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Chapter 3 

Microplane Model for 
Strain-controlled 
Inelastic Behaviour 
z. P. Bazan! 

3.1 INTRODUCTION 

Various heterogeneous brittle aggregate materials such as concretes, rocks, or sea 
ice, are inelastic but cannot be described as plastic, except at extremely high 
hydrostatic pressures. A characteristic property of such materials is that they 
exhibit strain-softening, i.e., a decline of stress at increasing strain, which results 
from progressive development of fracture. Since these materials can undergo 
strain-softening within a relatively large zone, a non-linear triaxial constitutive 
relation is needed for its description. There are, however, some important 
differences from the classical modelling of inelastic behaviour, i.e., from the theory 
of plasticity. 

First, rather than determining the inelastic phenomena in terms of stresses, as 
in plasticity, one must determine them in terms of strains. This is because in terms 
of stresses the description is not unique, as two strains correspond to the same 
stress, in the case of strain-softening, while still only one stress corresponds to a 
given strain. Second, the normal inelastic strains are, in contrast to plasticity, 
important, in fact dominant. They describe the cumulative effect of rnicrocrack­
ing. Third, the inelastic phenomena are highly oriented and happen almost 
independently on planes of various orientation within the material as a function 
of normal strains across the planes. 

In the present work, it is proposed to describe this behaviour independently on 
planes of various orientations in the material, called micro planes, and then in a 
certain way superimpose the inelastic effects from all the planes. This type of 
approach has a long history. First proposed in 1938 by Taylor [1], the idea was 
exploited by Batdorf and Budianski in their slip theory of plasticity [2]. A 
number of subsequent investigators adopted this approach for plasticity of 
polycrystalline metals [2 to 6]. Zienkiewicz and Pande [7] and Pande et al. [8-9] 
developed an approach of this type in their multilaminate models for rocks and 
soils. 
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In the aforementioned models, the stress on each plane within the material is 
assumed to correspond to the same macroscopic stress and the inelastic stresses 
are superimposed. As mentioned, however, for certain materials the inelastic 
behaviour is predominantly strain-controlled, and it is then more appropriate to 
assume that strains, not stresses, correspond on the planes of all orientations to 
the same macroscopic strain. In this case it is necessary to superimpose in some 
way the inelastic stresses (relaxations) from the planes of all orientations. This 
approach was adopted for concrete and geomaterials in ref. [11] and was 
summarized in ref. [12]. In these works, the inelastic shear stresses on planes of all 
orientations within the material were neglected. However, although their role is 
no doubt secondary, in case of concrete and geomaterials at high hydrostatic 
pressures, they certainly have some effect. The purpose of this work is to 
generalize ref. [11] to include the effect of inelastic shear stresses. 

3.2 BASIC HYPOTHESES 

The macroscopic stress tensor will be denoted as aij, and the macroscopic strain 
tensor as Eij' With regard to the interaction between the macro- and micro-levels, 
the following three hypotheses may be introduced. 

Hypothesis I. The tensor of macroscopic stress, aij' is a sum of a purely elastic 
macrostress alj that is unaffected by inelastic processes on planes of various 
orientation, and an inelastic macrostress 1:ij which reflects the stress relaxations 
from micro planes of various orientations, i.e., 

(3.1) 

(latin lower case subscripts refer to cartesian coordinates X;, i = 1,2,3). 
Hypothesis II. The normal microstrain EN and the shear microstrain ET on 

each micro plane of any orientation is the resolved component ofthe macroscop!c. 
strain tensor Eij' 

Hypothesis III. There exist an independent stress-strain relation for each 
microplane of any orientation. 

Hypothesis II is opposite to that made in the slip theory of plasticity, in which 
the stresses rather than strains on the planes of all orientations are assumed to be 
the resolved components of the macroscopic stress. One can offer three reasons 
for this. First, if the material state were characterized by stress rather than strain, 
the description would not be unique since, in the case of strain-softening, there are 
two strains corresponding to a given stress. Second, the relationship between the 
micro- and macro-levels would not be stable in the case of strain softening, which 
has been confirmed numerically. Third, the use of resolved strains, rather than 
stresses, appears to reflect the microstructure of a brittle aggregate material more 
realistically. In contrast to polycrystalline metals, brittle aggregate materials 
consist of hard inclusions embedded in a relatively soft matrix. The microstresses 
are far from uniform, having sharp extremes at the locations where the aggregate 

Microplane Model for Strain-controlled Inelastic Behaviour 47 

pieces are nearest. The deformation of the thin layer of matrix between two 
aggregate pieces, which is the chief source of inelastic behaviour, seems to be 
determined mainly by the relative displacements of the centroids ofthe aggregate 
pieces, which roughly correspond to the macroscopic strain. The microplanes 
may be imagined to represent the thin layers of matrix and the bond interfaces 
between the adjacent aggregate pieces (Figure 3.1 (a)), since microcracking is 
chiefly concentrated there. 

According to Hypothesis I (equation (3.1 », the virtual work of stresses per unit 
volume may be written as 8W = Ci/jaij = f.~j8a~j + eil8aiJ, in which erj and eil 
represent the strains associated with the additional elastic stress and the stress 
resulting from the micro planes. At the same time, 8W = eijbat + EijbaiJ. Since 
both expressions must hold for any ba~j and any bail, we must have E~j = EiJ = Eij' 

According to Hypothesis II, the components of the strain vector en on any 
micro plane are 

(3.2) 

in which ni are the cosines of the unit normal to the microplane. The normal 
microstrain, i.e., the normal component of strain vector en, may be denoted as eN, 

and the components of the vector of the shear component &T may be denoted as 

(0') 

x=x, 

y=x 
2 

(b) 

Figore 3.1 (a) Example of idealized microstructure, (b)-(c) explanation of notations, (d) stress-strain 
relation on a microplane (<T" = 'N,E" = EN) 
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BT;' With regard to the elastic parts of the shear components of stresses and strains 
on the micro plane, we wiII now introduce an additional assumption, namely that 
the vectors of these shear components are parallel. This precludes anisotropic 
behaviour within each microplane, although overall anisotropy remains possible 
by considering different properties on various microplanes. According to 
Hypothesis III we may now write 

iN = CE N - iN 
iT, = BET, - iT, 

(3.3) 

in which C and B are the elastic constants for the normal and shear response on 
the micro plane, and TN and TT, are the inelastic stress relaxations in the normal 
and tangential directions on the microplane. Superimposed dots denote 
time rates. For the magnitudes of the shear components, equation (3.3) implies 
i = BiT - t;.. 

Further we need to specify the inelastic stress relaxations. For this purpose, we 
assume the existence of inelastic potentialsJp and loading surfaces gp({3 = 1, ... ,11) 
for each microplane. They must be defined in terms of strains rather than stresses, 
i.e., 

!P(BN,f.T) =0 

gp(EN, BT) = 0 

({3=I, ... ,n) (3.4) 

(3.5) 

The rates of inelastic stress relaxations may be assumed to be given by the 
normality rule 

" ar 
." \" JP· 
Tjj= L.... -f./.p 

p~ I aBij 
(3.6) 

(3.7) 

in which lip are material softening parameters depen?ing on .t?e current stat~ of 
the material and possibly also its history, and H IS Heavlslde step funchon. 
Similarly to Drucker's stability postulate in plasticity, equations (3.6)-(3.7) can be 
easily derived from a more plausible hypothesis (postulate) for a strain cycle, 
called II'yushin's postulate, as previously used for macroscopic inelastic theories 
based on loading surfaces in the strain space [13 to 20]. The Heaviside function in 
equation (3.7) distinguishes between loading and unloading. 

By projecting the microplane strain vector (equation (3.2» on to the direction n 
of the normal, we obtain the magnitude of the normal strain component on the 
microplane and its vector: 

(3.8) 

. f' h' I . 1"1 (" ")1/2 The magmtude a the stram vector on t e mlcrop ane IS £ = EjEj = 

(njEj;llkEjk) I 12. The vector of the tangential (shear) strain component is (see 
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Figure 3.1 (c» £T=S-£N, and its magnitude is BT=[ls"12 -(BN)2]1/2 or 
GT = ISTI = (BT/TY I2

• Thus, we obtain the following expressions for the vector 
and the magnitude of the shear strain component on the microplane: 

BT, = (nk8ij - njnJnJBjk 

BT = [njEjjllk(Bjk - IIjnmBkm)] 1/2 

(3.9) 

(3.10) 

According to equation (3.6), the normal and tangential components of the 
stress relaxation rate on the micro plane can be expressed as 

(3.11) 

The derivatives of the inelastic potential in these equations may be calculated 
as 

aJp aJp aBT alp a 1/2 oJp BT 
- = --- = --(BT BT) =---'. 
OBT, OBT OET, OBT OET, J J OET BT 

(3.12) 

We see that the vector normal to the potential surface i p is parallel to the vector 
of the tangential component of strain on the microplane, i.e., 

(3.13) 

The derivatives of the inelastic potentials and loading functions appearing in 
equations (3.6)-(3.7) may be calculated as 

oJp oJp ,oJp ogp ogp ,ogp 
~ = Pij~ + %.,,-, -~ - = Pij-:) - + qjj-o - (3.14) 
~ij u~ u~ (~ (~ v~ 

in which we introduce the notation 

From equation (3.8) we can further calculate 

while from equation (3.10) we obtain 

which reduces to 

, 1 a 
% = 2-.,,-(npi:qpl1,i:q, - I1 pllqBpql1,l1sC,,) 

BT uBij 

(3.15) 

(3.16) 

(3.17) 

The last tensor is non-symmetric. Later we will need its symmetric part, which 
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reads 

(3.18) 

in which we introduce the notation 

(3.19) 

We need to establish now the equilibrium relation between the microstresses 
on the microplanes of all orientations and the macroscopic stress tensor. We may 
use for this purpose the principle of virtual work, which requires that the virtual 
work of macroscopic stress rates on any macroscopic strain variations within a 
small unit sphere of unit radius be equal to the virtual work done on all the 
microplanes tangential to the unit sphere. This condition may be written as 
follows 

. 4n r 
DW = 3 iiji5eij = 2 Js (iN i5eN + i T i5eT )f(o)dS 

= 21 (C6NDEN + BBT,DeT; - iijDEij)f(o)dS (3.20) 

where S is the surface of a unit hemisphere, and f(o) describes the frequency of 
microplanes as a function of orientation o. 

Substituting here fro.n equations (3.8), (3.9), and (3.6), we may obtain the 
relation 

in which 

bijkm = (nmD'k - n,nkn",)(njD'i - n,ninj) 

= njn",Dik - njnknmni - n",ninjnk + ninjntn",(n,n,) 

= Diknjn", - aijk", 

(3.21) 

(3.22) 

This fourth order tensor is symmetric when ij is interchanged with km but non­
symmetric when i is interchanged withj or k is interchanged with small m. The 
tensor may be written as a sum of a symmetric part and an antisymmetric part, 

(3.23) 

in which the symmetric part is 

bijk'" = i(Diknjn", + Djknin", + Di",njnk + Dj",nink) - aijk", (3.24) 

For the antisymmetric part it is true that bijkmDeiikm = 0 for any Deij. Therefore, 

(3.25) 
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Furthermore, using equations (3.14) and (3.7), we may express 

f alp. f [afp - afp] 
L... -,;- Jl.,/)Eij = L... hp Pij,,- + (qij + %)-,;-

p= 1 UEij p= 1 UEN UeT 
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(3.26) 

in which qij is the antisymmetric part of qij, i.e., qij = qij - qij. Noting that the 
antisymmetric parts give zero products with symmetric tensors, i.e., qiji5eij = 0, 
qkmDEkm = 0, we find that 

f afp. R . 
L... -ae Jl.p = ijkmEkm 

p= 1 ij 
(3.27) 

in which 

(3.28) 

Substituting equations (3.27) and (3.25) into the variational virtual work 
relation in equation (3.21), and noting that this relation must hold for any 
variation Deij, we find that 

(3.29) 

or 
(3.30) 

in which 

DUkm = ;n Is (aijkmC + bijkmB - Rijkm)f(o)dS, 

mjkm = }n Is (aijkmC + bijkmB)f(o)dS (3.31) 

iii = ;n Is Rijkmf(o) dSekm (3.32) 

Here DUk'" is the tensor of tangential moduli corresponding to the microplanes, 
Dj}k", is the elastic part of this tensor, and 67j is a tensor of the rate of inelastic stress 
relaxation. The integrals in equations (3.31) and (3.32) extend over the surface S of 
a unit hemisphere. 

Consider now the special case of isotropic materials, for which f(o) = 1. For 
this case the elastic stiffness matrix Djjk", must be equivalent to an isotropic 
material stiffness matrix characterized by some shear modulus am and Poisson 
ratio vm • Their values may be easily calculated. To this end, consider a uniaxial 
strain rate 633 = 1 while all other components of 6ij = O. We may now substitute 
n1 = sin rjJ cos e, n2 = sin rjJ sin e, n3 = cos rjJ and equations (3.29) and (3.31) for 
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iii = 0 then give 

i33 = }n [ C f: f: cos
4 

cfJ sin cfJ dcfJ d(H B f: f>OS2 cfJ sin
3 

cfJ dcfJ de ]e33 

=! (3C + 2B) (2.33) 

3 fn fn 
ill = -(C - B) sin3 cfJ cos2 cfJ cos 2 OdOdcfJ (;33 = t(C - B) 

2n 0 0 
(2.34) 

According to Hooke's law, i II/i33 = ym/(l - ym) for uniaxial strain, and so 
ym = i I d(i II + i 33)' Substituting from equations (3.33) and (3.34), we thus get 

C-B vm = __ _ 
4C+B 

(2.35) 

Furthermore, according to Hooke's law we have, for uniaxial strain, 
vm = i I t/(i II + i 33 ), from which we may solve 

Gm = 1 (I - 2v
m

)(3C + 2B) 
10 (I - vm

) 
(3.36) 

From equations (3.35) and (3.36) we may solve the constants C and B from 
desired values of Gm and ym. Equation (3.35) yields the following values of 
Poisson ratio: 

B/C=O 

14/59 
1 
00 

vm =0.25 

0.18 

o 
-1 

It is interesting to observe that Poisson ratios greater than 0.25 cannot be. 
obtained. The range appears suitable for geomaterials. 

In some situations, however, an adjustment of the Poisson ratio provided by 
the system of micro planes may be needed. For example, one might desire for 
some material an overall Poisson ratio v> 0.25, or one might simply need for 
the best fit of test data a different Poisson ratio for the rnicroplane system than 
for the material as a whole. Such an adjustment of Poisson ratio is made possible 
by equation (3.1) (Hypotehsis I). Let the additional elastic stresses uri be given 
by an isotropic stress-strain relation to Eij, characterized by shear modulus Ga 

and Poisson ratio va. Then, for uniaxial strain E33 = 1 (Ell = e22 = 0) we have 
a33 = 2G(1 - v)/(l - 2v). Summing the stress from the microplane system and 
the additional elastic stress, we also have a33 = 2Ga(1 - v")/(l - 2v") + 
2Gm(1 - vm)/(I - 2vm). From these equations we may solve 

Ga = 1 - 2v
a 
(G(l - v) _ G

m
(1- V

m») 
1 - va 1 - 2v 1 - 2vm (3.37) 

Microplalle Model for Strain-controlled Inelastic Behaviour 53 

This relation permits us to choose the elastic constants of the material as a 
whole, as well as of the microplane system, and also choose the Poisson ratio 
for the additional elastic stress. 

In general, the total tangential elastic moduli are 

(3.38) 

For isotropic materials, Drikm represent the elastic moduli tensor of an 
isotropic material; 

(3.39) 

in which bij = Kronecker delta = 1 if i = j, and 0 if if- j. 

3.3 CASE OF ZERO SHEAR RELAXATIONS ON MICROPLANES 

For tensile strain-softening of concrete, it seems that one may neglect the shear 
stress relaxations and consider only the normal stress relaxations on the 
microplanes, which correspond to the formation of microcracks in the direction 
of the micro planes. In this case B = !T; = !T; = O. One may consider here for 
each microplane only one loading surface (P = 1), fl = gl = CN = const. In this 
case we get 

(3.40) 

The relationship between the normal stress and the normal strain on the 
microplane may be conveniently described by the formula 

;;; 
c. 

300 

:: 200 
~ 
cii 

0.0002 

'. 
0.0004 

Strain 

(n "" 2) 

Cb/Co • 1.000000008 
Ce/Co • 1.000000009 
Cdl Co • 1.000000002 
C.I Co • 1.000000008 
Cfl Co • 1.000000008 
CQI Co • 1.000000005 

0.0006 

(3.41) 

00008 

Figure 3.2 Distribution of integration points for 2 x 25-point formula defined in Table 3.1, and 
response curves for uniaxial stress applied at directions a, b, .. ,f. 
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in which C, k, and n are material constants. For large eN the value OfrN becomes 
essentially zero (n = 2 is a suitable exponent). Comparing this with 
equation (3.40), we have 

hi = C - F'(eN) = C - C(1 -kneN)exp( - keN) (3.42) 

The present special case has been considered in refs [11 and 12], and good 
fits of various tensile strain-softening test data have been demonstrated. Since, 
in absence of shear relaxations, the microplane model yields Poisson ratio 0.25, 
the additional elastic deformation was used to correct this value to 0.18, typical 
of concrete. There was a slight difference from the present formulation in that 
the superimposed additional elastic value was strain rather than stress. The 
present formulation is, however, more efficient. One of the comparisons with 
the test data of Evans and Marathe [21], made in ref. [11], is reproduced in 
Figure 3.2, and the associated stress-strain curve considered for the microplanes 
is shown in Figure 3.1(d). 

3.4 NUMERICAL INTEGRATION ON 
THE SURFACE OF A SPHERE 

In general situations, the integral in equation (3.31) over the surface of a unit 
hemisphere has to be evaluated numerically, approximating it by a finite sum: 

n 

DVkm = I 6w.[(a jjkmC + bjjkmB - Rjjkm)f(n)]., I w. = t (3.43) 
a=l a 

in which (X refers to the values evaluated at certain numerical integration points 
on the spherical surface (i.e., certain characteristic directions), and w. are the 
weights associated with the integration points. In finite element programmes for 
incremental loading, the numerical integration needs to be carried out a great . 
number of times. Therefore, a very efficient numerical integration formula is . 
required. For the slip theory of plasticity, a similar integration was performed 
using a rectangular grid in the plane of spherical coordinates e and cPo This 
approach is, however, computationally inefficient since the integration points are 
crowded around the poles, and since, in the e - cP plane, the singularity arising 
from the poles takes away the benefit from a use of a higher-order integration 
formula. 

Optimally, the integration points should be distributed over the spherical 
surface as uniformly as possible. A perfectly uniform distribution is obtained 
when the micro planes normal to the (X-directions are the faces of a regular 
polyhedron. However, a regular polyhedron with the greatest number of sides is 
the icosahedron, for which N = 10 (2N is the number of faces), and this number 
appears insufficient (a formula for this case was presented by Albrecht and 
Collatz [22]). The need for greater accuracy is indicated when the response 
curves in a uniaxial tensile test with strain-softening are calculated for various 

Microplane Model for Strain-controlled Inelastic Behaviour 55 

Table 3.1 Direction cosines and weights for 2 x 25 points with error of 10th order (after Bazant and 
Oh [11], 

IX x~ xi X; w" 

I 1 0 0 0.01269841058 
2 0 1 0 0.01269841058 
3 0 0 1 0.01269841058 
4 0.7071067812 0.707106 7812 0 0.02257495612 
5 0.7071067812 - 0.707106 7812 0 0.022574956 12 
6 0.7071067812 0 0.7071067812 0.02257495612 
7 0.7071067812 0 - 0.707 106 7812 0.022574956 12 
8 0 0.707106 7812 0.707106 7812 0.02257495612 
9 0 0.707106 7812 - 0.707 106 781 2 0.022574956 12 

10 0.301511 3354 0.301 511 3354 0.904 534039 8 0.02017333557 
11 0.3015113354 0.3015113354 - 0.904 534039 8 0.02017333557 
12 0.301511 3353 - 0.3015113354 0.904 534039 8 0.02017333557 
13 0.3015113354 - 0.301 511 3354 - 0.904 534039 8 0.02017333557 
14 0.301511 3354 0.904 5340398 0.3015113354 0.020 173 335 57 
15 0.301511 3354 0.904 534 039 8 - 0.3015113354 0.020173 335 57 
16 0.3015113354 - 0.904 534 039 8 0.3015113354 0.020 173 335 57 
17 0.301511 3354 - 0.904 534 039 8 - 0.3015113354 0.020 173 335 57 
18 0.904 534 0398 0.3015113354 0.301511 3354 0.02017333557 
19 0.904 534 039 8 0.3015113354 - 0.3015113354 0.02017333557 
20 0.904 534 039 8 -0.3015113354 0.301 511 3354 0.02017333557 
21 0.904 534039 8 -0.3015113354 - 0.3015113354 0.02017333557 
22 0.577 350 269 2 0.577 350 269 2 0.5773502692 0.02109375117 
23 0.577 350 269 2 0.577 350 269 2 - 0.5773502692 0.02109375117 
24 0.5773502692 - 0.577 350 269 2 0.5773502692 0.02109375117 
25 0.577 350 269 2 - 0.577 350 269 2 - 0.577 3502692 0.02109375117 

(J = 25.239401°. 

orientations of the uniaxial stress with regard to the (X-directions. Ideally, the 
response curves for any orientation should be identical. However, large dis­
crepancies are found for a ten-point formula. 

Batant and Oh [23] derived numerical integration formulas with more than 10 
points, which give consistent results even in the strain-softening range. The most 
efficient formulas, with an almost uniform spacing of (X-directions, are obtained 
by certain subdivisions of the faces of an icosahedron or a dodecahedron [23]. 
Such formulas do not exhibit orthogonal symmetries. Other formulas which do 
were also derived [23]. Taylor series expansions on a sphere were used and 
weights w. were solved from the condition that the greatest possible number of 
terms of the expansion of the error would cancel out. The angular directions of 
certain integration points were further determined from the condition that the 
error term of the expansion be minimized. In this manner, formulas involving 16, 
21,25,33,37, and 61 points were established, with errors of 8th, lOth, and 12th 
order. Table 3.1 defines one of these numerical integration formulas, having 25 
points for a hemisphere; this formula exhibits orthogonal symmetry [23]. The 
directions of the integration points are illustrated in Figure 3.2, and also shown 
are the stress-strain diagrams calculated for various directions of uniaxial tensile 
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4oor-----------------------------, 
(d) 

';;; 
0. .. 
~200 

Vi 
- Theory 

---- Evon., Morothe!l968) 

°O~~--~--~O~,O=O~04~L-~--~~O,~OOO~8~ 

Strain 

Figure 3.3 Comparison with test data of Evans and Marathe [21], after Botant and Oh [11] 

stress with regard to the integration points (directions a, b, c, d, ... ); the spread of 
the response curves characterizes the range of numerical errors. For crude 
calculations, the lowest required number of integration points is 16 [23]. 

3.5 APPLICATION TO ANISOTROPIC CREEP OF CLAY 

As another application, we may demonstrate an adaptation of the micro plane 
model to describe creep of an anisotropically consolidated clay and to correlate 
the stress-strain relation to known information about the distribution of the 
frequency of platelets of various orientations within the clay. This problem has 
been studied, for example, in ref. [24], using a micro mechanics model in which ' 
triangular cells of mutually sliding clay platelets are constrained to the same 
macroscopic strains BU' same as here. It appeared, however, that this approach 
becomes quite complicated in the three-dimensional case, although it is not 
very difficult for two-dimensional analysis. In three dimensions, the present type 
of micro plane model seems appropriate. 

In treating clay, the stress tensor aij must be interpreted as the effective stress 
tensor, i.e., aij = tij - DijP, in which P = pore-water pressure and tij = total stress 
in the solid-water system. Let us consider only the case of deviatoric creep, for 
which the normal stiffness on the microplanes may be neglected, i.e. C = L~ = O. 
The microplanes of the present model may be interpreted, in the case of clay, 
as the planes of sliding in contact of adjacent clay platelets. As is well known, 
the sliding is governed by the rate-process theory, which yields the relation 

(3.44) 
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in whichk1 = 2A(kT/h)t- m exp( - Q/RT) and k2 = VJRT. Here Tis the absolute 
temperature, Q is the activation energy of creep, R is the universal gas constant, 
k is the Boltzmann constant, h is the Planck constant, V. is the activation 
volume, and A,m are empirical constants. For the vectors of the tangential 
stress and strain components on the micro planes, equation (3.44) may be 
generalized, in the inverted form, as follows 

1 RT. (iT) 
LT, =k--:-'-smh- 1 

-
2 eT kl 

(3.45) 

This equation now replaces equation (3.3) of the present model, and 
equations (3.6)-(3.11) become unnecessary. By following the same analysis as 
before, one obtains the macroscopic stress-strain relation, replacing 
equation (3.29) as follows 

-3f 1. -1(iT) '1jkrs - 2 bjkrsk--;-smh k- J(n)dS 
1t s 2eT 1 

(3.46) 

Here '1jkrs represents the fourth order tensor of current viscosities, and J(n) 
represents the distribution function for the frequency of clay platelets of various 
orientations. For some clays, this distribution function has been measured 
experimentally, using X-ray scattering techique. Applicability of equation (3.43) 
to test results is presently being studied at Northwestern University by J. K. Kim. 

Complete description of clays further requires superposing equations for the 
volume change. This may be best accomplished on the basis of the critical state 
theory, for example, in a manner recently described by Pande et al. [8-9]. 

3.6 CONCLUDING REMARKS 

The micro plane model allows great versatility in constitutive modelling. The 
present form of the model, in which the strains on microplanes of all orientations 
correspond to the same macroscopic strain, appears suitable for materials which 
exhibit progressive microcracking and tensile strain-softening. Constraining the 
microstructure to the same macroscopic strain is also important for numerical 
reasons, not merely for the purpose of stability and uniqueness of representation. 
The computational work required by a model of this kind is not as large as one 
might think. The work required is greatly reduced by the recent development of 
efficient numerical integration formulas for a spherical surface. 

One advantage of the model is that the stress-strain relations are primarily 
defined on the microplane level, on which one does not need to heed the tensorial 
invariance requirements which are a source of great difficulty in constitutive 
modelling. Tensorial invariance is ensured subsequently, by combining the 
responses from microplanes of all orientations within the material. 
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