1 Books

1.1 Textbooks and Monographs

1.2 Lecture Notes Published as Books

1.3 Books Edited, with Chapters Contributed

2 State-of-Art Articles and Research Review Articles

3 Contributed Wikipedia Articles

4 Research Articles in Refereed Journals and Book Chapters

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1970

1971

1972

ey between micropolar continuum and grid frameworks
under initial stress.” International Journal of Solids and
Structures, 8, 327–346.

effects using age-adjusted effective modulus method.”
American Concrete Institute Journal, 69, 212–217 (703
 citations).

action.” Revue Roumaine Sci. Techn.-Mécanique Ap-
pliquée, 17, 1341–1361.

acting continua with surfaces and creep analysis of con-
crete structures.” Nuclear Engineering and Design, 20,
477–505.

long-range stress history from strain history in concrete.”
Materials and Structures (RILEM), 5, 135–141.

nation of stress response to a given strain history in con-
crete.” CEB (European Committee on Concrete) Bulletin
No. 80.

wave extensional buckling of large regular frames.” J. Struct.

1973

series creep function for aging concrete.” Proc. ASCE, J.

diffusion theory for the drying creep effect in Portland
cement paste and concrete” J. Am. Ceramic Soc., 56,

59. Bažant, Z.P., Hemann, J. H., Koller, H., and Na-
for creep tests at variable temperature and humidity.”
Materials and Structures, 6, 277–281.

ison of approximate linear methods for concrete creep.”
1851–1874.

umum solutions for long-wave extensional buckling of reg-

deflection spatial buckling of thin-walled beams and
99, EM6, 1259–1281.

1974

creep law of aging concrete based on Maxwell chain.” Ma-
terials and Structures (RILEM), 7 (No. 37), 45–60.

functions near termination or intersection of singularity
lines: A general numerical method.” Int. J. of Engrg.
Science, 12, 221–243.

Am. Soc. Civil Engrs., 100, EM3, 575–597 (also as ASCE

tation of age-dependent relaxation spectra.” Cement and
Concrete Research, 4, 567–579.

ity of elastic stresses and of harmonic functions at conical
notches or inclusions.” Int. J. of Solids and Structures,
10, 957–964.

tation of Kelvin-chain retardation spectra of aging con-
crete.” Cement and Concrete Research, 4, 797–806.

method for curved box girders at initial stress.” J. Struct.

shrinkage law of concrete at variable humidity.” J. Engrg.

1975

(1975). “Micromechanics model for creep of anisotropic
101, 57–78.

choice of creep function for standard recommendations
practical analysis of structures.” Cement and Concrete

73. Achenbach, J. D., and Bažant, Z.P. (1975) “Elas-
todynamic near-tip stress and displacement fields for
rapidly propagating cracks in orthotropic materials.”

“Creep and shrinkage in reactor containment shells.”
2131.

sand as an inelastic two-phase medium.” Jour. Engrg.

1976

power law for basic creep of concrete.” Materials and
Structures (RILEM, Paris), 9, 3–11.

Am. Soc. Civil Engrs., 102, EM2, 331–344; disc. 103,

1977

1978

1979

“Concrete reinforcing net: optimum slip-free limit design.” J. of the...

1980

1981

1982

1983

1984

Materials and Structures of concrete."

1985

1986

1987

1988

246. RILEM Committee TC-69 (1988). “Material models for structural creep analysis” (princ. author and

1989

1990

1991

hesive soils.” *Journal of Geotechnical Engineering* ASCE 117 (6), 891-912.

1992

289A. ≡ 310 ≡ Part 7 of that series.

1993

1994

1995

tion and refinement of Model B3 for concrete creep and shrinkage. 2. Updating and theoretical basis." Materials and Structures (RILEM, Paris) 28, 488–495.

1996

1997

1998

1999

2000

2001

g) Chinese translation of item 405 in *Advances in Mechanics* (Beijing) 32 (4), 613–624 (2002).

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2017

582. Frosch, R.J., Yu, Qiang, Cusatis, G., and Bažant Z.P. (2017). “A Unified Approach to Shear Design.” *ACI Concrete International* 114 (9, Sept.), 47–52.

2018

2019

In Press

5 Patents

PT1. Patent No. 97175, Czechoslovakia, June 5, 1959 Safety ski binding (in Czech), by Zdeněk P. Bažant, (30,000 pairs, branded ‘ZPB Binding’, were produced (and sold for 48 Kčs each) by Lověna Coop. in Prague; by 1964, the ZPB binding represented roughly one third of the safety bindings in Czechoslovakia; later it was superseded by designs capable of shock absorption).

6 Selected Other Articles – Public Policy

7 Published Biographies and Volumes Dedicated to Bažant

A2’. Missing: Article about Bažant’s Dr.h.c., 1991, from Politecnico di Milano, in Italian Newspaper.

A3’. Editorial, “Prof. Bažant Visiting CTU (Czech Technical University) in Prague” (Professor Zdeněk P. Bažant opět na ČVUT v Praze), Pražská Technika 2003 (No. 2), 10–11.

A10. Ta-Peng Chang and Jenn-Chuan Chern (2007). Proc., Asian Special Workshop on Concrete Technology in Honor of the 70th Birthday of Prof. Zdeněk P. Bažant,” National Taiwan University of Science and Technology, Taipei, Nov. 2

A12’. Article about Bažant’s election to NAS in Northwestern University Observer, 2002.

A13. Sarah Ostman, “Concrete Results” (life story and achievements of Bažant), McCormick Magazine, Fall 2012.

A15. V. Kříštek (2017). “Prof. Ing. Zdeněk P. Bažant, Ph.D., Dr. h.c., oslavil 80. narozeniny” (in Czech) (Prof. Bažant celebrated his 80-th birthday), Beton (Prague), No. 6 (Dec.), 85–87.

8 Research Articles in Conference Proceedings

ternational Conference held in Tucson, AZ, Jan.), ed. by C.S. Desai et al., 377–385.

P203. Bažant, Z.P., and Yu, Q. (2007). “Consequences of ignoring or mis-judging the size effect in concrete design codes and practice.” Proc., 3rd Structural Engineers World Congress, Bangalore, India, Nov. (a slightly expanded version was published, with authorization, as article 473).

energy, its uniaxial definition by work of fracture, and its presumed dependence on crack length and specimen size,” *ibid.*, pp. 29–37.

Discussions and Rebuttals in Journals

Over 70 items