.6) -10.97 (-26.9) -40.44 (-16.5) 

(b) Section 18 

G 3.00 2.43 -21.61 -S9.56 
EM 2.20 (-26.8) 1.91 (-21.3) -14.29 (-33.9) -46.S3 (-21.9) 
MS 2.88 (-4.2) 2.3S (-3.1) -20.49 (-S.2) -57.61 (-3.3) 
AAEM 2.S4 (-15.5) 2.14 (-11.7) -17.40 (-19.S) -S2.21 (-12.3) 
X = 0.8 2.40 (-20.0) 2.0S (-IS.4) -16.17 (-2S.2) -49.98 (-16.1) 

(e) Section lC 

G 2.70 1.86 -26.00 -6S.44 
EM 1.98 (-26.6) I.S7 (-IS.4) -18.10 (-30.4) -S2.55 (-19.7) 
MS 2.54 (-6.1) 1.81 (-2.S) -24.30 (-6.5) -62.77 (-4.1) 
AAEM 2.28 (-IS.7) 1.71 (-7.7) -21.48 (-17.4) -S8.23 (-11.0) 
X = 0.8 2.15 (-20.S) 1.66 (-10.8) -20.0 (-23.0) -5S.81 (-14.7) 

(d) Section 2A 

G 2.89 2.23 -16.10 -52.34 
EM 2.19 (-24.3) 1.83 (-18.1) -11.06 (-31.3) -42.03 (-19.7) 
MS 2.88 (-0.2) 2.22 (-0.7) -16.01 (-O.S) -S2.11 (-0.4) 
AAEM 2.50 (-13.4) 2.02 (-9.S) -13.32 (-17.2) -46.75 (-10.7) 
X = 0.8 2.40 (-17.1) 1.96 (-12.3) -12.56 (-22.0) -4S.18 (-13.7) 

(e) Section 28 

G 2.62 1.44 -21.65 -60.66 
EM 1.96 (-2S.4) 1.34 (-7.3) -IS.58 (-28.0) -SO.39 (-16.9) 
MS 2.52 (-4.0) 1.43 (-0.5) -20.74 (-4.2) -S9.20 (-2.4) 
AAEM 2.23 (-14.8) 1.41 (-2.5) -18.22 (-15.9) -5S.04 (-9.3) 
X = 0.8 2.12 (-19.1) 1.38 (-4.1) -17.18 (-20.6) -53.25 (-12.2) 

(f) Section 2C 

G 2.44 0.83 -25.99 -63.39 
EM 1.79 (-26.5) 0.94 (13.4) -19.20 (-26.1) -54.63 (-13.8) 
MS 2.29 (-6.2) 0.88 (5.4) -24.53 (-5.6) -61.73 (-2.6) 
AAEM 2.05 (-15.8) 0.93 (11.4) -22.11 (-14.9) -58.73 (-7.3) 
X = 0.8 1.94 (-20.5) 0.94 (12.9) -20.87 (-19.7) -S7.04 (-10,0) 

Note: Relative errors are in parentheses. 

TABLE 4. Absolute Values and Relative Errors of the Middle 
Support Reaction Obtained with Different Algebraic Methods 
[Influence of Relative Humidity (CEB Model-f.k= 30 MPa)] 

Relative Method 
humidity 

(%) G EM MS AAEM x = 0.8 
(1 ) (2) (3) (4) (5) (6) 

(a) Cross section lA 

70 193.10 143.31 192.65 162.79 158.12 
(-25.8%) (-0.2%) (-15.7%) (-18.1%) 

80 149.07 112.58 148.53 128.89 123.37 
(-24.5%) (-0.4%) (-13.5%) (-17.2%) 

90 86.05 66.54 85.91 78.63 72.35 
(-22.7%) (-0.2%) (-8.6%) (-15.9%) 

(b) Cross section 2A 

70 176.77 138.23 176.19 153.71 150.05 
(-21.8%) (-0.3%) (-13.0%) (-IS.I%) 

80 135.38 107.60 134.80 120.29 116.06 
(-20.5%) (-0.4%) (-11.1%) (-14.3%) 

90 77.57 62.93 77.30 72.06 67.39 
(-18.9%) (-0.3%) (-7.1%) (-13.1%) 

Note: Relative errors are in parentheses. 

JOURNAL OF STRUCTURAL ENGINEERING I AUGUST 1997/1113 



comparisons to the B3 model. Two steel beams combined with 
three different slabs have been considered. These are illus­
trated in detail in Fig. 9. The numerical results are collected 
in Tables 2-9. Tables 2-5 report the numerical computations 
already performed by the writers using the CEB model, 
whereas Tables 6-9 are related to the new results obtained by 
using the B3 model. In each table, the numerical values de­
termined with the different algebraic methods (EM, MS, and 
AAEM methods) are directly compared with those provided 
by the general method (G method-accurate numerical solu­
tion). The numerical values obtained by applying the AAEM 
method with X = 0.8 are also reported. For an immediate com­
parison, the relative errors are specified in parentheses. The 
influence of the cross-section type is shown in Tables 2, 3, 6, 
and 7, the influence of the relative humidity in Tables 4 and 
8, and the influence of the concrete strength in Tables 5 and 
9. 

As is clearly evidenced by Tables 6-9, the MS method 
gives the most accurate values even when the B3 model is 
used. Then the writers' conclusions, based on the CEB model 
(see Tables 2-5), are now also confirmed for the B3 model. 
The MS method, in evaluating the effects due to shrinkage of 
concrete slab, is preferable to the AAEM method not only for 
its better numerical precision, but also for its simpler use. It 

TABLE 5. Absolute Values and Relative Errors of the Middle 
Support Reaction Obtained with Different AlgebraiC Methods 
[Influence of Concrete Strength (CEB Model-RH = 80%)) 

Concretet--_--r ___ --r ___ -, ___ -,... ___ _ 

strength 
(1 ) 

25 

35 

40 

25 

35 

40 

G 
(2) 

150.42 

146.00 

141.55 

138.01 

131.44 

126.45 

(a) Cross section IA 

112.02 150.15 
(-25.5%) (-0.2%) 

111.62 145.26 
(-23.5%) (-0.5%) 

109.40 140.67 
(-22.7%) (-0.6%) 

(b) Cross section 2A 

108.16 137.59 
(-21.6%) (-0.3%) 

105.73 130.75 
(-19.6%) (-0.5%) 

102.80 125.70 
(-18.7%) (-0.6%) 

Note: Relative errors are in parentheses. 

128.61 
(-14.5%) 

127.42 
(-12.7%) 

124.54 
(-12.0%) 

121.35 
(-12.1%) 

117.80 
(-10.4%) 

114.17 
(-9.7%) 

x = 0.8 
(6) 

123.42 
(-17.9%) 

121.75 
(-16.6%) 

118.83 
(-16.1%) 

117.28 
(-15.0%) 

113.54 
(-13.6%) 

109.95 
(-13.0%) 

TABLE 6. Absolute Values and Relative Errors of Middle Sup­
port Reaction Obtained with Different Algebraic Methods [Influ­
ence of Cross-Section Type (B3 Model-fok = 30 MPaj RH = 
80%)] 

Type of Method 
cross 

section G EM MS AAEM )( = 0.8 
(1 ) (2) (3) (4) (5) (6) 

IA 100.84 75.82 107.90 90.94 83.30 
(-24.8%) (-7.0%) (-9.8%) (-17.4%) 

IB 141.56 104.43 141.40 123.04 113.39 
(-26.2%) (-0.1%) (-13.1%) (-19.9%) 

lC 173.61 128.91 168.09 149.50 138.68 
(-25.7%) (-3.2%) (-13.9%) (-20.1%) 

2A 96.50 75.07 101.01 87.66 81.39 
(-22.2%) (4.7%) (-9.2%) (-15.7%) 

2B 131.54 102.47 130.76 117.12 109.63 
(-22.1%) (-0.6%) (-11.0%) (-16.7%) 

2C 159.43 126.15 155.17 141.82 133.70 
(-20.9%) (-2.7%) (-11.0%) (-16.1%) 

Note: Relative errors are in parentheses. 
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TABLE 7. Absolute Values and Relative Errors of Stress at the 
Cross Section over the Middle Support Obtained with Different 
Algebraic Methods [Influence of Cross-Sectlon Type (B3 Model 
- 'ok = 30 MPaj RH = 80%)) 

Slab Beam 

aT"" a_ aT"" a_ 
Method [MPa(%») [MPa (%») [MPa (%)) [MPa(%») 

(1 ) (2) (3) (4) (5) 

(a) Section lA 

G 2.19 2.07 -8.53 -33.17 
EM 1.61 (-26.6) 1.53 (-26.1) -5.15 (-39.6) -25.24 (-23.9) 
MS 2.39 (8.8) 2.21 (6.7) -9.78 (14.71) -35.32 (6.5) 
AAEM 1.97 (-10.2) 1.85 (-10.6) -7.25 (-15.0) -30.01 (-9.5) 
)( = 0.8 1.79 (-18.5) 1.69 (-18.4) -6.17 (-27.7) -27.61 (-6.8) 

(b) Section 18 

G 2.10 1.83 -14.26 -44.04 
EM 1.49 (-28.9) 1.34 (-26.6) -8.61 (-39.67) -32.99 (-25.1) 
MS 2.12 (0.91) 1.81 (-1.2) -14.33 (0.5) -43.94 (-0.2) 
AAEM 1.80 (-14.2) 1.58 (-13.6) -11.41 (-20.0) -38.53 (-12.5) 
X = 0.8 1.64 (-21.9) 1.46 (-20.3) -9.94 (-30.3) -35.66 (-19.0) 

(e) Section IC 

G 1.98 1.54 -18.75 -51.30 
EM 1.39 (-29 .6) 1.17 (-24.1) -11.67 (-37.8) -38.77 (-24.4) 
MS 1.92 (-2.8) 1.47 (-4.11) -17.91 (-4.5) -49.72 (-3.1) 
AAEM 1.66 9-16.0) 1.34 (-13.1) -14.89 (-20.6) -44.56 (-13.1) 
X = 0.8 1.52 (-23.2) 1.25 (-18.7) -13.18 (-29.7) -41.53 (-19.1) 

(d) Section 2A 

G 1.95 1.66 -10.17 -37.66 
EM 1.48 (-24.2) 1.29 (-22.5) -6.63 (-34.8) - 29 .57 (-21.5) 
MS 2.10 (7.4) 1.70 (2.2) -11.09 (9.1) -39.28 (4.3) 
AAEM 1.77 (-9.3) 1.50 (-10.1) -8.73 (-14.1) -34.30 (-8.9) 
X = 0.8 1.62 (-16.8) 1.39 (-16.2) -7.67 (-24.6) -31.95 (-15.2) 

(e) Section 28 

G 1.84 1.25 -15.18 -47.06 
EM 1.36 (-26.4) 1.02 (-18.3) -10.09.(-33.5) -37.19 (-21.0) 
MS 1.87 (1.3) 1.21 (-3.6) -15.17 (-0.1) -46.69 (-0.8) 
AAEM 1.61 (-12.7) 1.13 (-9.7) -12.66 (-16.6) -42.15 (-10.4) 
)( = 0.8 1.48 (-19.8) 1.08 (-13.9) -11.33 (-25.4) -39.62 (-15.8) 

(j) Section 2C 

G 1.77 0.86 -19.32 -52.1 
EM 1.27 (-28.0) 0.80 (-8.0) -13.14 (-32.0) -42.19 (-19.0) 
MS 1.73 (-2.3) 0.83 (-3.9) -18.63 (-3.6) -50.72 (-2.6) 
AAEM 1.51 (-15.1) 0.83 (-3.8) -16.01 (-17.1) -46.88 (-10.0) 
X = 0.8 1.38 (-22.0) 0.82 (-5.5) -14.50 (-25.0) -44.47 (-14.7) 

Note: Relative errors are in parentheses. 

TABLE 8. Absolute Values and Relative Errors of the Middle 
Support Reaction Obtained with Different Algebraic Methods 
[Influence of Relative Humidity (B3 Model-f.k= 30 MPa)) 

Relative Method 
humidity 

(%) G EM MS AAEM X = 0.8 
(1 ) (2) (3) (4) (5) (6) 

(a) Cross section IA 

70 124.01 96.08 138.99 113.55 106.29 
(-22.5%) (12.1%) (-8.4%) (-14.3%) 

80 100.84 75.82 107.90 90.94 83.30 
(-24.8%) (7.0%) (-9.8%) (-17.4%) 

90 60.25 44.17 62.04 53.84 48.26 
(-26.7%) (3.0%) (-10.6%) (-19.9%) 

(b) Cross section 2A 

70 120.58 95.89 131.15 110.73 104.65 
(-20.5%) (8.8%) (-8.2%) (-13.2%) 

80 96.50 75.07 101.01 87.66 81.39 
(-22.2%) (4.7%) (-9.2%) (-15.7%) 

90 56.87 43.44 57.70 51.36 46.85 
(-23.6%) (-1.5%) (-9.7%) (-17.6%) 

Note: Relative errors are in parentheses. 



is also evident that the AAEM method with X = 0.8 cannot be 
recommended. 

The cross sections and the creep parameters chosen in the 
numerical analysis can be considered as representative of stan­
dard situations, namely, those that can be more frequently en­
countered in practice. However, for some limit situations, as 
in the case of small slab thickness and low relative humidity 
(RH), the B3 model produces a stress history with the maxi­
mum value at an intermediate time (see Figs. 10 and 11) and 
not at the final time, as always occurs with the eEB model. 
In these circumstances, the use of the algebraic methods is not 

TABLE 9. Absolute Values and Relative Errors of the Middle 
Support Reaction Obtained with Different Algebraic Methods 
[Influence of Concrete Strength (B3 Model-RH = 8O%)J 

Concretel-__ -.... ___ -.-_M_e_th_o_d-,-___ ....,... ___ _ 

strength 
(1 ) 

25 

35 

40 

25 

35 

40 

G 
(2) 

97.67 

103.25 

105.12 

94.33 

98.07 

99.23 

(a) Cross section lA 

72.16 103.95 
(-26.1%) (-6.4%) 

78.73 110.96 
(-23.7%) (-7.5%) 

81.10 113.39 
(-22.9%) (-7.9%) 

(b) Cross section 2A 

72.16 98.42 
(-23.5%) (-4.3%) 

77.32 102.92 
(-21.2%) (-4.9%) 

79.09 104.36 
(-20.3%) (-5.2%) 

Note: Relative errors are in parentheses. 
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FIG. 10. Time Evolution of Middle Support Reaction (Steel 
Beam TYpe 1; Slab Thickness 100 mm; RH = 80%; fclc = 30 MPa) 
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FIG. 11. Time Evolution of Middle Support Reaction (Steel 
Beam Type 1; Slab Thickness 200 mm; RH = 70%; fclc = 30 MPa) 

advised, since the time at which the stress reaches the maxi­
mum value is not known a priori, so that only the general 
method can be applied. With reference to the examples of Figs. 
10 and 11, after having computed these special intermediate 
times by means of a step-by-step analysis, the algebraic meth­
ods have nonetheless been applied to perform a numerical 
comparison. Figs. 10 and 11 show that the MS method, once 
again, gives the most accurate solution. 

Given the results obtained, it is possible to conclude that, 
in the shrinkage problem for composite structures, the MS 
method gives a better accuracy with respect to the AAEM 
method. Contrary to what the discusser writes, this conclusion 
holds for both the CEB and B3 models. 

DESIGN PROVISIONS FOR STAIR SLABS 

IN THE BANGLADESH BUILDING CODEa 

Discussion by Hakan KIh~4 and 
Ergin <;ltIpItlOglu/ Member, ASCE 

The authors presented results of the analysis of staircases 
having various boundary conditions based on the Bangladesh 
National Building Code. They must be commended for bring­
ing this subject to the attention of the civil engineering com­
munity. Basically four different cases are presented in the pa­
per. In practice, it is not likely to have the same boundary 
conditions for the midstory landing and the story level landing 
because the story level landing is continuously cast with the 
floor slab of the building. The discussers developed a finite­
element model, shown in Fig. 6, to represent continuous flights 
by introducing symmetrical boundary conditions at the mid­
landing section, which allows vertical displacements. A num­
ber of analysis are performed by SAP 90 (Wilson and Mabi­
bullah 1992), a computer program using four-node shell 
elements to verify the results presented in the paper, and an 
alternative approach, which is widely used in Turkey (Ktiseo­
glu 1992). 

Discussers analyzed the four cases presented in Fig. 4 under 
a unit load. Two important deviations are observed. First, the 
sum of support and span moments of case I is not equal to 
the span moment of case II in the figure. They must be equal 
due to simple statics. Second, a discontinuity exists at the tran­
sition region of the case I moment diagram in Fig. 4. The 
discussers' analyses, based on a finite-element model (shown 
in Fig. 6) indicated correct results for cases I and II and a 
smooth transition region in case I. The boundary conditions 
and the finite-element model used are not given in the paper. 
Additionally appreciable axial forces are obtained by the dis­
cussers for cases II and III. Axial forces must be considered 
in the determination of steel reinforcement. Furthermore, it is 
observed that hinge and roller type of end boundary conditions 
result in large changes in moments and axial forces. 

Practical analysis of staircases with various boundary con­
ditions can be performed on a two-dimensional beam model 
representing a strip of unit width (Ktiseoglu 1992). The cases 
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