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ANALYSIS OF FRAMED STRUCTURES 

Z. BAiANT and Z. P. BAiANT, 1/1 

PART I 

Framed structures are systems of bars with rigid 
joints. The rigidity of joints causes the bending of 
bars with equal rotation of all bars connected ill a 
joint. Trussed girders, with (actual or supposed) 
hinged connections at the joints are determinate or 
overdeterminate in form, whereas framed structures 
(without diagonals) having hinged joints are geo­
metrically indetermin�te. With rigid joints, the bars 
in plane systems are acted on by axial forces, bend­
ing moments, and shearing forces. This greatly in­
creases the number of unknowns, framed structures 
being many times statically indeterminate. Exact 
solution with usual methods is complicated and la­
borious. The greatest possible simplification of 
analysis for practical purposes is the aim of all new 
publications. 

As in the case of all hyperstatic systems, framed 
structures can be analyzed by Catigliano's method of 
least work (I). The statically indeterminate quauti­
ties are the components of reactions or internal 
forces (axial and shearing forces, bending moments) 
in chosen sections. Expressing by these unknowns 
the components of internal forces in all sections of 
the bars, we derive by the theorem of least work as 
many equations as there are unknowns. We then 
have a great number of linear equations. This 
method of analysis is simple if each equation con­

,tains only a small number of unknowns. For this 
purpose, it is possible to choose the sections con­
taining hyperstatic components and their directions 
so that each hyperstatic quantity produces deforma­
tion in the least number of directions, least affects 
the other unknowns (2,3). For a closed or fixed-end 

simple frame, each elastic equation can contain only 
one unknown if the components 0, internal forces in 
a section or of reactions are transferred to the elastic 
center of the frame. 

The analysis of continuous beams with unyielding 
supports successfully uses fixed points, introduced 
by C. Culmann (4). This method of analysis can be 
applied also to framed structures (5). If only one 
member in the system is loaded, the bending mo­
ments in each unloaded member are given by a 
straight line which meets the axis of the member in a 
fixed point. Calculating in advance the fixed points 
in all members, we can determine the bending mo­
ments in all members for only one member loaded; 
from bending moments., we compute simply the 
shearing and axial forces. This method is advan­
tageous for a frame whose joints are immovable, as 
is the case for a symmetrical and symmetrically 
loaded frame or for a frame whose supports pre­
vent displacement of joints for every . loading. If the 
joints move, equilibrium cannot be calculated as in 
the case of immovable joints. It is then necessary to 
put the system in equilibrium by suppressing the 
forces obtained in some joints as the resultants of 
internal forces; a new calculation must be made. 

Instead of stress or reaction components, the 
analysis of frames can use as unknowns com­
ponents of deformation; e.g., joint and bar rota­
tions. The number of these unknowns is generally 
much smaller as compared to the number of stati­
cally indeterminate components of internal or ex­
ternal forces; this substantially facilitates the cal­
culations. The origin of this slope-deflection 
method can be traced to J. Cl. Maxwell (6). For 
the solution of secondary stresses in trusses, this 
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method was applied by H. Manderla (7), E. Wink­
ler (8) and O. Mohr (9). For frames, this method 
was systematically elaborated by A. Ostenfeld (10). 
Slope-deflection method can be applied for simul­
taneous loading of many or all members. 

The basic equations for calculation by the slope­
deflection method are joint equations (following 
from equilibrium of bending moments in joints) and 
bent equations (expressing the equilibrium of hori­
zontal components of external and internal forces 
for a section through one story). With respect to 
unknown angles, all these equations are linear 
equations with a large number of unknowns. Pre­
cise solution is possible by successive substitution, 
or by Gauss' method of elimination, for a determi­
nant symmetrical to the diagonal by shortened 
elimination (II). A great number of equations can 
be solved by successive approximation or iteration. 
For frames with many stories and bays, we can 
choose a simpler system as a part of the given struc­
ture and calculate from it the original system. 

The laborious solution of the slope-deflection 
equations can be avoided by the method of moment 
distribution. which calculates successively, and very 
simply, the end moments in members. The method 
is due to H. Cross (12,13). Similar to the method of 
fixed points, this method calculates directly the dis­
tribution of resultant (unbalanced) moments at the 
joints in the members meeting at a joint, as well as 

their carry-over to the other end of each member. 
After determining the distribution and carry-over 
factors, end moments in members can be calculated 
directly by successive approximation, which allows 
an exactness to any desired degree. The method has 
the advantage that errors of calculation can be im­
proved by further distribution without correcting 
the previous solution. This method is very simple in 
principle. It solves no equations, and all computa­
tions consist of the simplest arithmetic. Especially 
simple is the analysis of frames whose joints do not 
move. But also for moving joints, this method is 
advantageous if moment distribution is combined 
with the distribution of forces acting in horizontal 
sections through stories (14). Another advantage is 

,that bending moments necessary for proportioning 
of sections can be derived directly. 

Another method of frame analysis uses deforma­
tion of the system, determined by joint rotations, as 
unknown quantities. This method first calculates 
primary joint rotations, caused by the loading of 
members connected at the joint, and distributes 
them to next joints as secondary rotations which 
add to the primary. Repeating this solution, any 

desired accuracy can be achieved. This method, 
called distribution of deformation. was first applied 
by G. A. Maney and W. M. Wilson (15) and was 
improved in later publications (e.g., 16). The late 
C. Kloucek occupied himself in detail with this 
method (17,18). In many cases the method gives 
precise results at once, without repeated calcula­
tions. 

Derived originally for the calculation of hyper­
static pin-joined trusses, the relaxation method was 
also used by its author, R. V. Southwell (19), for 
analysis of continuous beams and frames; for con­
tinuous beams, the method is identical with the 
older moment distribution method. The relaxation 
method can be applied analogic? fly to other physi­
cal problems (electrical networks, vibrations, elastic 
stability, stiffened suspension bridges, etc.). 

The foregoing methods are good for any frame 
system. There are also methods for special cases. 
One of them is the method of four moment equations 
(20), using bending moments as hyperstatic quanti­
ties. This method solves simpler systems: contin­
uous frames of one story and one-bay multistory 
frames. 

Successive approximation methods also include 
the panel method, starting from a quadrilateral panel 
as an element of the structure (21). It has been ap­
plied to one-bay frames with several stories, having 
vertical or inclined columns; also for the Vierendeel 
girder (22) and for the complicated case of a hinge­
less spandrel-braced arch (23). 

In simple cases (continuous beams and frames, 
closed frames) a quick calculation is given by the 
method of relative flexure factors (24,25). This 
method determines very simply the tangents to the 
elastic line in joints of the system loaded in any 
member with bending moment at the joint. Thus is 
derived the elastic line of the system and the in­
fluence line of end-moment in a member. 

All the foregoing methods concern plane frames. 
There is an abundant literature dealing with them 
in many languages (Czech, Italian, Polish, Russian, 
etc). Their theory is very advanced, as concerns 
the numerous methods and their practical applica­
bility. The analysis of space frames is much more 
complicated. I t is necessary to consider in every 
joint components of internal forces in three perpen­
dicular directions, and also moments (bending or 
torsional) relative to all three axes. The number of 
components of deformation increases in the same 
proportion. The literature about space frames is 
comparatively rare. See e.g., Richards (26) and 
Baiant (27). 
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PART II 

In the eleven years since Part I was written, 
the frame analysis has been going through a rapid 
development and has reached remarkable achieve­
ments in general formulation as well as in solutions 
of new practical problems. The impetus behind this 
development has been the broad introduction of 
electronic computers which have enormously in­
creased the speed of computations as well as the 
possibilities of solving more complex and intricate 
structures. On the other hand, the use of computers 
required the creation of more general and common 
formulations. The latter aim has been achieved by 
the introduction of 1IfQtrix algebra in the analysis 
(special survey, see Argyris (28» which allows an ex­
cellent systemization and simplification of calcula­
tions and, at the same time exceptional conciseness 
and transparency of mathematical procedure. 

Owing to the general character of solutions the 
term of framed structures has been usually taken in 
a more general way. It is defined as a complex 
structure-a finite assembly of mutually connected 
one-dimensional members, i.e., bars, which are sub­
jected not only to normal forces but also to bending 
or torsional moments. In this light, the notion of 
framed structures includes not only the rigidly 
jointed frames in their classical sense, but also 
frames with pin-joints, semi-rigid joints and other 
connections, arches, grid frameworks, etc., all of 
which can be analyzed in general by the same 
methods. 

The use of electronic computers with the ':e!p of 
matrix algebra allows the solution of many stati­
cally indeterminate structures leading to a very large, 
but not unlimited, system of equations. However, 
the benefit from electronic computers would be 
small if their use were limited only to the solution 
of these equations. The determination of their coef­
ficients from initial data, characterizing the struc­
ture as well as the derivation of all internal forces 
and displacements from solved unknowns,. repre­
sents an oft laborious task and therefore it is neces­
sary to express all calculations in matrix algebra. 

In matrix analysis of frames the parallel to all 
methods described in Part I may be given. How­
ever, the importance of the two basic methods-the 
force method and the displacement method-has 
been increasing, while the help of electronic com­
puters enables the solution of considerably larger 
systems of equations. The force method is also 
called the method of least work (Part I), flexibility 
(influence) coefficient method, flexibility matrix 

method, action method or compatibility method. 
The displacement method represents a generaliza­
tion of the slope-deftection method (Part I) and is 
called also the equilibrium method or stiffness (co­
efficient) matrix method. The principle of the force 
[displacement) method is in using internal forces 
[displacements) as unknowns. Most generally they 
were presented in Argyris' articles (29,30). Let us 
note that a generalized mixed method can also be 
introduced, in which simultaneously internal forces 
and displacements are taken as unknowns (28,31). 

The force and displacement methods represent 
two dually corresponding techniques. Namely, they 
are formally identified as forces (and moments) in 
one method are replaced by the displacements 
(rotations, deflections) in the oth�r 'l1ethod. Simul­
taneously, the compatibility (kinp 'atic) conditions 
correspond to the equilibrium conditions and so 
forth. 

Let us demonstrate the procedure of both methods 
(dual terms are written in brackets). The solution by 
the force [displacement] method is based on two 
rectangular matrices. The elements of the first one 
are the internal forces [displacements] which stati­
cally [kinematically) correspond to given external 
loads [prescribed displacements) in the chosen pri-
1IfQry [or basic) static [kinematic] system, i.e., in the 
frame in which the statically [kinematically] indeter­
minate quantities, called also redundants, are taken 
as zero. The elements of the second one are the 
internal forces (displacements) which statically 
[kinematically] correspond to unit values of individ­
ual statically [kinematically] indeterminate quanti­
ties in the primary system without external loads 
and prescribed displacements. With the help of the 
second matrix, the diagonal flexibility [st{ffness 1 
matrix for the chosen primary static {kinematic] 
system is derived. Using further the first matrix and 
the column matrix of prescribed external loads 
[displacements}, the column matrix of load terms is 
found. The matrix equation for the unknown stat­
ically [kinematically) indeterminate quantities fol­
lows then from the compatibility (equilibrium] con­
ditions applied to the chosen primary system. It is 
simply obtained that the column matrix of load 
terms is equal to the product of the diagonal ftexi­
bility [stiffness] matrix of the primary system and 
the column matrix of unknown statically [kinemati­
cally] indeterminate quantities. Their solution is 
then given by inversion of the flexibility [stiffness] 
matrix of the primary system. All the internal 
forces [displacements) are obtained by multiplying 
the column matrix of indeterminate quantities with 
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the second rectangular matrix, mentioned above, 
and adding the first rectangular matrix. It is clear 
that all needed matrix operations are the ele­
mentary one. 

The equations for statically {kinematically] in­
determinate quantities may be also derived from 
dual energy theorems (e.g., Argyris (29), and Mathe­
son (36», which select from all statically (kine­
matically) possible states of stress (strain] of the 
frame this one which fulfils the compatibility 
[equilibrium) conditions. For this purpose may be 
used the second Castiglia no theorem for minimum 
of the complementary potential energy which is the 
consequence of the principle of complementary 
virtual work (or of virtual forces) [the first Castig­
liano theorem for minimum of the potential energy, 
which is the consequence of the principle of virtual 
work (or virtual displacements»). In the case of 
linearly elastic material the work and energy is 
equal to the complementary one. Different energy 
quantities are here introduced in order to give 
validity to the corresponding theorems in a general 
case of physically nonlinear material. 

The determination of the flexibility [stWness) 
coefficients and of load terms may be done, most 
generally. with the help of the principle of comple­
mentary virtual works [of virtual works] (unit load 
method, Mohr's dummy load method [unit displace­
ment method) (29,30,34». Here, it should be noted 
that if the primary statical system is chosen as 
statically indeterminate, the virtual forces, inte­
grated in product with the deformations of the re­
dundant primary system in order to obtain ;t:, J;s­
placements (ftexibilities, load terms), can be taken 
on a statically determinate primary system. This 
simplifies the calculation. This statement (e.g., 
Beyer (32), Dasek (33», denoted as reduction 
theorem, follows directly from the general form of 
the principle of complementary virtual work (29). 

In matrix solution there is often used the direct 
determination of ftexibilities and stiffnesses by 
superposition and transformation of flexibilities or 
stWnesses of single members and parts (along cer­
tain series of bars) according to relations corre­
sponding to the transformation of coordinate sys­
tems (e.g., Hall (34), Shore (35». The stiffness 
matrix of a member is there the inverse of its flexi­
bility matrix, but only when the column matrices of 
statically and kinematically indeterminate quantities 
mutually correspond. 

If bar elongations can be neglected, it is also 
possible to determine the flexibilities and load terms 
in a similar way as in Mohr's well-known theorem 

of conjugate beam (36,37). This theorem is used in 
the moment-area method (37,38), or method of 
elastic weights (loads) or in string polygon analysis 
(39), which are not usually presented as a special 
derivation of force method equation, in spite of 
being so. Further extent of this method is the 
method of fictional equilibrium conditions (40) 
and the conjugate frame method (41). General form 
of this method was developed by the author in (42) 
where there was derived the systematic way of de­
termining the conjugate frame to any frame by re­
placing all supports and internal connections of bars 
by their conjugates. This method is based on the 
force-deformation analogy, i.e., on analogy of 
vectorial equation for the course of internal forces 
in the bar, reSUlting from equilibrium, and of 
vectorial equation of deflection line of ... ·u, resulting 
from compatibility. It determines the displacement 
vector as an internal force vector on the conjugate 
frame produced by conjugate loads which are equal 
to vectors of curvature change of the actual frame 
caused by bending. Thus, any deformation of the 
frame, e.g., flexibility of the primary system, can be 
obtained with the help of equilibrium conditions. 
Furthermore, the compatibility conditions of the 
actual n-time� statically indeterminate frame can 
also be replaced by the equilibrium conditions of the 
n-times kinematically indeterminate conjugate 
frame. This procedure is advantageous for frames 
with one (or two) story or bay and is also suitable 
for transversely curved beams. 

Besides physical characteristics of material and 
geometric data about spatial position and dimen­
sions of each member, the information about inter­
connection of members, having in principle a topo­
logical character, are necessary for the derivation of 
flexibility or stiffness matrix and of load terms. 
For an intricately interconnected frame the use of 
topology (43) may be therefore advantageous and it 
can give a more general approach to solution pro­
cedure (e.g. (44-49», Interest about this subject in 
recent years has grown and remains high. Using the 
analogy with topologIcal network theory, the force 
and displacement methods were presented as 
counterparts of mesh and node-methods (49) for 
network analysis, in which the interconnection of 
members is expressed by branch-mesh and branch­
node matrices. The use of the linear graph theory 
for rigidly jointed frames and of the system theory 
was made in (46). Also, statical indeterminacy and 
stable form of structure was successfully studied 
with the help of these methods (48). In application 
to the structural analysis, Kron derived for net-
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works the technique of piecewise analysis by tearing 
and interconnecting the structural parts (44), which, 
when used for frames (47), is equivalent to the solu­
tion with the help of the statically indeterminate 
primary system. 

From force or displacement methods one should 
be chosen, of course, which leads to smaller number 
of unknowns in the given case. Then the simplicity 
of calculation depends on intelligent selection of 
redundants. As was mentioned in Part I, the solu­
tion becomes simpler if the redundants are chosen 
in such a way that the greatest possible number of 
nondiagonal flexibility (stiffness) coefficients is equal 
to zero. This condition can be generally achieved 
by orthogonalization of the set of redundants (e.g., 
Kohl (50) which means that the virtual stress distri­
bution and the strain distribution, corresponding in 
the primary system to the redundants, are orthogo­
nal functions. A special case of orthogonalization 
is represented by introduction of the elastic center 
for simple frame or arch (Part I) and by its further 
extension to Cross' column analogy (34,36,37) 
which also includes the prescription for superpo­
sition of influences of redundants in order to obtain 
any internal force. In general, for any frame a par­
tial or total orthogonalization of redundant quanti­
ties can be achieved by forming certain independent 
linear combinations of redundants, which means 
that new group redundants. i.e., groups (combina­
tions) of primarily chosen redundants, ought to be 
taken into account instead of original single re­
dundants. Evidently, then, the redundants need not 
be represented as forces in single cuts of bars. They 
can represent an arbitrary linearly independent self­
equilibrating stress system in frame (12,32,34,50,51); 
this idea descends from MUller-Breslau, Mohr and 
Beyer (52). 

Furthermore, of course, a great simplification 
is obtained for symmetric frames if the given loading 
is decomposed to the symmetric and anti metric part 
and if a primary system with symmetric pairs of 
forces or displacements as group redundants is 
chosen (32,50,51). 

The number of unknowns is lessened and the 
-calculation is often shortened if the primary (basic) 
system is chosen as statically indeterminate (32,33, 
37). Formally this is identical to the inversion 
of the flexibility matrix by partitioning (34,36), but 
the mechanical interpretation of this procedure can 
help in choosing a suitable mode of partitioning. 

In the displacement methods various unknown 
and corresponding systems of basic elements are 

introduced. In contradistinction to the slope-de­
flection method, with respect to simplicity of· pro­
gramming, for matrix analysis it is better to use as 
unknowns, more generally, the joint displacements 
(51,53) instead of bar rotations, although the 
number of unknowns increases. Then. instead of 
bent equations for stories the equations of shear 
and normal forces equilibrium in each joint need 
to be used. This is necessary, e.g., if axial bar 
elongations are considered or if the bars have 
curved or broken axis (37). Bars as basic elements 
can also be used for grid frameworks (54). 

The number of unknowns is reduced if a system 
of more complex basic elements is introduced, which 
is the dual technique to the choicP of the statically , 
indeterminate primary system and is equivalent to 
the inversion of stiffness matrix by partitioning. 
Thus, for instance, for a large multi-story and multi­
bay frame, unknown joint rotations can be selected 
in each second joint in a chessboard order if crosses 
of four bars are taken as basic elements (55). 

For continuous frames with hinges at midspans it 
is advantageous to take the deflections of hinges as 
unknowns, which means that T-shaped basic ele­
ments (56) are considered. Here, it should be noted 
that in the latter case as well as for the solution 
by force method (57) with shear forces in hinges as 
redundants, a system of equations, each containing 
only three unknowns, is obtained. Hence, solutions 
of these frames can be built up in an analogous 
manner as the solutions for continuous beams. 

Matrices of three-term (or five-term, seven-term) 
equations, called also band matrices, appear for 
various simple types of frames and their inversion is 
easier (58,59). 

The inversion of matrices for regular frames with 
repeated identical parts, e.g., with members of equal 
length and stiffness, can also be done in a simplified 
manne'r (60). Namely, the analysis leads then to a 

system of equations, for instance, of slope-deflection 
equations, in which certain groups of equations 
have identical form and equal coefficients at un­
knowns and can therefore be written as difference 
equations with a variable index of unknowns (60a, 
6Ob). The solution of linear algebraic difference 
equations with constant coefficients (or of system!; 
of such equations) is found as a sum of a particular 
solution and of linear combinations of powers of 
roots of corresponding characteristic equations. 
The general constants are determined from bound­
ary conditions. This method can be used, e.g., for 
regular continuous frames or tall building frames 
in which certain approximate irregularities can 
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be allowed (60a), for regular circular space frames 
(60b), etc. 

Analogically to the fixed point method (Part I) in 
matrix form the method of coefficients of restrainl 
can be built up (34). In principle, it is based on the 
force method and corresponds to the step-by-step 
inversion by partitioning of the flexibility matrix for 
a primary system with moments at joints as un­
knowns. Let us note that there could be derived a 
dual matrix technique, analogic to the method of 
fixed points for joint rotations (50), which is based 
in principle on the slope-deflection method and 
needs no distribution factors in joints. 

The programming is easier for a frame of uni­
form and regular type. For a frame which is ir­
regular because of various cut-outs and missing 
members but which can be made regular and sol­
uble by standard programs after adding some fur­
ther members, the technique of cut-outs and modi­
fications «29), no. 3) can be used advantageously. 
Firstly, the stresses in the regular frame with added 
members are solved and then are added the stresses 
which are produced in added members by such 
initial strains which make the resulting stresses 
in added members equal to zero. 

Besides the force and displacement methods and 
other related methods there is possible an other 
approach, called the method of transfer matrices, 
or in German Reduklionsmelhode (51). It was, in 
principle, already used in works of Krylov, Mac­
auley and others (61,62), but it won greater im­
portance after being developed for frame' in matrix 
form by Falk (63). This method is suitable for 
continuous beams, but it is also usable for simpler 
frames with open form (continuous frames) or 
eventually with simple closed form. Whereas the 
force [displacement] method corresponds in reality 
to the integration of the fourth order differential 
equation of bending (torsion, tension) of bars, at 
which only forces [displacements] in different points 
of bars are taken· as integration constants, the 
method of transfer matrices starts form this dif­
ferential equation, taking as integration constants 
all internal forces and displacements, which are 
written as a row matrix, in one point, namely, at 
the end of the bar. The corresponding row matrix 
for the other end of the bar is then expressed by 
multiplication with the rectangular transfer matrix, 
which includes the stiffnesses and loading of bar. 
By chain multiplication of single transfer matrices 
for continuous series of bars (and of matrices for 
transformation of coordinates according to the 
angle between bars at joints and of matrices ex­
pressing the supports conditions) the relation be-

tween column matrices at the ends of this series is 
obtained, yielding equations in unknown forces and 
displacements. If the series of bars is long, the 
procedure is sensitive to numerical accuracy. A 
similar procedure is represented by the matrix 
progression method (63) or by the method of initial 
parameters used for combined simple and bending 
torsion of continuous beams (64). In principle, this 
method is also related to the traverse method (25). 

The iterative methods, which determine the solu­
tion by successive approximation, still keep impor­
tance and, adapted to matrix form (67), allow the 
solving of considerably large frames with the help 
of small-size computers. In addition to the moment 
(force) distribution, to the distribution of deforma­
tions and to the relaxation met'. �d, which were re­
viewed in Part I, a new iterative method was pre­
sented by Kani (65). This method was later adapted 
to matrix form (66,67). Kani's method is relatively 
simpler and gives better convergence, if the multi­
story frame is subjected to sideways. As well as the 
methods of distribution of moments or of deforma­
tions, this method is also based on Slope-deflection 
equations and uses bending moments as iterated 
quantities. Whereas in each step of moment dis­
tribution the unbalanced moment, resulting from 
equilibrium condition of the joint, is distributed to 
bars meeting in the joint and then is carried over 
these bars to their opposite ends, in Kani's method, 
in each step, the moments acting on the joint are 
calculated from the opposite end moments accord­
ing to the equilibrium condition of this joint. In 
the case of sideways these steps are alternated with 
similar steps according to the equilibrium of the 
entire story. Kani's method does not operate 
with total moments, as in moment distribution, but 
during all iteration the bending moments are di­
vided into four parts. The first part is the constant 
fixed end moment. Two further parts concern the 
rotation of the corresponding joint and of the 
opposite end joint. The last iterated part expresses 
the relative displacements of the ends of the bar and 
determines simultaneously the shear force. Thus, 
this procedure is, indeed, very close to the distribu­
tion of deformations (Part I). 

Described iterative methods can be conceived 
in an almost general way. For instance, the moment 
distribution method was adapted for space frames 
(35,S I), arch frames (68), grid frameworks (69,70) 
and others. 

There were presented also various modifications 
of these methods. To speed up the moment dis­
tribution method for sideways at multistory frames 
suitable similar techniques were presented by 
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Csonka (71,74) Zaytseff (72), Oswald (see also 
73,75), Naylor, Bolton (36) and others (61). For 
instance, according to the approximate representa­
tion by simpler substitute frame or even by column, 
the step of joint rotation is done simultaneously 
with horizontal displacement. 

Improving of convergence in relaxation method is 
achieved by group relaxation steps (19,34). 

For large frames Krylov (55) reduces the number 
of unknowns as well as speeds up the convergence 
of moment distribution (because of smaller carry­
over factors) by introducing redundant restraints in 
each second joint in a chessboard order, at which 
there need be considered, however, more compli­
cated complex basic elements, crosses of four bars 
instead of single bars. The latter technique cor­
responds to the selection of a (kinematically) redun­
dant primary system, i.e., assembly of the crosses, 
at which is iterated the entire system. 

Somewhat similar, but a contrary technique of 
iterative methods which corresponds to iterative 
solution of a redundant primary system and speeds 
up the convergence could be derived, if during the 
iteration certain load terms or certain redundants 
are taken as arbitrarily variable and if they are 
changed after each iteration cycle in such a way that 
the residues, e.g., unbalanced moments or forces in 
redundant locks (noncompatible part of displace­
ment in redundant cuts) will be minimized, i.e., 
approximately the sum of the squares.. This would 
be especially effective as a modification of the re­
laxation method, derived in (76), at which the resi­
dues are simply transferred to the chosen arbitrarily 
variable load terms or redundants. The solution for 
prescribed values of n load terms which have been 
chosen arbitrarily as variable or the solution ac­
complishing the compatibility in cuts of n chosen 
variable redundants would then be obtained by 
linear combination according to n different inde­
pendent resulting states of chosen arbitrary var­
iables. 

Basis for.all described iterative methods are the 
slope-defiection equations or, in general, the equa­
tions of the displacement method. Originally they 
were deFived intuitively, by purely mechanical con­
siderations without the proof of convergence and 
estimation of error, but it can be shown (52,67,77-
79) that in principle they are identical to the well­
known mathematical iterative methods for solution 
of the system of linear algebraic equations. Thus, 
the method of moment distribution corresponds to 
the Gauss-Southwell iteration, the Kani method and 
the distribution of deformations correspond to the 
Gauss-Seidel iteration of slope deftection equations. 

It does not matter here if it is operated with cor­
responding moments instead of direct rotations. 

There is no doubt that purely mathematical rep­
resentation of iterative methods for frames as an 
iteration of a system of linear equations is more 
correct and theoretically precise. It enables us to 
find the answer to the basic questions of conver­
gence (36,67,79, 79a) with its conditions and of limits 
for the values of errors, the problems of which were 
already solved in mathematics. At the same time, it 
is also possible to give serious study to mathemati­
cal properties of the system of equations for frame 
analysis (80). However, in spite of this, the classi­
cal, mechanically interpreted forms of these meth­
ods are rather illustrative in mechanical understand­
ing of the procedure and permit an easy orientation. 

Space frames and space behavior of plane frames, 
although the number of unknowns is large, can now 
be solved with help of electronic computers by some 
of the foregoing methods in matrix form (35,51), if 
the case of St. Venant's simple torsion in bars can be 
assumed. Let us note that plane loading of plane 
frames produces space behavior too, if the bars are 
subjected to skew bending, i.e., the principal axis of 
inertia of sections of bars are not perpendicular to 
the plane of the frame. However, in this case a sat­
isfying approximate analysis, by introduction of 
substitute rigidities for skew bending and of factors 
of transverse deformation (81), can be done sep­
arately for a plane and lateral behavior. An anal­
ogous effect, which can be treated similarly, ap­
pears at frames having skew supports or skew 
connections of bars, the reactions of which do not lie 
in the plane of the frame. Of great practical im­
portance are the bridge frames with transversely 
curved beams (82). 

An analogous problem to that of laterally loaded 
frames is represented by grid frameworks, which 
will not be referred to here. We shall only mention 
that for beams sufficiently closely distributed in 
grillage, the solution can be transferred to a con­
tinuous problem (83,84) replacing the grillage by 
an anisotropic plate (partial differential equation), 
which method has not yet been quoted because of 
smaller importance in the plane behavior of the 
frame. Solution of frame circular rnaial grid frame­
work interacting with frame columns was given in 
(85) where the grid framework was replaced by 
semi-continuum- (ordinary differential equation), 
formed by continuously distributed radial girders 
and discrete circular girders. 

With respect to the behavior of structural frames 
further problems are arising. The inftuence of semi-
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rigid elastic connection of bars in joints (incomplete 
joint rigidity) can be considered by easy enlarge­
ment of ordinary methods. In the displacement 
method either relative rotation of the end of the 
bar and of the core of the joint can be considered 
(34,35,86, (30). Otherwise, this case can be in­
terpreted also as a limiting case of bar with various 
sections, the stiffness of which tends to infinitely 
small value on an infinitely short portion of bar at 
the end. The interaction of frames and of elastic 
subsoil (86) can also be approximately treated by 
described methods. The same may be stated of the 
interaction of arches and upper frames, of the inter­
action of frames and suspension cables (suspen­
sion bridges), of the influence of prestressing cables 
in frames, and of temperature and shrinkage in­
fluences. 

Much more complicated is the interaction of 
frames and of a system of plates and infill walls 
(88-90), where certain approximate idealizations 
need to be done, e.g., diagonal strut replacing the 
infill (91) or panels interconnected in edges. 

To make the review complete, the use of influence 
Jines should be mentioned here. They were intro­
duced in concept in 1868 by Winkler (32,36,37) and 
developed mainly by MUller-Breslau. The influence 
line represents certain static or kinematic quantity 
of the structure as a function of the position of mov­
ing load. It is mostly used to determine extreme ef­
fects of moving loads. Their determination is not a 
problem different from problems previously treated, 
since it can be transformed to usual stress and strain 
analysis, if the principle of virtual [or comple­
mentary virtual} works (or Maxwell's theorem) is 
applied. The values of influence line of a certain 
force [displacement) are then equal to the values 
of displacement (i.e., deflection line) in the sense of 
moving unity load which are caused by a displace­
ment [force] of minus unity [unity) value in the 
sense of the considered force [displacement]. Other­
wise, they can be determined also directly as a func­
tion, analyzing the frame with general parameter of 
load position, or by computing their numerical 
values for various load positions, in which case 
the use of inverse flexibility or stiffness matrix or 
of an orthogonalized set of redundants is better 
than an iterative procedure which would need to be 
entirely repeated for each load position. Effect of 
arbitrary loading on arbitrary force or displace­
ments in a frame is easily obtained by combining 
unit loads and the influence lines of redundants 
according to the principle of superposition. From 
the standpoint of mathematical solution of the 
differential equation of bending (or torsion, tension, 

shear) of bars, the set of influence lines represents 
Green's function or its derivatives. 

Below. without exhaustive references, are sketched 
briefly the problems arising if the usual classical 
theoretical and physical basic assumptions are not 
sufficient. These problems lie on the border of the 
classical meaning of the frame analysis and are 
basically discussed in other subjects, but they have 
very great importance in modern trends of frame 
analysis. 

The greatest problem which appears with respect 
to space behavior, especially to torsion, is the ad­
missibility of basic deformational hypothesis for the 
reduction of a three-dimensional problem to one­
dimensional. The usual reduction hypothesis used 
in engineer's solution for bending of bars is the 
Bernoulli-Navier hypothesis of preserving plane 
and perpendicular cross sections. In the case of 
torsion, the case of St. Venant's simple (pure) tor­
sion with zero normal stresses is usually assumed. 
However, especially in the case of frames of thin­
walled bars. the latter assumption is not sufficient 
and the combined (nonuniform) simple and bend­
ing (warping) torsion is necessary to be considered 
(for survey of problem see Nowinski (92». For bars 
of open cross section Wagner's assumption of zero 
shear strain in the middle surface of walls is then 
made. For open as well as for closed sections, the 
Umanskij assumption of deplanation (warping). 
proportional to that for simple torsion, can be done. 
Besides internal moments, shear and normal forces. 
rotations and displacements, it is necessary to intro­
duce further quantities, which do not represent 
static resultants of stress in cross section or displace­
ment of the section as a rigid body, i.e., the bi­
moments, the rate of twisting rotation. Also it 
should be emphasized that the difference between 
centroidal and shear center line of bars needs to be 
respected. Furthermore, in some cases the com­
pletely rigid form of the cross sections cannot be 
assumed and their distortion should be taken into 
account (64). 

In a mathematically rigorous manner the stresses 
and strains according to mentioned deformation 
hypothesis can be regarded as first terms of infinite 
series for the solution of the three-dimensional 
elasticity problem by the variational method (64,92). 
Eventually further terms (self-equilibrating stress 
systems) also can be introduced in order to fulfil 
the compatibility conditions. Here, of course, the 
question of optimum selection of these deformation 
hypotheses is of importance. 

The solution of space behavior of fi·ames whose 
bars are subjected to warping torsion (92-10 I) or 
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eventually also to distorsion of sections, is rela­
tively much more complicated and further work re­
mains to be done. The analogic method to the 
transfer matrices method, or to the force and dis­
placement methods, can be used for analysis. Es­
pecially careful attention should be paid to the be­
havior of joints, to their stiffening against warping, 
to the transfer of bimoments and of deplanation 
(warping) of sections through joints and so on. It 
should be mentioned that there are joints transfer­
ring the deplanation entirely, partially or not at all. 

To obtain correct results, it is often necessary 
to introduce second order theory, which considers 
the equilibrium on the deformed form of frame and 
represents a strength approach to the stability prob­
lem. This is important not only for flat arches and 
suspension bridges, which will not be discussed 
here, but also for building frames with slender col­
umns, where the moments of normal force to the de­
flected centroidal axis can have considerable in­
fluence ( l02). The stiffness of bar then depends on 
acting forces, so that the problem becomes non­
linear. For instance, the displacement method (102, 
105) and Kani's method (103), moment distribu­
tion (104) and relaxation method (36, Chap. 9.5) can 
be enhanced for this purpose. 

I f the deflections of bars are considerably great, 
then it is necessary to consider finite deformations. 
especially the changes of length of bars caused by 
bending (106). This also influences the second or­
der analysis a!!...d stability of frames (107). 

In the second order theory or in the theory of 
finite deformations the problem becomes nonlinear, 
either statically or geometrically, respectively, and 
the principle of superposition is no more valid. 
The same follows if the material of frame is physi­
cally nonlinear, i.e., nonlinearly elastic. U sing the 
force method or the theorem of complementary en­
ergy, a system of nonlinear algebraic equations is 
obtained. If the displacement method or the 
theorem of the strain energy is used, the problem 
leads to a system of first-order nonlinear ordinary 
differential equations with load parameter as inde­
pendent variable (108). Also various successive 
approximations by series of linear analysis can be 
used (109). For reinforced concrete frames (110), 
the nonlinearity of concrete is complicated by the 
forming of cracks and yielding of reinforcement. 

Limiting case of material nonlinearity is the 
elasto-plastic and the rigid-plastic stress-strain dia­
gram, which can be well accepted for steel. Limited 
analysis of frames with determination of collapse 
load has been largely worked out (111-118). More 
accurately in limit analysis the strain hardening 

should be respected (117). For limit analysis of 
concrete frames it is necessary to consider the lim­
ited rotation capacity of plastic hinges (119,120, 
121). Recently great attention has been paid to the 
optimum design (minimum weight design) of frames 
which is based on plastic analysis (122-124). 

In the presence of creep. time should be taken 
into account. For building frames the creep of con­
crete (regardless of creep of prestressing cables), 
which is not simply visco-elastic with respect to 
aging, is of importance. Creep affects the increase 
of deformations and the redistribution of stresses 
in frame which can be caused by initial state, e.g., 
the process through which the frame was cast o� 
the prestressing, by shrinkage or temperature dila­
tations, by nonhomogeneity, i.e., concrete-steel, 
differences in age, dimensions and moisture of con­
crete, and by nonlinearity of creep itself for con­
crete at high stresses. In analysis of creep of 
concrete frames the use of the force method is gen­
erally easier than that of the displacement method. 
For static redundants it follows a system of ordinary 
differential equations or a system of Volterra's 
integral equations which are linear, if the creep is 
linear (125,126,128). The solution can be trans­
formed to a series of linear elastic analyses done 
by any Of the foregoing methods (125,126). The 
presence of creep influences further the second order 
analysis, the long-time stability, finite-deformations 
theory and others. The time parameter also appears 
for frames founded on creeping soil, i.e., on clay 
layer. Its creep can be eventually combined with the 
creep of frame (127). 

The individual types of nonlinear effects, time ef­
fects, deformation hypotheses and so on, can in re­
ality occur also simultaneously. However, the 
analysis respecting combination of these effects is 
rather complicated and further work remains to be 
done. 

All problems referred to up to now concern static 
stress and strain analysis of frames. The closely 
related problems of stability (36,104,105,129,130), 
dynamics and vibrations (l 04,131) of frames can 
be analyzed by further enlargement of the discus­
sion, but their review would need special separate 
surveys. 

The following list of references does not claim to 
be exhaustive and we are aware that some impor­
tant contributions from the extremely vast literature 
on this subject may have been omitted. 

REFERENCES 

I. A. Castiglia no. Theorie de L"equiJibre des Systemes Elas· 
tiques, Turin. 1879. 



MECHANICS OF SOLIDS 

2. E. Robert and L. Musette, Le CalcuJ des Systemes H}per­
Statiques, Liqe, 1945. 

3. F. StUssi, Zur Bercchnung des VierendeeltrUgers, AMR, 4, 
Rev. 3542. 

4. C. Culmann (prepared for publication by W. Ritter), 
Anwendungen der Graphischen Statik. III. ZUrich, 1900. 

5. E. Suter, Die Methode der Festpunkte. 3rd ed., Berlin, 1951. 
6. J. CI. Maxwell, "On the calculation of the equilibrium 

and stiffness of frames, " Phil. Mag .. 1864. 
7. H. Manderla, "Iahresbericht der Techn.," Hochschule in 

MUnchen. 1878-1879. 
8. E. Winkler, Theorie der Brlkken. II. Wien, 1881. 
9. O. Mohr, "Die Bercchnung der Fachwerke mit starren 

Knotenverbindungen," De, CMJingenieur. 1892-1893. 
10. A. Ostenfeld, Die De/omrlllionsmethode. Berlin, 1926. 
II. R .  Guldan, Ralrment,agwe,ke und DurchllJu/trlJger. 5th 

ed., Wien, 1954. 
12. Hardy Cross, "Analysis of continuous frames by dis­

tributing fixed-end moments, " Proc. A mer. Soc. Civ. Engrs .. 
May 1930. 

13. Hardy Cross and N. D. Morgan, ContinllOUS Frames in 
Rein/orced Concrete. New York, 1932. 

14. V. Daiek, "Das allegemeine Krllfte und Momenten­
verteilungsverfahren, " Beton u. Eisen. 1941. 

15. G. A. Maney and W. M. Wilson, "Wind stresses in steel 
frames of office buildings," Univ. Ill. Engng. Exp. Sta. Bull .• no. 
80, 1915. 

16. L. E. Grinter, "Analysis of continuous frames by bal­
ancing angle changes, " Proc. Amer. Soc. Civ. Engrs .• 1936. 

17. C. Kloueek, Das Prinzip der /ortgeleiteten Ver/onnung. 
Berlin, 1941. 

18. C. Kloueek, "Structural analysis by distribution of de­
formation, " AMR, 4, R�v. 4143. 

19. R. V. Southwell, Re/llJUltion Methods in Engineering 
Science. Oxford, 1940. 

20. Fr. Bleich, Die Berechnung statisch unbestimmter Trag­
we,ke Nlch der M elhode des Viennomentensotzes. Berlin, 19 � 8. 

21. L. C. Maugh, StatiCGIly IndetenniNlte Structures. New 
York, I946. 

22. L. A. Beaufoy, "Vierendeel truss analysis using equiva­
lent elastic systems, " AMR, 6, Rev. 449. 

23. L. A. Beaufoy, "Open-spandrel arch analysis assuming 
continuity of structure, " AMR, 7, Rev. 2831. 

24. R. W. Stewart, "Analysis of frames with ehl�"'; joints," 
Trans. Amer. Soc. Ci,. Engrs .• 1939. 

25. R. W. Stewart and A. Kleinlogel, "Die Traversen­
Methode, " AMR, 6, Rev. 832. 

26. J. C. Richards, "Stress-determination for a three-dimen­
sional rigid jointed framework by the method of systemic re­
laxation of constraints," J. Inst. Civ. Engrs . . 1937. 

27. Z. BaZant, "Les portiques dans I'espace," AMR, 5, 
Rev. 2814. 

28. J .  H. Argyris, "On the analysis of complex elastic struc­
tures," AMR, 11, 7, 1958, pp. 331-338. 

29. J. H. Argyris, �'Energy theorems and structural analysis, " 
Aircr. Engng .• 26, no. 10, 1954, p. 347; no. II, p. 383; v. 27, 
no. 2, 1955, p. 42; no. 3, p. 80; no. 4, p. 125; no. 5, p. 145; AMR, 
10, 1957, Rev. 54. 

30. J. H. Argyris, "Die Matrizentheorie der Statik," Ingen. 
Arch .• 25, 3, p. 174; AMR, II, 1958, Rev. 81. 

31. S. O. Asplund, "Indeterminate analysis," Publ. Internat. 
'14ssoc. Bridge Struct. Engng .. 21, I, 1961. 

32. K. Beyer, Die Statik im Stahlbetonbau. 2nd ed., Berlin, 
Springer, 1956. 

33. V. Daiek, Statics 0/ Framed Structures (in Czech) Prague, 
Czech. Acad. Sci. Pub!., 1959. 

34. A. S. Hall and R. W. Woodhead, F,ome ANllysis. John 
Wiley and Sons, New York, 1961. 

35. S. Shore, "The elements of matrix structural analysis," 
Proc. 2nd Con! on Electronic Comp. A mer. Soc. Civil Engrs .• 

1960, p. 145. 

36. I. A. L. Matheson, N. W. Murray and R. K. Livesley, 
Hyperstatic Structures. London, Butterworth, 1959. 

37. J. I. Parcel and R. B. B. Moorman, ANllysis 0/ Statically 
IndetenniNlte Structures. John Wiley and Sons, New York, 
1955. 

38. R. G. Robertson and co-workers, "Portal frame analysis 
by moment area method, " Struct. Engr .• 34, 5, 1956, pp. 173-
178. 

39. J. J. Tuma and J. T. Oden, "String polygon analysis of 
frames with straight members," Proc. A mer. Soc. Civil Engrs .. 
81, ST7 (J. Struct. Div.), October 1961, pp. 63-89; AMR, IS, 
1962, Rev. 1461. 

40. K. Havelka, J. Harvancik and J. Trokan, "Framed bridge 
and industrial building structures solved by the method of fic­
tional statical conditions (in Slovak), " Bratislava, Siov. Acad. 
Sci. Publ., 1959; AMR, 16, 1963, Rev. 2216. 

41. J. Kiusalaas, S. L. Lee and M. Makino, "Analysis of 
continuous space frames by conjugate frame analogy, " Struct. 
Eng'., no. 6, 1963, pp. 203-208. 

42. Z. P. BaZant, "Spatial force-deformation analogy for 
beams and frames, " to be published in D,.OC. A mer. Soc. Civil 

Engrs. 
43. W. L. Miranker, "Applications of topology to analysis," 

AMR, 16, I, 1963, p. I. 
44. G. Kron, "Tearing and interconnecting as a form of 

transformation, " Qua,t. Appl. Math .• 13, 2, July, 1955, pp. 147-
159; AMR, 9, 1955, Rev. 356. 

45. E. Dony and J. Goethals, "M�thode matricielle de calcul 
des structures hyperstatiques, "  Acier-Stahl-Steel. Bruxelles, no. 
1, 1959. 

46. N. C. Lind, "Analysis of structures by system theory, " 
Proc. Amer. Soc. Civil Eng's .• 88, ST2 ( J. Struct. Div.), April, 
1962, pp. 1-22; AMR, 16, 1963, Rev. 3391. 

47. W. R. Spillers, "Application of topology in structural 
analysis," P,oc. Ame,. Soc. Civil Engrs .• 89, ST4 (J. Struct. Div.), 
August 1963, pp. 301-343. 

48. F. Di Maggio, "Statical indeterminacy and stability of 
structures, " P,oc. A me,. Soc. Civil Engrs .• 89, ST3 (J. Struct. 
Div.), June 1963, pp. 63-76. 

49. S. J. Fenves and F. B. Branin, "Network-topological 
formulation of structural analysis, " Proc. A mer. Soc. Civil 

Engrs .• 89, ST4 (J. Struct. Div.), August 1963, pp. 483-514 (Dis­
cussions February 1964, p. 261). 

SO. F. Schleicher (ed.), Taschenbuch jUr Bauingenieure. v. I, 
Chap. 4 by E. Kohl, Berlin, Springer, 1955. 

51. G. GrUnning and A. HUtter (eds.), Ingenieurtaschenbuch 
Bauwesen. v. I, Chap. 4 by G. GrUnning, Chap. 5 by M. MUl­
Ier, Leipzig, Teubner, 1963. 

52. A. J. Bignoli, "Analysis de estructuras aporticadas," 
Spanish translation with comments of survey by Z. Baient, 
"Analysis of framed structures," AMR, 8, March, 1955; Ciene. 
Tee.. 125, 1958, pp. 263, 630. 

53. L. M. Pei, "Stiffness method of rigid frame analysis," 
Proc. 2nd Con! on Electronic Comp. A mer. Soc. Civil Engrs . . 

1960, p. 225. 
54. E. Lightfoot and A. Sawko, · "Structural frame analysis 

by electronic computer, " Engineering. 187, January 1959, p. 18; 
AMR, 12, 1959, Rev. 6116. 

55. V. K. Krylov, "On the analysis of frames with great num­
ber of nodes " (in Russian), Symposium Strojit. mech. i. raschet 
konstruktsii. no. 2", Moscow, Gostrojizdat, 1961, p. 22. 

56. Z. P. BaZant, "Analysis of influence lines of continuous 
frames with hinges at midspans " (in Czech), Inzeny,ski stavby. 
Prague, 9, 9, 196I, p. 344. 

5i. I. Courbon, "Calcul des ponts 1 poutres consoles �unies 
par des articulations," Publ. Intemat. Assoc. Bridge Strucl. 

Engng .• 17, 1957, p. 9. 
58. S. O. Asplund, "Inversion of band matrices, " Proc. 2nd 

Con! o/Electronic Compo Amer. Soc. Civil Engrs .• 1960, p. 513. 
59. Ju. G. Plechkin, "Inverse matrix of the systems of three-



ANALYSIS OF FRAMED STRUCTURES-BAiANT AND BAiANT 46 1 

terms equations" (in Russian), Symposium Issledovanija po teorii 
soorushenij. Moscow, Gostroiizdat, 1 96 1 ,  p. 253. 

60. V. D. Shaikevich, "Matrix method of analysis of regular 
frame systems" (in Russian), S.vmposium Raschet prostranst­
vennych konstruktsii. no. 4, Moscow. Gosstroiizdat, 1958. 

6Oa. H. S. Tsang, "Analysis of rigid frames by difference 
equations," Proc. A mer. Soc. Civil Engrs . . 89, ST 2 (J. Slruct. 
Div.), April 1 963, pp. 1 27- 1 59. 

6Ob. E. Keintzel, "Die Berechnung axialsymmetrischer raum­
licher Stockwerkrahmen mit Hilfe von Differenzengleichungen," 
Rev. Mecan. Appl. (Bucuresti), no. 4, 1964, p. 923. 

6 1 .  E. Lightfoot, "Substitute frames in the analysis of rigid 
jointed structures," Civil Engng .• London, 52. December 1951. 
p. \381;  53, January 1958, p. 10; AMR, I I , 1958, Rev. 3918. 

62. A. Aass, "Matrix progression method," Bauingenieur. 39. 
no. 8, p. 306; no. 10, 1964, p. 417.  

63.  S. Falk, "Die Berechnung offener (geschlossener) Rahmen­
tragwerke nach dem Reduktionsverfahren," Ingen.-Arch . •  no. I ,  
1958, p.  6 1 ;  no. 2 ,  p. 109; A M R, \ I , 1958, Rev. 495 1 .  

64 .  V .  Z .  Vlasov, Thin- Walled Elastic Beams. 2nd ed., Mos­
cow, Fizmatgiz, 1959; A M R, 1 3, :960, Rev. 2739; Engl. transl., 
AMR, 1 6, 1 963, Rev. 5719. 

65. G. Kani, Die Berechnung mehrslockiger Rahmen. Stult­
gart, Wittwer, 1956; Engl. transl., AMR, 1 2, 1959, Rev. 1298. 

66. M. F. Rubinstein, "Multistory frame analysis by digital 
computers," Proc. 1nd Con! Electronic Compo Amer. Soc. Civil 

Engrs . . September, 1 960, p. 261 .  
67. P. Lustgarten, "Iterative method in frame analysis," 

Proc. A mer. Soc. Civil Engrs . . 89, ST2 ( J. Struct. Div.). April 
1963, pp. 15-94. 

68. F. P. Weisinger, S. L. Lee and D. L. Guell, "Analysis of 
arch frames," Proc. Amer. CMI Engrs . . 89, ST5 ( J. Struct. Div.), 
October 1 963, pp. 1 5-33. 

69. J. Fader, "Grid analysis by the reaction distribution 
method," Proc. A mer. Civil Engrs .• 87, ST6 ( J. Struct. Div.), 
August 1 96 1 ,  pp. 77-103; A M R ,  1 5 ,  1962, Rev. 2691. 

70. D. V. Reddy and A. W. Hendry, "Rapid moment and 
torque distribution method for grid framework analysis," Civil 

Engng . . 54, London, July-August, 1 959, p. 867. 
1 1 .  P. Csonka, "Une contribution il la simplification de la 

methode de Hardy Cross," La Technique Modeme-Construction. 
March 1952, p. 85; A�R, 6, 1953, Rev. 86. 

72. S. Zaytseff, La methode de Hardy 
'
Cross et ses simplifica­

tions. Paris, Dunod, 1952; A M R, 5, 1952, Rev. 2593. 
73. A. Habel, "Zur Windberechnung vielgeschossiger Stock­

werkrahmen nach Takabeya," Bautechnik. 37, no. 8, 1960, 
p. 307. 

74. P. Csonka, "Beitrag zur Berechnung waagerecht belasteter 
Stockwerkrahmen," Bautechnik. 39, 7, 1962, p. 237. 

75. M. Todorov, "Iterationsverfahren mit beschleunigter 
Konvergenz zur Berechnung von Stockwerkrahmen," Bautech­
nik. 37, I, 1 960, p. 1 8. 

76. Z. P. Baiant, " Relaxation with variable load term, and its 
application in solving plates and torsion problems" (in Czech), 
Api. Mat. Ceskoslov. Akad. Ved .. 5, 6, 1960, pp. 458-472; re­
printed in English in A bstracts of Selected A rtides from Soviet 
Bloc and Mainland China Technical Joumals. ser. I ,  no. 16, May 
1 962, U. S. Dept. of Commerce, OTS, Washington 25, D. C.; 
AMR, 1 6, 1963, Rev. 7 1 1 .  

71. H .  MUlier, "Die Verfahren von Cross und Kani als 
A.nwendungen der Ublichen Methoden der iterativen Auf­
losung von Gleichungssystemem," Bauplanung-Bautechnik. 1 2, 
2, 1958, p. \ 18 . . . 

78. J. Mai, Uber die Losung Ii nearer Gleichungssysteme in 
der Baustatik," Bautechnik. 40, 3, 1 963, p. 83. 

79. K.  Chobot, "Matrix form of distribution method" (in 
Czech), Prace CV V T. ser. I, no. 2, Prague, State Pedagogical 
Publ. House, 1963, p. 33. 

19a. Ja. B.  t '/in, "Analysis of complicated frames by the 
matrix iteration method" (in Russi"n), Symposium Issledovaniya 

po teorii sooruzheniy. \ 3, Moscow, Gosstroyizdat, 1964, pp. 2 1 7-
229. 

80. L Babuska and M. Fiedler, "Ober Systeme linearer 
Gleichungen vom Typ der Rahmentragwerke," Api. Mat. Ces­
koslov. Akad. Ved .. 4. 6, 1959, p. 44 1 .  

8 1 .  Z. P .  Baiant. "Analysis of framed structures with bars 
subjected to skew bending" (in Czech), Inzenyrske stavby. 
Prague, 9. 6. 196 I , pp. 225-228. 

82. Z. P.  Baiant. "Influence lines of horizontally curved 
bridges" (in Czech, Eng!. summ.), Stavebnlcky Casopis. 12, I, 
pp. 1 8-39. 

83. Ch. Massonet, "Methode de Calcul des ponts a poutres 
multiples tenant compte de leur resistence il la torsion," Publ. 
Internat. Bridge Struct. Engng .• 19. 1959, p. 147. 

84. R. BareS, Analysis of Grid Frameworks with Respecting of 
Torsion (in Czech), Prague, State pub\. house techn. lit., 1963. 

85. J. Jirouiek, "Circular beam grillages and space rotation 
frames," Proc. Techn. Univ. of Brno, no. 1 -4, 3 1 ,  Prague, State 
pedagog. pub!. house, 1963. 

86. G. R. Monforton and T. S. Wu, "Matrix analysis of semi­
rigidly connected frames," Proc. Amer. Soc. Civil Engrs . . 89, ST6 
(J. Struct. Div.), 1 3, December 1 963, pp. 1 3-42. 

87. D. Augustin. "Rahmenknickung bei elastischer Einspan­
nung im Baugrund," Bauingenieur. 36, 1 2, 196 1 ,  p. 441 .  

88. B .  Cardan, "Concrete shear walls combined with rigid 
frames in multistory buildings subject to lateral loads," J. 
Amer. Concrete Inst .. 58, 3, pp. 299-316; AMR, 1 5, 1962, Rev. 
3365. 

89. R. Rosman, "Beitrag zur Untersuchung des Zusammen­
wirkens von waagerecht belasteten Wiinden uod Stockwerk­
rahmen bei Hochbauten," Beton u. Stahlbetonbau. 58, 2, 1963. 
pp. 36-40. 

90. W. W. Frischmann and S. S. Prabhu, "Multistory frames 
and interconnected shear walls subjected to lateral loads, Con­
crete Construct. Engng . • 58, 6, 1963, pp. 227-234. 

9 1 .  B. S. Smith, "Lateral stiffness of in filled frames," Proc. 
A mer. Soc. Civil Engrs . •  88, ST6 ( J. Struct. Div.), December 
1962, pp. 183-199; AMR, 16, 1963, Rev. 4596. 

92. J. Nowinski, "Theory of thin-walled bars," AMR, 12,  3,  
219, 1 959. 

93. B. N. Gorbunov, "Analysis of three-dimensional frames 
composed of thin-walled bars" (in Russian), Prikl. Mat. Mekh . .  
7 ,  I ,  1 943, p. 65. 

94. B. N. Gorbunov and A. I .  Stryelbitskaya, Theory of 
Frameworks Composed of Thin- Walled Bars (in Russian), Mos­
cow, Gostekhteorizdat, 1 948. 

95. D. V. Bytchkov, Analysis of Beam and Frame Systems 
Composed of Thin- Walled Bars (in Russian), Moscow, Gos­
stroyizdat; 1948. 

96. N. J. Karyakin, "Torsion of thin-walls bars and frames" 
(in Russian), Memiit. Moscow, 1950. 

97. L. N. Stavraki, Stability of Space Frames of Thin- Walled 
Bars with Open Symmetrical Cross Section (in Russian), Sbornik 
Inst. Stroit. mekh., Kiev, Akad. Sci. U.S.S.R., no. 12, 1950. 

98. L. N. Stavraki, "Strength analysis of three-dimensional 
structures composed of thin-walled bars with open symmetrical 
profile" (in Russian), Raschet Prostanslvennykh KonslruklSii. 
no. 2, Moscow, Gosstroiizdat, 1 95 1 ,  p. 1 72. 

99. J.  V.  Urban, Theory of Analysis of Thin- Walled Bar Struc­
tures (in Russian),. Moscow, Gosstroyizdat, 1955. 

100. R. K. Livesley and D. B. Chandler, Stability Functions 
(or Structural Frameworks, Univ. Press, Manchester, 1956. 

lUI.  J. D. Renton, "Stability of space frames by computer 
analysis," P,:oc. AmM". Soc .. Civil Eng's. . 88 ST4 ( J. Struct. 
Div.), August 1 962, pp. 8 1 - 103. 

102. H .  Kretzschmar and H. M Uller, "Berechnung von 
Stockwerkrahmen nach Theorie II .  Ordung" Prelim. Pub\. ,  7th 
Congress Intemat Assoc. Bridge Struct. Engng. in Rio de 
Janeiro. 1964, p. 75. 

103. K .  Kloeppel and H .  Ebel, "Beitrag zur Berechnung von 



462 MECHANICS OF SOLIDS 

Stockwerkrahmen auf Stabilitllt und nach der Spannungs­
theorie II. "Ordnung," Stahlbau, 3 1 ,  I, January 1962, pp. 1 -7; 
AMR, 15,  1962, Rev. 636 1 .  

104. S .  Blaszkowiak and Z .  Kaczkowski, Metoda Crossa (in 
Polish), 3rd ed., Warszawa, Polskie Wydaw. Naukowe, 1964. 

105. Z. Balant, "Buckling strength of framed structures" (in 
Czech), Technicky Obzor, Prague, 5 1 , 1943, pp. 7-8, 16, 97- 102, 
1 24- 127, 255. 

106. W. Merchant and D. M. Brotton, "A generalized method 
of analysis of elastic plane frames," Prelim. pub!, 7th Congress 
Internat. Assoc. Bridge Struct. Engng. in Rio de Janeiro, [964, 
p. 87. 

107. M. R. Horne, "Effect of finite deformations in elastic 
stability of plane frames," Proc. Roy. Soc. London. ser. A, 226, 
1 324, 1 962, pp. 47-67. 

lOS. J. E. Goldberg and R. M. Richard, "Ana[ysis of non­
linear structures," Proc. A mer. Soc. Struct. Engrs.. 89, ST4 
(J. Struct. Div.), August 1 963, pp. 333-354. 

109. E. J. Wilson, "Matrix analysis of nonlinear structures," 
Proc. 2nd Coni on Electronic Compo A mer. Soc. Civil Engrs . •  

1960. 
1 10. J. F. Borges, E. Arantes and E. R. Oliveira, "Nonlinear 

analysis of reinforced concrete structures," Publ. Intern. Assoc. 
Bridges Struct. Engng .• 23, 5 1 ,  1963. 

I l l . P. G. Hodge, Pkut;c Analysis 0/ Structures. McGraw­
Hill, New York, 1959; AMR, 12, 1959, Rev. 3254. 

1 1 2. G. Neal, TIre plastic methods 0/ structural onafysis. 2nd 
ed., Chapman '" Hall, London, 1963. 

1 13.  J. F. Baker, M. R. Horne and co-workers, The Steel 
Skeleton. v. 2. Plastic behaviour and design. University Press. 
Cambridge, 1 956; AMR, 9, 1956, Rev. 3915.  

1 14. Ch.  Massonnet and M .  Save, "Calcul plastique der con-
structions," Centre 8elga-Lux. d'information de l'Acier, 
Bruxelles, 196 1 ;  AMR, I S, 1962, Rev. 2 1 14. 

l i S. J.  Heyman, "On the estimation of deflections in elastic­
plastic framed structures," P,oc. Instn. Civil Engrs .• 19, no. 5, 
196 1 ,  pp. 39-60; AMR, 1 5, 1962, Rev. 1970. 

1 16. M. D. Hangan, "Le ealcul des structures hyperstatiques 
dans Ie de maine plastique," Ann. Inst. Techn. Bat. Trav. Publ . . 
16, no. 1 83/ 184, 1963, pp. 299-324. 

1 1 7. J. Heyman, "Limit design of framed structures," Engi· 
neering. 1 87, no. 485 1 ,  February 1959, p. 275. 

[ [ 8. "Symposium on plastic theory of structures." Brit. Weld­
ing J .. 3, no. 8, August 1956, pp. 3 3 1 -378. . 

[ [ 9. A. L. L. Baker. "A general analysis of elasta-plastic 
three-dimensional frames," Publ. Internat. Assoc. Bridge Struet. 

Engng .. 20, 1960, pp. 1 - [ 8; AMR, [ 5, [962, Rev. 588 1 .  
[ 20. A .  L .  L .  Baker, "Ultimate load theory for concrete frame 

ana[ysis." Tranraetions Amer. Soc. Civil Eng's . . 27, part II, [962. 
[ 2 1 .  "Ultimate load design of concrete structures," Report 

of Research Committee, Proc. Instn Civil Engrs., 2 1 ,  February 
1962, pp. 399-442. 

122. J. Heyman, "On absolute minimum weight design of 
framed structures," Qua,t. J. Mech. Appl. Math . . 12, 3, August 
1959, pp. 3 14-324; AMR, 13,  1 960, Rev. 3997. 

1 23. G. J. Megarefs and P. G. Hodge, "Method for plastic 
design of frames," Proc. AIM'. Soc. CiYII Engrs .• 89, ST I (J. 
Struet. Div.), February 1 963, pp. 197-2 1 1 .  . 

1 24. R. K. Livesley, "Optimum design of structural frames 
for alternative systems of loading," Civil Engng. (London). 54. 
no. 636, June 1959, pp. 737, 739-740. 

1 25. Z. P. Baiant, "Die 8erechnung des Kriechens und 
Schwindens nicht homogener 8etonkonstruktionen," Publ. 
Prelim. 7th Congress Internal. Assoc. Bridge Struct. Engng. in 
Rio de Janeiro. 1 964, p. 887. 

126. Z. P. Balant, Creep 0/ Concrete in Structural Analysis 
(in Czech), Prague, State pub!, house techn. lit. (in p�ess 1965). 

1 27. Z. P. Balant, "Time interaction of structures and sub­
soil" (in Czec"). Stavebntcky casopis. 1 2, 9, 1964, pp. 542-558. 

128. N. Kh. Arutyunyan, S_ Questions o/ C,eep Theory (in 
Russian), Moscow, Gostechteorizdat, 1952. 

129. F. Bleich, "Buckling strength of metal structures," Mc­
Graw-Hili, New York, 1952; AMR, 5. 1952, Rev. [037. 

1 30. V. Fift, Stabilily 0/ Pr"eeast Siructures (in Czech), 
Prague, State Pub!. House Techn. Lit., 1963. 

1 3 1 .  V. Kolouiek, Ca/cu/ tks Efforts Dynamiques dans les Os­
satures Rigides. Paris, Dunod, 1959. 


