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ABSTRACT: The mechanism of formation of natural cracks in sedimentary rocks in the geologic past is an important problem
in hydraulic fracturing. Why are the natural cracks roughly parallel and equidistant, and why is the spacing in the order of 10
cm rather than 1 cm or 100 cm? Fracture mechanics alone cannot answer these questions. Here it is proposed that fracture
mechanics must be coupled with the diffusion of solute ions (Na+ and Cl− are considered here), driven by an osmotic pressure
gradient. Parallel equidistant cracks are considered to be subcritical and governed by the Charles-Evans law. The evolution in
solute concentration also affects the solvent pressure in the pores and cracks, altering the resistance to frictional sliding. Only
steady-state propagation and periodic cracks are studied. An analytical solution of the crack spacing as a function of the properties
of the rock as well as the solvent and solute, and the imposed far-field deformation is obtained. Finally, the stability of the
growth of parallel cracks is proven by examining the second variation of free energy. Stability of the periodic growth state is also
considered.

1 INTRODUCTION

The deep layers of sedimentary rocks such as shale and
sandstone are usually intersected by systems of nearly par-
allel natural cracks either filled by mineral deposits or
closed by creep over a million year life span. Their spac-
ing is roughly uniform and is on the order of 0.1 m (rather
than 1 m or 0.01m). These cracks likely play an important
role in hydraulic fracturing for gas or oil recovery (aka
fracking, fraccing or frac) (Rahimi-Aghdam et al., 2019,
e.g.). Therefore, understanding the mechanism of their
formation in the distant geologic past is of interest.

What controls the spacing of the nearly parallel cracks
in shale? According to the fracture mechanics alone, the
crack spacing is arbitrary. If propagating parallel equidis-
tant cracks are in a critical state, stability analysis shows
that many cracks would have to stop growing, causing a
great increase of their average spacing, which was obvi-
ously not the case (Bažant et al., 2014).

The main hypothesis advanced here is that cracks must
be subcritical, propagating slowly, and that the spacing is
controlled by the diffusion of fluids, due to a difference in
solute concentration. In particular, it is proposed that the
natural crack spacing is dictated by an osmotic pressure

gradient which drives diffusion of solvents and solute ions
(e.g., Na+ and Cl−) in the direction normal to the crack.
Since the diffusion cannot be instantaneous, one must con-
sider a slow subcritical crack propagation (Olson, 1993,
2004). Also note that this sustained growth would be fea-
sible even when seismic and microseismic events were ab-
sent, as long as their residual effects remained. This con-
stant activation could also explain why the hairline cracks
maintain their permeability despite creep (Chau et al.,
2017). Such cracks can keep growing for thousands, even
millions, of years after a tectonic event.

In this study, the cracks are considered to grow at the typ-
ical depths of hydraulic fracture (about 3km). When the
fracture process zone (FPZ) at the crack front advances
(either by slipping or opening), it will also dilate. The di-
lation will dilute the concentration of solute ions within
the FPZ and reduce the intensity of the stress-corrosion
process, which slows down the crack growth. In addition,
the drop of ionic concentrations compared to the adjacent
rock and the semipermeable nature of the tight gas shale
will cause a diffusion of the solvents out of the FPZ and
of the solute from the FPZ towards the crack; see Fig. 1.
This increases the pore pressure which in turn imposes a
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compression on the crack surfaces and further inhibits the
crack growth.

This work aims to propose an explanation for a dense net-
work of cracks that can generate a large enough perme-
ability within impermeable shale rock strata (Bažant et al.,
2014). This dense network was shown to be necessary
to promote branching in the hydraulic cracks, which ulti-
mately lead to a high enough natural gas yield.

2 THE PROPAGATION OF A PARALLEL SYSTEM
OF LONG MODE-I AND MODE-II FRICTIONAL
CRACKS

Consider the typical depth of hydraulic fracture, 3 km.
The horizontal mean tectonic stress at that depth is about
50 MPa. Such compression prevents the formation of
Mode-I cracks, which would create an open space be-
tween crack surfaces. On the other hand, vertical Mode-III
cracks propagating horizontally would imply implausibly
large vertical sliding displacements. So the only plausible
way to explain how parallel natural cracks formed mil-
lions years ago is to consider parallel mode-II cracks. If
the crack faces are in sliding contact, the friction will im-
pose a uniform field of residual shear stress.

Postponing the questions of crack spacing stability, we
consider for simplicity that an infinite elastic space con-
tains an infinite system of semi-infinite parallel cracks
of uniform spacing 2𝑠, as shown in the horizontal sec-
tion in Fig. 1. The infinite space is in the state of
plane strain, which makes the problem two-dimensional
(2D).The cracks and the entire space are subjected to far-
field shear strain 𝛾, which is presumably the residual de-
formation from a major tectonic event, and normal com-
pressive stresses 𝜎𝐻 and 𝜎ℎ which, at the depth of 3 km
typical of shale fracking, approximately equal 50 MPa
(equivalently, overall uniform far-field deformations, 𝑢
and 𝑣, could be assumed).

The friction at the crack faces sliding against each other is
𝜏 𝑓 𝑟𝑖𝑐 = 𝑘𝜎𝑁 , where 𝑘 is the kinetic friction coefficient, for
shale about 0.4 (Kohli and Zoback, 2013). At the front of
each crack there is a fracture process zone (FPZ) of a cer-
tain characteristic length 𝑙0 and finite width 𝑤 𝑓 . Note that
these lengths on the same materials are different for cracks
propagating at different modes, and mode-II cracks usu-
ally have higher fracture energy and hence a larger char-
acteristic length. In this problem, we consider the case
where the deformation state from one parallel crack to the
next is periodic, and so we may analyze only one crack
between two symmetry lines of periodicity.

We assume the periodic strata to have reached a (static)

steady state of sliding velocity ¤𝑢 and a crack tip propa-
gation velocity ¤𝑎, while frictional stress 𝑘𝜎 is acting on
the crack faces ( ¤𝑢 = time rate of sliding displacement 𝑢).
In the steady state, the deformation field and crack length
must remain periodic, as shown in Fig. 1a.

A key hypothesis of the present analysis is the attainment
of a steady state. It is characterized by vanishing rate of
stress intensity factor or energy release rate; (Bažant and
Planas, 1998):

dG
d𝑡

= ¤𝑃
[
𝜕G
𝜕𝑃

]
𝑎=const.

+ ¤𝑎
[
𝜕G
𝜕𝑎

]
𝑃=const.

= 0 (1)

where 𝑃 represents the generalized load (far-field stresses,
strains, or displacements). Therefore, not only the gener-
alized load 𝑃 needs to be in a steady state (which is usually
the case because the aftermath of a tectonic activity settles
at a residual stress/strain field). Hence ¤𝑎 should cause no
change in 𝐾 or G. The solutions in (Tada et al., 2000)
shows that this can be true only in the case of far-field ten-
sile and shear strain (with and without friction). Far-field
stresses, with and without the presence of friction, will al-
ways trigger a positive 𝜕𝐾/𝜕𝑎.

3 THE GROWTH OF SUBCRITICAL CRACKS

The formation of natural cracks depends on the frequency
and the magnitude of tectonic activities at the regions of
interest. These activities, however, are not always seismic,
and estimating a correct time scale will always result in
a considerable error. However, one thing that we know
from thermodynamic stability analysis is that, at the time
of formation, the natural cracks in shale will localize into
one or several major slipping faults, with short distributed
cracks emanating from them (Gephart, 1990; Bazant and
Tabbara, 1992).

The tips of the parallel cracks could not have been in a
critical state in which G = G𝑐. Indeed, the peak magni-
tude of any tectonic activities lasts for only a short period
of time and leaves behind a residual deformation. So the
cracks must have grown slowly and statically under the ef-
fect of these residual strains. Such a slow subcritical crack
growth generally follows the empirical Charles-Evans law
(Charles, 1958):

¤𝑎/ ¤𝑎0 = 𝜅(𝑐) 𝑒−𝑄/𝑅𝑇
(
G
Γ𝑐

)𝑛(𝑐)/2
(2)

where ¤𝑎0 = dynamic crack velocity, 𝑄 = activation en-
ergy of fracture (J/mol), 𝑇 = absolute temperature, 𝑅 =
gas constant, 𝑛 = subcritical index; 𝑛 changes with the
solute concentration, ranging from 4.8 ± 3.0 for deion-
ized water to 13.8 ± 3.8 for water with 6.1 molarity (Chen



Fig. 1: a) The periodic parallel cracks are growing under the
effect of subcritical far-field stresses or strains; b) While solvent
particles can move freely across the semi-permeable membrane,
a small amount of solute particles can pass through it, leading
to an osmotic pressure; c) The evolution of solvent and osmotic
pressure from steady to transient state where 𝑝 𝑓 = 𝜈 𝑓Π.

et al., 2017). Here we divided 𝑛 by 2 since this index is
usually considered to be an exponent of stress intensity
factor 𝐾 =

√
𝐸 ′G; 𝐸 ′ = 𝐸/(1− 𝜈2) as plane strain is here

assumed, 𝐸 = Young’s modulus, and 𝜈 = Poisson ratio;
𝜅 is an empirical factor normally considered as 1, but for
immersed shale we must consider it to depend on the con-
centration, 𝑐, of solute ions of various kinds, mainly NaCl
(dissociated as Na+ and Cl−), and partly also KCl (Chen
et al., 2017).

The dependence of 𝜅 and 𝑛 in Eq. (2) on the solute con-
centration can be simplified using the first two terms of the
Taylor series expansion:

𝜅(𝑐) = 𝜅𝑇 + 𝜅′𝑇 (𝑐− 𝑐0); 𝑛(𝑐) = 𝑛𝑇 +𝑛′𝑇 (𝑐− 𝑐0) (3)

where 𝑐0 = the concentration of solute ions inside the
cracks, 𝑐 = steady-state concentration of solute in the rock
matrix (𝑐 > 0) and generally 𝜅′

𝑇
> 0 because a higher

ion concentration means a stronger stress corrosion effect
(𝑐0 ∼ kg/m3, 𝑛′

𝑇
and 𝜅′

𝑇
∼ m3/kg, 𝑛𝑇 and 𝜅𝑇 is dimension-

less). The calibration of these constants is done based on
the measurements by Chen et al. (2017).

4 STRESS INTENSITY FACTOR OF CRACKS SUB-
JECTED TO FAR-FIELD STRAINS AND FRIC-
TIONAL CONTACT

The remaining unknown quantities in Eq. (2) are the en-
ergy release rate and the material fracture energy in each

mode. The latter were reported by Rao et al. (2003); Pan
et al. (2019); Li et al. (2019); Choo et al. (2021) for shale
and other rocks. We consider first the stress intensity
factor for far-field strains (Tada et al., 2000; Rice, 1967;
Knauss, 1966). In these two cases, the stress intensity fac-
tors both reach an asymptotic value with 𝜕𝐾/𝜕𝑎 = 0.

𝐾𝐼 = 𝐸𝜖𝑛

√︁
𝑠/(1− 𝜈2) (4)

𝐾𝐼 𝐼 = 𝐺𝛾𝑡
√︁

2𝑠/(1− 𝜈) (5)

We note that, under the confining field of normal stress
and strain, a mode I crack is enabled to form only at an
inclination to the minimum principal stress direction.

Let us now consider the effect of friction on the effective
mode II stress intensity factor (Rao et al., 2003):

𝐾
𝑒 𝑓 𝑓

𝐼 𝐼
= 𝐾𝐼 𝐼 − 𝑘 ⟨−𝐾𝐼⟩ (6)

where the Macaulay bracket ⟨⟩ in the foregoing equation
reflects the fact that only the compressive normal stress
imposes a residual stress 𝜏𝑟 against mode-II propagation.
The effective mode II stress intensity factor is then written
as:

𝐾
𝑒 𝑓 𝑓

𝐼 𝐼
= 𝐺𝛾𝑡

√︂
2𝑠

1− 𝜈 − 𝑘𝐸 ⟨−𝜖𝑛⟩
√︂

𝑠

1− 𝜈2 (7)

We note that the second term in Eq. (7) is non-zero
only when 𝜖𝑛 < 0. Note that, Eq. 7 was confirmed
by Palmer and Rice (1973) for mode II stress intensity
factor of overconsolidated clay, which can be written as
𝐺 (𝛾𝑡 − 𝛾𝑟 )

√︁
2𝑠/(1− 𝜈). Therefore, the shear stress 𝜏 𝑓 𝑟𝑖𝑐

that is required for steady-state sliding of the crack faces
is equivalent to:

𝜏 𝑓 𝑟𝑖𝑐 = 𝐺𝛾𝑟 < 𝛾𝑡 (8)

Here the residual strain 𝛾𝑟 depends on the applied normal
stress at the crack surfaces, the elastic properties and the
friction coefficient between the surfaces of shale. For ve-
locities encountered in mechanical processes (> 1 m/s), 𝑘
is known to depend on the state variables and sliding ve-
locity (Ruina, 1983; Rice et al., 2001) but it is likely that
the velocity dependence becomes negligible within the
range of geological sliding velocities, such as 0.1 m/year.

5 THE EFFECT OSMOTIC PRESSURE OF SOLUTE
PARTICLES AND SOLVENT TRANSPORT

When a crack propagates, its dilation will trigger the
movement of solute and solvent molecules. When the ions
are allowed to move freely, the solute concentration must
follow Fick’s law (Fick, 1855), whose molecular mecha-
nism is the random Brownian motion of solute and solvent



atoms. However, the nanoporous structure in shale creates
a distributed semipermiable ‘membrane’ that is almost im-
passable by the solute molecules. Therefore, only pores on
the order of ten to a hundred nanometers will allow solute
molecules to pass through them. Consequently, the major-
ity of solute particles have to stay put in the larger pores or
move relatively much more slowly compared with the sol-
vent molecules. Therefore, the molar concentration, 𝑛𝑐, of
the solute ions per unit volume of porous medium must re-
main constant or evolve slowly. The concentration of the
solvent (water), however, changes faster due to an easier
diffusion through the pores.

In the structure of shale, these semipermeable "mem-
branes" are distributed within the body of the material,
causing a gradient in solute concentration. This contrasts
with the familiar thin membranes used for desalination,
in which the concentration drops by a jump. This kind
of diffusion consists of movement of the molecules of the
solvent, i.e., water, through the a system of nanopores in
shale. The governing equation for this transport is (Leng
et al., 2021):

𝑞𝑤 = − 𝜒
𝜇
(∇𝑝 𝑓 − 𝜈 𝑓∇Π) where Π = 2𝑅𝑇𝑐 (9)

Here 𝜒 = permeability (of the solvent)𝜇 = dynamic vis-
cosity of the solvent, and 𝜈 𝑓 = osmotic efficiency, about
0.96 for shale, which is close to full efficiency 100%. The
signs in Eq. (9) represent two opposite flows. Water flows
from higher to lower 𝑝 𝑓 but from lower to higher 𝑐. The
condition of mass conservation reads (Leng et al., 2021):

𝜕𝜁

𝜕𝑡
= −∇ · 𝑞𝑤 (10)

where 𝜁 = divergence of the solvent displacement = out-
flow of solvent (i.e., water) volume from a unit element
of shale. So, the governing partial differential equation is
(Leng et al., 2021):

𝑐𝑡
𝜕𝑝 𝑓

𝜕𝑡
=
𝜒

𝜇

(
∇2𝑝 𝑓 −2𝜈 𝑓 𝑅𝑇∇2𝑐

)
(11)

Π represents the pressure increase of the solvent, i.e.,
water, that is required for passage through the confined
spaces, the nanopores. 𝑐𝑡 = 1/𝑀𝐵 + 𝜁0/𝐾 𝑓 is the to-
tal compressibility of the pore space (contributed mainly
by the compressibility of the larger pores), 𝑀𝐵 is Biot’s
modulus (defined by 1/𝑀𝐵 = 𝜕𝜙/𝜕𝑝 𝑓 at constant solvent
density) and 𝐾 𝑓 is the solvent bulk modulus (defined by
1/𝐾 𝑓 = 1/𝜌 𝑓 𝜕𝜌 𝑓 /𝜕𝑝 𝑓 at constant pore volume).

To calculate the profile of concentration (or molarity) of
solute particles, 𝑐, (NaCl, mainly) in a steady-state flow,
we consider the following equation (Leng et al., 2021):

𝑞𝑠 = −(1− 𝜈 𝑓 )𝐷𝑒∇𝑐 (12)

where 𝑞𝑠 is the volumetric flux of the solute particle per
a unit volume of solvent and 𝐷𝑒 is the intrinsic diffusion
coefficient of ions in solvent according to Fick’s law, gen-
erated by the Brownian motion of both solute and sol-
vent particles. This diffusion, however, is hindered by
the semipermeable nature of the shale strata. Ideally, if
all of the pore diameters are smaller than the mean free
path of the solute particles, 𝜈 𝑓 = 1, this transport is totally
inhibited. But in reality, the pore size distribution varies
among shales and sedimentary rocks, and larger pores will
allow the solute to pass through (𝜈 𝑓 < 1). Therefore, this
value can range from 10−3 to 10−1 (Horseman et al., 2007;
Takeda et al., 2014) to close to 1 (Marine and Fritz, 1981).
The mass balance law for solute concentration reads:

𝜕𝑐

𝜕𝑡
= −∇ · 𝑞𝑠 (13)

When the crack grows, the change in pores causes the di-
lation of the shale matrix between the cracks. Assuming
that the diffusion is one dimensional, the maximum of the
profile is attained at the tip of the crack and diminishes
gradually behind the crack tip; see Fig. 1. The length of
this region and the spatial distribution of pressure profile
within it depends on the apparent diffusion coefficient of
the solute and reaches a steady state as ∇𝑝 𝑓 = 𝜈 𝑓∇Π. The
increase of pore pressure due to the displacement of sol-
vent molecules enhances the normal stress at the contact-
ing surfaces, which in turn enhances the friction between
them and reduce the effective stress intensity factor.

Using the foregoing equations, we can compute the con-
centration and pressure profiles and the modified effective
stress intensity factor. Substituting the properties of some
shale reservoirs (Morsy and Sheng, 2014; Chen et al.,
2017; Leng et al., 2021), the typical spacing of parallel
cracks is presented in Table ??:

6 STABILITY OF STEADY-STATE CRACK
GROWTH: CAN THE PARALLEL CRACKS
GROW FOREVER?

In the previous section, we concluded that the antici-
pated spacing can be possible under certain circumstances.
However, that is only the steady-state solution. The path
that leads to that spacing, from an initial distribution of
crack, has still been unclear. To see how the cracks propa-
gate, we consider the simplified case that is composed of 2
cracks with initial length 𝑎1 and 𝑎2 with distance 2𝑠. The
velocity of each crack can be described, with non-zero en-
ergy release rate (e.g. 0 < G < Γ𝑐), by the Charles-Evans



Table 1: Typical material properties of Woodford shale and the
calculated spacing

Woodford Barnett

𝜙0 0.1 - 0.31 0.05 - 0.15

𝜇(𝑐𝑃) 0.74-0.89 0.74-0.89

𝜒(𝜇Darcy) 0.01-1 0.025-5

𝑐𝑡 (GPa−1) 0.51 1.25

𝜈 𝑓 1 0.96

T (K) 300 300

R 8.314 8.314

Depth (m) 2500-3600 2900-3200

¤𝑎0(𝜇𝑚/𝑠) 45-60 23.5-76.5

𝑐0(𝑘𝑔/𝑚3) 0.2-0.3 0.15-0.4

Calculated spacing (cm) 7.5-20.2 5.4-30.5

law (Charles, 1958):

¤𝑎1 = C/Γ𝑚
𝑐 G𝑚

1 (𝑎1, 𝑎2) = F1(𝑎1, 𝑎2) (14)

¤𝑎2 = C/Γ𝑚
𝑐 G𝑚

2 (𝑎1, 𝑎2) = F2(𝑎1, 𝑎2) (15)

where C = ¤𝑎0𝜅(𝑐) 𝑒−𝑄/𝑅𝑇 , Γ𝑐 and 𝑚 = 𝑛/2 were men-
tioned in previous sections. Thus we have a system of
nonlinear ordinary differential equation in time. The sta-
bility of the uniform crack growth (or any solution path)
can be considered by the linearization around a solution
point:

¤𝑎1 = F1 + 𝜕F1
𝜕𝑎1

(𝑎1 − 𝑎10) + 𝜕F1
𝜕𝑎2

(𝑎2 − 𝑎20) +O(𝛿2F1)(16)

¤𝑎2 = F2 + 𝜕F2
𝜕𝑎1

(𝑎1 − 𝑎10) + 𝜕F2
𝜕𝑎2

(𝑎2 − 𝑎20) +O(𝛿2F2)(17)

where 𝑎10, 𝑎20 is any solution point within the admissible
domain. The nonlinear problem is now turned into a linear
problem with the variable 𝑎̃ = 𝑎 − 𝑎0. This can then be
rewritten as:{ ¤̃𝑎1
¤̃𝑎2

}
= C̃𝑚

[
G𝑚−1

1 G1,1 G𝑚−1
1 G1,2

G𝑚−1
2 G2,1 G𝑚−1

2 G2,2

] {
𝑎̃1
𝑎̃2

}
=

[
F1,1 F1,2
F2,1 F2,2

] {
𝑎̃1
𝑎̃2

}
(18)

Here C̃ = C/(Γ𝑐)𝑚. Note that, if the equal-length crack
growth is being considered, due to the symmetry of the
problem, G1 = G2; G1,1 = G2,2; G1,2 = G2,1. The solution
of this problem will have the form:

𝑎̃ = 𝑐1𝑒
𝜆1𝑡𝑣1 + 𝑐2𝑒

𝜆2𝑡𝑣2 (19)

where 𝜆1,𝜆2 and 𝑣1, 𝑣2 are eigenvalues and eigenvectors
of Eq.(18).

In Eq. (18), if we call 𝜏 = 2F1,1, Δ = F 2
1,1 −F 2

1,2. Several
cases can be listed:

• If Δ < 0, then the eigenvalues are real with opposite
signs.

• If 𝜏2 < 4Δ, then the eigenvalues are complex with
real part.

• If 𝜏 = 0, Δ > 0, then the eigenvalues are purely imag-
inary.

• If Δ > 0, then the eigenvalues are real with opposite
signs.

The linearized version will, therefore, be able to predict
whether two cracks having equal-length can both sustain
their propagation if there is a linear perturbation. As
𝑡 → ∞, the behavior of the solution will follow the di-
rection of the eigenvector associated with the larger posi-
tive eigenvalue. Hence, we can check if a slightly uneven
length can produce the divergence from the main propa-
gation direction 𝑎1 = 𝑎2, which corresponds to the eigen-
vector {1,1}, or if one crack would start to propagate with
a slightly longer length than another, corresponding to the
eigenvector {1,-1}.

As mentioned, i.e. G1,1 = G2,2, G1,2 = G2,1, there will be
two main eigenvectors {1,1} and {1,−1}. Unlike the case
of critical cracks, {1,−1} is still an admissible direction,
due to the initial non-zero velocity.

¤𝑎1 − ¤𝑎0 = ¤𝑎0

¤𝑎2 − ¤𝑎0 = − ¤𝑎0

¤𝑎1 = 2 ¤𝑎0

¤𝑎2 = 0 (20)

This case corresponds to a case of one crack decelerating
and another extending to a longer length;

¤𝑎1 − ¤𝑎0 = ¤𝑎0

¤𝑎2 − ¤𝑎0 = ¤𝑎0

¤𝑎1 = 2 ¤𝑎0

¤𝑎2 = 2 ¤𝑎0 (21)

Fig. 2 shows that, under the effect of the far-field deforma-
tion only, a system of subcritical cracks will localize into
fewer and fewer cracks with accelerating speed. However,
if a diffusion of solvent exists, the longer crack will trigger
the foregoing mechanisms that reduce the stress intensity
factor and enhance the fracture energy of the material lo-
cally at the tip. Therefore, the leading cracks will therefore
decelerate, and no localization will happen.
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