1 Books

1.1 Textbooks and Monographs

1.2 Published Lecture Notes

1.3 Books Edited, with Chapters Contributed

2 State-of-Art Articles and Research Review Articles

3 Contributed Wikipedia Articles

4 Research Articles in Refereed Journals and Book Chapters

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1985

1987

1988

Computers and Structures 29 (3) 503–507.

1989

1990

1991

1992

289A. ≡ 310 ≡ Part 7 of that series.

1993

1994

1995

scopic fracture characteristics of random particle sys-

1996

1997

1998

1999

1999

2000

2001

g) Chinese translation of item 405 in Advances in Mechanics (Beijing) 32 (4), 613–624 (2002).

2002

2003

2004

2006

2007

2008

2009

Simulation of fracture of braided composites via repetitive

2012

2013

2015

2016

1262; doi: 10.14359/51689149. 48 (1), 18-23.

582. Frosch, R.J., Yu, Qiang, Cusatis, G., and Bažant Z.P. (2017). “A Unified Approach to Shear Design.” ACI Concrete International 114 (9, Sept.), 47–52.

2018

5 Contributions to Wikipedia

1) Creep and shrinkage of concrete;
2) Size effect on structural strength;
3) Objective stress rates in finite strain inelasticity.

6 Selected Other Articles – Public Policy

7 Published Biographies and Volumes Dedicated to Bažant

A1’. Missing: Article about Bačvát’s Dr. h.c. from CTU Prague, 1991, in ASCE News.

A2’. Missing: Article about Bažant’s Dr.h.c., 1991, from Politecnico di Milano, in Italian Newspaper.

A3’. Editorial, “Prof. Bažant Visiting CTU (Czech Technical University) in Prague” (Professor Zdeněk P. Bažant opět na ČVUT v Praze), Pražská Technika 2003 (No. 2), 10–11.

A10. Ta-Peng Chang and Jenn-Chuan Chen (2007). Proc., Asian Special Workshop on Concrete Technology in Honor of the 70th Birthday of Prof. Zdeněk P. Bažant,” National Taiwan University of Science and Technology, Taipei, Nov. 2

A12’. Article about Bažant’s election to NAS in Northwestern University Observer, 2002.

A13. Sarah Ostman, “Concrete Results” (life story and achievements of Bažant), McCormick Magazine, Fall 2012.

A15. V. Krůtěk (2017). “Prof. Ing. Zdeněk P. Bažant, Ph.D., Dr. h.c., oslavil 80. narozeniny” (in Czech) (Prof. Bažant celebrated his 80-th birthday), Beton (Prague), No. 6 (Dec.), 85–87.

8 Research Articles in Conference Proceedings

......many.

held in Hanover, NH, Feb. 1991), ed. by D.S. Sodhi, ASCE, New York, 595–604.

P203. Bažant, Z.P., and Yu, Q. (2007). “Consequences of ignoring or mis-judging the size effect in concrete design codes and practice.” Proc., 3rd Structural Engineers World Congress, Bangalore, India, Nov. (a slightly expanded version was published, with authorization, as article 473).

“Recent progress in energetic probabilistic scaling laws for quasi-brittle fracture.” Proc., IUTAM Symp. on Scaling in Solid Mechanics (held at the University of Cardiff, UK, June), Springer, pp. 135–143.

“How to enforce non-negative energy dissipation in microplane and other constitutive models of softening damage, plasticity and friction.” Computational Modeling of Concrete structures (EURO-C Conf., Schladming/Rohrmoos, Austria). N. Bićanić et al., eds., Taylor & Francis, London, pp. 87–91.

“Statistical aspects of quasibrittle size effect and lifetime, with consequences for safety and durability of large structures.” in Fracture Mechanics of Concrete and Concrete Structures—Recent Advances in Fracture Mechanics of Concrete (Proc., FraMCos-7, 7th Int. Conf. held in Jeju, Korea, plenary lecture), B.-H. Oh, ed., publ. by Korea Concrete Institute, Seoul, pp. 1–8.

“Nonlocal boundary layer (NBL) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials.” ibid., pp. 135–143.

“Misconception on variability of fracture energy, its uniaxial definition by work of fracture, and its presumed dependence on crack length and specimen size.” ibid., pp. 29–37.

“Excessive multi-decade deflections of prestressed concrete bridges: How to avoid them and how to exploit their monitoring to improve creep prediction model,” ibid., pp. 827–834.

“Stochastic lattice simulations of flexural failure in concrete beams.” Proc., 8th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures (FractMCos-8, held in Toledo), J.G.M. van Mier et al., eds., publ. by CIMNE, Barcelona, pp. 1–12.

“Interaction of concrete creep, shrinkage and swelling with water, hydration and damage: Nanomechano-chemo.” Proc., CONCREEP-10 (10th Int. Conf. on Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures, held in Vienna, Austria, Sept.), publ. by ASCE, Washington, D.C., pp. 1–10 (plenary lecture).

Discussions and Rebuttals in Journals

Over 70 items