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The possibility of replacing semiempirical constitutive laws with computationally intensive multiscale and multiphysics
simulations of complex material behavior on the mesoscale has led to exaggerated expectations. This brief paper shows
that this has been the case for the simulation of softening material damage and fracture in quasi-brittle structures. It is
argued that the problem of determining the material lengths on the mesoscale and trasmitting them to the macroscale
would have to be mastered before realistic predictions of structural damage and failure could be expected.
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The multiscale approach was pioneered by Tadetor 1. Interactionsamong orientationsof microdamage
al. (1996) for atomistic-based quasi-continuum analysis processes (e.g., orientations of tensile or splitting mi-
of dislocations and hardening plasticity of polycrystalline  crocracks, and frictional microslips).
metals. In that case, the structural failure is due to neck- , . ) )
ing, which is caused by nonlinear geometric effects of fi-2 Interactionsat distance(e.g., among different grains
nite strain, or to sharp fracture, which is modeled sepa- or f|pers, or among d|ff<_arent mlcrocracks and mi-
rately [see also Ghonieet al. (2003)]. There can be no croslips). These interactions are of two kinds:
dispute that the multiscale approach is realistic, deliver-

: : Jee : a. Those affecting thaverage stress-strain rela-
ing to the continuum macroscale essential information on

tion
the physical behavior on the subscale.
However, applying the multiscale approach to failure b. Thosegoverning localizatiorand the material
due to an interacting crack system, or to softening dam- characteristic lengthy, in particular

age such as distributed cracking, is an entirely different _ _
matter. To clarify it, let us discuss a few typical multi- Type 1 interactions are captured not only by the mul-
scale approaches representative of a flood of recent pligeale model but also by the microplane model, although

lications. for the latter they are lumped into one continuum point.
Type 2(b) interactions are captured by neither, and be-
1. TYPES OF SUBSCALE INTERACTIONS IN cause 2(b) affects 2(a), type 2(a) interactions are hardly
DAMAGE OR FRACTURE captured by the multiscale model any better than by the

microplane model.
The multiscale models are intended to capture two typesThus, it appears that the current multiscale (and
of interactions on the microscale: multiscale-multiphysics) approaches only facilitate the

f The present paper is a republication of an invited article that originally appeared in the newsletter, Mechanics of the American Academy of
Mechanics (AAM),36(5-6):5—-12, 2007. The republication was authorized by AAM.
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computational handling of strong mesh refinement. Thgy TYPES OF MULTISCALE MODELS AND

fail to capture the physics of localizing distributed soften- \(ATERIAL CHARACTERISTIC LENGTH

ing damage, such as the cracking and frictional slip in the

mesostructure of concrete or the propagation of a soften- . i . .

ing kink band in fiber composites. These approaches offer YP€ 1.A discretized subscale material element is em-

real advantages over simpler models such as micropl@gded into a point of the macroscale continuum (e.g., an

models only if the material is hardening, but not if it exintégration point of a finite element) (Fig. 1).

hibits softening damage which can localize into a crack Type 2.A finite region of the macrocontinuum coarse

band or shear band and must be described in terms &f@sh is overlapped by a fine mesh or discrete mesostruc-

material characteristic lengtthy. An archetypical qua- ture model representing the material on the subscale, or

sibrittle material is concrete. Others include rock, s@aesoscale (Fig. 2).

ice, consolidated snow, paper, carton and, most impor-Type 3.A finite region of the macrocontinuum coarse

tantly, ‘high-tech’ materials such polymer-fiber composnesh is replaced with a refined discrete model of the

ites, tough or toughened ceramics and rigid foams, as weksostructure (Fig. 2).

as many bio-materials such as bone, cartilage, dentineType 4.The interactions in a subscale material element

and sea shells. All the brittle materials and many duamong inelastic phenomena of all possible orientations

tile materials become quasibrittle on a sufficiently smadke lumped into one point of the macrocontinuum (Fig. 1).

scale, for instance metallic thin films and nano-comp®his leads to a microplane model, representing a semi-

sites. multiscale model in which the interactions at distance are
Let us now clarify how the requirement fgshys- discarded.

ical determination ofl, defeats the usefulness of the Generally, only types 1 and 2 have been considered

multiscale-multiphysics concept. as multiscale methods. However, types 3 and 4 are also

Multiscale Methods — intended to capture interactions:

RVE, 1. Among orientations ...
same as microplane model
2. At distance:
a) for o-¢ relation
b) for nonlocality, need

C characteristic length /,
but this is missed !
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FIG. 1: Top: RCE embedded in a point of macrocontinuum, with interactions among orientations (top right) and
at distance (lower right)Bottom: Material element larger than RVE, with localization band. Bottom left: Isolated;
Bottom right: Interaction with the rest of structure, modeled by springs of tangential stiffness
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FIG. 2: Region of structure where a fine mesh supposed to represent the mesostructure overlays a coarse mesh that
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Use "Bridging (or Sequential) Multiscale Methods"?

» afine mesh overlaps a region of P44
coarse mesh
» simulates additive fine-scale deformation
» discretizes a strain-softening continuum
» S0, a localization limiter must be postulated,
both for macro- and meso-continuum — 9/;s5¢4 !
< empirical choice of material characteristic lengths, and

< type of localization limiter (nonlocal, second-gradient,
micropolar, Helmholtz eq., ...)

These methods merely move the continuum localization
problem one scale down.
— So why to bother with multiscale approach?

discretizes the macrocontinuum

multiscale models and have some significant advantageime element (RVE), or larger] with a randomly gener-
over types 1 and 2 when the material exhibits softeniated mesostructure (consisting, in the case of concrete, of
damage. aggregates and the matrix). The corresponding average
For types 1 and 2, one faces various kinds of difficustrains of the RVE, which can undergo strain softening,
ties with the regularization of the continuum boundam@re calculated by a mesoscale program and then upscaled
value problems: [i.e., delivered to either an integration point of a finite el-

1.

. Replacing subscale micro- or mesostructure with

_ N ement of the macrocontinuum (type 1) or transmitted to
Inappropriate boundary conditions of the subscai@ overlapping region of a coarse macrocontinuum mesh
material element that undergoes softening (type 2).

Although the macro stress-strain relation may get im-

- lgnoring energy release from the whole StrU(y[u[)(?oved by dipping into the subscale, it is stilllacal

into the front of fracture or strain-localization bandstrain—softening stress-strain relation. Consequently, the

g}ia\croscale tangential stiffness matrix is not positive def-
Inite, causing the wave speed to be imaginary, the bound-
ary value problem to be ill-posed, and the equilibrium on
Physically unjustified choice of localization limitef€ continuum level to be unstable. Thus, the finite ele-
ment solutions lack objectivity with respect to the mesh
choice, exhibiting spurious mesh sensitivity and conver-

empirically assumed continuum model

for the subscale material element

. Lack of any localization limiter to be delivered to thence to material failure that is localized to a zero vol-

macroscale continuum ume (domain of measure zero) and thus occurs with zero
energy dissipation. This blatantly incorrect feature pre-

Normally, the strain increment at a continuum poirdludes simulating the energetic size effectBat, 1976,

(e.g., an integration point of a finite element) is applietB86, 2002, 2004; Baant and Planas, 1998), which is
on the mesoscale to a material element [a representative salient aspect of all quasibrittle or softening failures
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(in fact, the size effect in concrete, laminates, sandwiembedded subscale element and the macroscopic finite el-
shells, or other quasibrittle materials seems not to have gatent size must be uniquely related.
been successfully modeled by any multiscale approach). The characteristic lengtlhy governing localization es-
Therefore, some sort of a localization limiter, assocentially represents the minimum spacing of parallel co-
ated with a material characteristic lengthor material hesive cracks, or the localization band width, and gov-
fracture energyG; (per unit area, not per unit volume)erns the type 1 size effect (Bant, 2004). It is differ-
is crucial in order to regularize the boundary value probnt from (though related to) Irwin’s characteristic length
lem (i.e., make it well posed). Realistic estimationiof | = EGp/f.?, which controls the length of the fracture
is inevitable to model strain softening objectively and r@process zone and governs the type 2 size effectdBia
alistically, and to capture the size effect. 2004) (£ = Young’s modulus,f; = tensile strength). Un-
The simulated material element may be taken as thebiguous identification of, calls for computational
RVE, the size of which, in the case of strain softeningimulation and matching of scaled size effect tests on the
should be taken equal to only about two to three dominagiten brittle heterogeneous material. If the small- and
grain or inhomogeneity sizes (Bant and Pang, 2006,large-size asymptotic power laws are experimentally or
2007) (Fig. 1). Because no localization can occur withgomputationally identified, then their intersection gives
such a small material element, the desired benefit of phgseertain characteristic sizg and multiplying it by a
ical support for the chosen type of regularization is foproper geometry factor yields. Arbitrary imposition
feited. of some kind of localization limiter with characteristic
If the simulated material element is taken to be largength i, into a subscale finite element mesh helps, of
than one RVE, say, a cube having the side of 10 graitsurse, to stabilize strain softening but certainly does
(and thus a volume 1000 grains), then a localized damagake the model realistic.
band may develop within such an element (Fig. 1). But Some so-called multiscale models do not try to simu-
regardless of whether the boundary conditions of this elate the actual heterogeneous microstructure on the sub-
ment are periodic or are specified as displacement or fogeale (mesoscale). Rather, they simply introduce in the
increments, the width and orientation of the localizaticsubscale material element a refined mesh and adopt arbi-
band will not be realistic because the band formation dearily some localization limiter (e.g., the micropolar con-
pends not only on the stiffness and energy dissipationtisfuum) regardless of its physical justification. There is
the localization band (of unknown size, orientation antbthing physicallymultiscale about such computational
location), but also on the rate ehergy releas@ot just exercises. They merely serve as a convenient approach to
from this element but from theshole structure. The en- mesh refinement.
ergy release, which is what matters, is conveyed to thewithout a good subscale (micro- or mesostructure)
band in this larger element through the tangential stiffneg®del, the choice of a proper type of localization limiter

matrix of the surrounding structure acting on the boung- another major problem. The existing possible choices
ary nodes of the material element (Fig. 2). This matri¥clude the following:

must correspond to proper loading-unloading combina-
tions everywhere in the surrounding structure. Unfortu-1. A strongly nonlocal formulation (in the form or an
nately, the existing multiscale models do not meet this integral over a finite neighborhood, or a coupled
requirement. Helmholtz equation)

As a related problem, the stresses and strains in an
oversized material volume element that contains a local2., A weakly nonlocal formulation (in the form of the
ized damage band can be highly nonuniform. This ren- second strain gradient, or the first strain gradient,
ders their averages unrealistic for transfer to the contin- as in Cosserat’s, Mindlin's, or Eringen’s micropolar
uum macroscale. media)

Another related problem stems from the requirement
that the sum of the volumes of the RVEs associated with Many more choices exist for orthotropic composites.
all the integration points of one macroscale finite elemehhese arbitrary choices of regularization of the boundary
must be equal to the volume of that element. This requirezlue problem do not yield identical results. For example,
ment has typically been ignored. But then the strain efte micropolar model, adopted for the mesoscale in some
ergy release delivered to the macroscale integration paietent studies, is known to be a poor localization limiter;
as the RVE unloads is incorrect. Hence, the size of thean control only localization into pure shear bands, but
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not into tensile cracking bands, compression shear baristicle system appears to be the only viable, fully multi-
or compression splitting bands. scale approach at present.

Unfortunately, the requirement for some kind of non- ggme recent variants, called “multiscale” (e.g., the
local model, with a localization limiter involving a mate+pridging multiscale method”) are not really aimed at
rial c_haracteristic length, defe_:ats the main purpose (_)f @%ﬁurmg the physics on the mesoscale but merely serve
multiscale approach—modeling based on the physicsigheduce the computational burden of strong mesh refine-
microstructure. Thus, in the case of softening damaggent. They introduce hierarchical, or sequential, overlap-
the multiscale approach, while more complex, is actua%yng meshes of different refinements (Fig. 2). A region of
no more realist_ic than the simpler rr_1icroplane approa.q{q)arse mesh, in which damage is expected, is overlapped
which, too, delivers no characteristic length of materigl, 5 fine mesh whose displacement field is considered to
and requires this length to be introduced separately. pe additive to the macrocontinuum displacement and is

intended to capture softening damage with its localiza-

3. REPLACING A FINITE REGION WITH tion (Kadowaki and Liu, 2004; Liet al, 2006; Fishet
HETEROGENEOUS MESO-STRUCTURE al., 1999; Fish and Yu, 2001; Oskay and Fish, 2007).
SIMULATION

However, in some approaches (e.g., the “bridging mul-

An approach that appears to realistically capture tHgcale method”), the discretization by a fine mesh does
mesoscale behavior is the confinement-shear latti®@! reflectthe actual mesostructure of the material. Rather
particle (CSL) model of the mesostructure (Cusatis afiONSIsts again of a continuum—a strain-softening con-
Cedolin, 2007; Cusatist al, 2006, 2003) (Fig. 3). Largetinuum. This makes it necessary to introduce a localiza-
three-dimensional structures, of course, cannot be sirfi@" limiter in the fine mesh on the subscale. This local-
lated in this manner. But even for large structures, tHetion limiter must again be some type of a nonlocal or
lattice particle model can be used within a small regigfadient model, which must possess a material character-
of the structure where severe distributed cracking, slf§tiC length,lo. Thus, again, one cannot avoid a purely
ping, fracture, or shear banding is expected, while the régniPirical choice of botfi, and the type of localization
ular finite elements are used for the remaining nonsoftdifiter.

ing region. For strain-softening distributed damage, this Consequently, despite using the term “multiscale,”
combination of a continuum with a mesostructural latticeaethods such as the bridging multiscale method or
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FIG. 3: Objectivity criteria for multiscale models, whose check cannot be ignored
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sequential multiscale method are not really compledad, for vanishing element size, will exhibit a physically
multiscale-multiphysics approaches as far as damage angossible convergence.
structural failure is concerned. They merely supplant to
the damage regularizgtiop problem on the macroscale BNSpECIAL CASE OF INERTIA DOMINANCE AT
other damage regularization problem on the subscalle. HIGH-RATE IMPULSIVE LOADS
Some approaches (e.g., the “multiscale asymptotic ex-
pansion method”) uses a homogenization method for timethe case of dynamics of impact and groundshock, the
microstructure on the subscale. The resulting stress-straiass inertia, coupled with the viscous strain rate effect or
relation, however, is good only for hardening behavior bether damping, may delay any pronounced damage local-
cause the hypotheses of homogenization proceduresigation beyond the duration of impact event. In that case,
clude damage localization and imply absencé,ofOs- the aforementioned regularization of softening damage
kay and Fish, 2007). can be ignored, though only as an approximation (which
Thus, it appears that, thus far, there is no way to dscomes progressively worse with the passage of time be-
chew, on the subscale, a discrete micro- (or meso-) straause localization begins to develop already during the
ture model covering the entire region of potential softeimpact event) (Baantet al, 2000). For this reason, it is
ing damage localization (Fig. 2). Only such a lower-scadgpropriate that the finite elements have roughly the size
discrete model can capture both the interactions amarfghe material characteristic length (or the width of the
orientations and the interactions at distance [includithgcalization band). Such an approach corresponds to what
the material characteristic length implied by the dominaistcalled the crack band model.
spacing of material particles (e.g., the grains of the mate-Even for high-rate loading problems, it is usually nec-
rial)]. essary to relate the tensorial constitutive equation based
on material properties obtained in standard material tests,
uniaxial as well as multiaxial, which are necessarily
static. This relationship cannot be realistic if the mate-
rial characteristic length is not properly captured.
When damage is modeled by dispersed discrete cohesive
or singular cracks embedded on the subscale, there i%n‘bBJECTIVITY CHECKS FOR MULTISCALE
crack band of a finite width, and thus one might think that \,opg[ s
the problem of characteristic material length cannot arise.
But it can. In the case of parallel line cracks, there muEhe lack of objectivity is best detected by simulating
exist a certain minimum possible crack spacingZ@# mesh refinement or, equivalently, the size effect in ge-
and Jiasek, 2002). Although a softening stress-strain r@metrically similar structures (Fig. 3). The simplest is
lation (with a fixed postpeak) dissipates finite energy ptr simulate a homogeneously stressed rectangular speci-
unit volume and thus gives a zero energy dissipation faxen (Baant, 1976). If mesh refinement leads to differ-
a band of elements of vanishing size, a system of pant postpeak responses, the multiscale model is not suit-
allel cohesive cracks whose spacing tends to zero dis#ie for damage and failure analysis (Fig. 3, top). Neither
pates infinite energy. Thus, the minimum spacing mustiseit if, for a cracked two-dimensional rectangular panel
a material property representing a material characterigfidg. 3, middle and bottom), the curves of load versus
length (B&ant, 1985), which is physically determined bgrack band length, or load versus deflection, change sig-
inhomogeneity sizes or by Irwin’s length for mesoscafgficantly with mesh refinement, or with the scaling of
cracks. Otherwise, the computational results may be yranel size at constant mesh size ZBat, 1985, 1986).
objective when the dispersed line cracks remain disperddwese simple basic checks should not be ignored.
(i.e, when their openings do not localize into the opening

of one single crack). Such a nonlocalized crack SystemM ANALOGOUS PROBLEM IN SEISMIC

will occur, e.g., when parallel cracks grow into a stabiliz- STRUCTURAL TESTS WITH REAL-TIME
ing compression zone (Bant and Wahab, 1979) or when SIMULATION OF DAMAGING ZONE
they are stabilized by transverse reinforcement; see an ex-

ample in Baant (1985). If no minimum spacing, based oim recent experimental studies of seismic resistance of
a physically established characteristic length, is imposattuctures, it has become fashionable to use computer-
the results will depend on the element size on the subsadligen servocontrol to simulate a cracking zone of a re-

4. DAMAGE MODELED AS DISPERSED
COHESIVE OR SINGULAR LINE CRACKS
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inforced concrete structure. One technique is to meBazant, Z. P.,Adley, M. D., Carol, I., Jiasek, M., Akers, S. A.,

sure a small displacement increment of the surrounding Rohani, B., Cargile, J. D., and Caner, F. C., Large-strain
h t ding to a previously cali- generalization of microplane model for concrete and ap-
structure, then compute according P y plication, J. Eng. Mech. ASCE/ol. 126(9), pp. 971-980,

brated model of the cracking zone the corresponding dis- 2000.

placement increments, and then impart these incremergszant, Z. P., Scaling of Structural Strengit2nd updated ed.,

in real time, by fast computer-controlled hydraulic jacks, L;gggniFHerwetS Pelnz_on SFc;‘ienc_e,HNewSYork: EF!S%\llier
onto the rest of the structure. Unfortunately, seismic load- 57_004;: Zorgglc ransiation, Fans. Hermsclence Fubl
ing is not ffSlSt enough to shield thiS. technique from all thgaiant, Z. P.and Jiasek, M., Nonlocal integral formulations
aforementioned problems. The simulated cracking zone of plasticity and damage: Survey of progre&SCE J. Eng.
behaves just like the embedded subscale material elementMech, vol. 128(11), pp. 1119-1149, 2002.

already discussed. As long as this zone is hardening, th&&ant, Z. P., Scaling theory for quasibrittle structural failure,
is, of course, no problem. But as soon as softening be- 56%% Nat. Acad. Si.vol. 10(37), pp. 14000-14007,
gins, \.NhICh is what I.S (.)f m".im |ntere§t, the Iocallzat|on oéaiant, Z.P.and Pang, S.-D., Mechanics based statistics of
cracking damage within this zone will differ from reality. ~ failure risk of quasibrittle structures and size effect on
The reality is not the imposed displacement increments safety factors,Proc. of Nat. Acad. Sci.vol. 10325),
but a two-way interaction (with energy release and proper PP 9434-9439, 2006.

tangent stiffness constants) of the damage zone with t@#ant, Z. P.and Pang, S.-D., Activation energy based extreme

I . value statistics and size effect in brittle and quasibrittle
rest of the structure. To expect a real seismic behavior of fracture,J. Mech. Phys. Solidsvol. 55, pp. 91-134, 2007.

concrete structures to be reproduced by such a techniq@atis, G.,Bazant, z. P., and Cedolin, L., Confinement-shear
is wishful thinking. lattice model for concrete damage in tension and com-
pression: |I. theoryJ. Eng. Mech. ASCEvol. 12912),
pp. 14391448, 2003.

Cusatis, G.,Bazant, Z. P., and Cedolin, L., Confinement-shear

. . lattice CSL model for fracture propagation in concrete,
As long as the simulation of subscale mesostructure does comput. Methods Appl. Mech. Engol. 195, pp. 7154—

not yield the material characteristic length and the type 7171, 2006.

of localization limiter, the multiscale modeling is not aCusatis, G.and Cedolin, L., Two-scale study of concrete frac-
valid approach to softening damage. At present, the only {Uring behaviorEng. Fract. Mech.vol. 74, pp. 3-17, 2007.
valid approach is a discrete (lattice-particle) simulation dfiSh. J-]; Yu, Q. a”qt Shekt, K.,ICgmplatationaltﬂama?e Tlfc“a“'
the mesostructure of the entire structural region in which gﬁizgrtig?]%ﬁf)? ?\]umnﬁeer.“,?,éth%fﬁ Eorrgln;? 42%%_'(;&570_[“09'
softening damage can occur. 1679, 1999.

Fish, J. and Yu, Q., Multiscale damage modeling for compos-
ite materials: theory and computational framewdrk, J.

8. CONCLUSION
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