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ABSTRACT 

 

Experimental Time Domain Reflectometry (TDR) data obtained from the field are 

compared with numerical simulations using a finite-difference solution of the 

transmission line equations. The model simulates transmission of a voltage pulse along a 

lossy coaxial cable where deformities on the cable, such as crimps and shears, are 

represented by capacitive discontinuities in the transmission line. Three reflection 

phenomena were studied in the field. The first was the increase in width and decrease in 

amplitude of a reflection as deformations within close proximity to each other but located 

at large distances from the source. These three field experiments were simulated with the 

model and comparisons were made to assess the model's ability to predict known 

behavior.  

Results from the field data show a linear increase in reflection width with 

increasing propagation distance and an exponential decrease in reflection amplitude with 

increasing distance. A study of multiple discontinuities shows that upstream reflection 

amplitudes in excess of 100mρ will begin to influence a downstream discontinuity by 

reducing the downstream reflection amplitude. Studies of two or three shear 

discontinuities with a 1.5m separation distance resulted in no measurable changes in 

reflection caused by addition of the upstream shear discontinuities.  

After the field data were collected, the model was calibrated with the measured 

reflection data for single discontinuities in a Comm/Scope P-3 75-875CA coaxial cable. 

Resistance was found by matching increasing crimp width with distance between 1 and 

30m and 1 and 50m. A 12mm wide 120pF capacitive discontinuity best related modeled 

and measured crimps 12mm wide and 7.2mm deep at 51m and a 6mm wide 150pF 

capacitive discontinuity best related a 7.5mm shear displacement at 45m. With these 

calibrations, the model was able to predict known amplitudes to within 4mp of the 

measured values for single discontinuities up to distances of 94m. Simulations of the 

influence of an upstream crimp reflection resulted was a 72mm crimp. However, the 

influence of an upstream shear on a downstream crimp was detected by the code that 

showed a slight decrease in amplitude, yet much smaller than the measured data. These 
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results suggest the model is less sensitive to multiple discontinuities than observed in the 

field. 
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1. INTRODUCTION 

 

This thesis summarizes the research undertaken at Northwestern University to 

compare measured time domain reflectometry (TDR) voltage reflections with numerical 

simulations using a finite difference model of a deformed transmission line. The purpose 

of this work is to numerically simulate voltage reflections from multiple discontinuities in 

a lossy coaxial cable to determine the effects of multiple discontinuities at variable 

distances on the reflected signature. This project was performed in three stages. First, 

TDR reflection data were collected along a 530m long coaxial cable. Second, appropriate 

finite difference model was selected to simulate the experimental TDR reflections. Third, 

the model was calibrated with field data from single discontinuities in order to test its 

ability to simulate reflective interaction of multiple discontinuities. 

If field reflections can be accurately replicated with a numerical model, it is 

possible to predict the amount of deformation the cable has undergone by interpreting the 

amplitude and width of the reflection the deformity produced. Previous work by Kroll 

(1996) simulated voltage reflections in a lossy finite-difference model by modifying 

resistance as a function of dominant frequency. However, those frequency dependent loss 

calculations were not stable after reflection. Thus, only propagation to and slightly after 

reflection was studied. Since instruments measure the signal after a complete round trip, 

source-reflection-source, this approach was insufficient. This new study accounts for 

energy losses in the cable through a Fourier Transform approach (Kath, 1998), where 

frequency dependent losses are applied in the frequency domain and then transformed 

back to the physical or time domain. Incorporation of resistance allows the reflection to 

change in width and amplitude with distance resulting in reflections with behavior similar 

to reflections measured in the field. 

This report is arranged into six chapters and a number of appendices. Chapter 2 

describes the background behind transmission line theory, the terminology used and the 

methods for measuring reflection signatures. Chapter 3 summarizes reflection signatures 

from field tests of long cables. Chapter 4 describes the numerical approach to modeling 

TDR reflections and its calibration to field data. Chapter 5 compares the modeled 

reflection signatures to the measured field signatures. Finally, Chapter 6 presents 
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conclusions and recommendations on the accuracy and behavior of the Fourier transform 

approach to modeling the propagation and reflection of TDR pulses. The appendices 

present the details of the work. Appendix A presents the source code in FORTRAN. 

Appendix B presents input data and results from an example run to allow a check for 

future users. 
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2. BACKGROUND 

 

Time Domain Reflectometry (TDR) has been employed to measure rock 

deformation since the early 1980’s and is now being extended to measure soil 

deformation (Dowding, Pierce 1994). Coaxial cables are grouted into a rock or soil mass, 

and localized movement along joints or shear bands will deform the cable, which changes 

TDR pulse reflection signatures. Increasing reflection amplitudes correspond to 

increasing cable deformation. 

Coaxial cables provide a one-dimensional propagation path for the voltage pulse 

or electromagnetic wave, which is governed by Maxwell’s equations of wave propagation 

through dielectric media. A coaxial cable is composed of an inner and outer conductor 

between which is placed a dielectric material, as shown in Figure 2-1a. As shown in 

Figure 2-1b, this structure is usually modeled by a succession of circuits of elemental 

length, ∆z. Each of these elements is composed of a given association of capacitance (C), 

inductance (L), conductance (G) and resistance (R) that can be defined as follows: 

 

Capacitance per unit length  (C): voltage difference created between the inner and 

outer conductors; 

Inductance per unit length (L): magnetic field induced in one conductor by the 

flowing current in the other; 

Conductance per unit length (G): dielectric conductivity; 

Resistance per unit length (R): energy absorption by the two-conductor system. 

 

From these properties, the characteristic impedance Z0 of the cable can be defined 

as: 

C
LZ =0                                                                       (2-1) 

The impedance for each elemental circuit also can be defined as the ratio of the 

voltage V to the current I: 

)(
)()(

zI
zVzZ =                                                                       (2-2) 
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Figure 2-1 
Section of a coaxial cable and equivalent lumped circuit 
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The reflection coefficient, ρ, is used as a means to measure reflection amplitudes 

of the TDR voltage pulses as shown in Figure 2-2. It is defined as the ratio of the 

reflected voltage, ∆V, to the incident voltage V0. 

0

)(
V
Vz ∆

=ρ                                                                      (2-3) 

The magnitude of reflection ratio is described as rhos (ρ). Where one millirho is 

equal to 0.1%. As propagation distance increases, reflection amplitude decreases and 

width increases due to lengthening of the rise time as shown in Figure 2-3. This smearing 

of the wave front is known as dispersion and results from energy losses from resistance in 

the coaxial cable. These losses are called “skin effects” (Taflove, 1996) and play an 

important role in describing the behavior of a propagating wave. 

Two differential equations can be employed to describe the variation of voltage 

and current over numerous space and time increments or cells in a simulated coaxial 

cable. Voltages and currents are function of both time and space (t and z). The first 

equation for one-dimensional wave propagation gives the space derivative of the current: 

(Miner, 1996) 

GV
t
VC

z
I

−
∂
∂

−=
∂
∂                                                                      (2-4) 

 

The second equation expresses the space derivative of the voltage as follows: 

(Miner, 1996) 

t
ILRI

z
V

∂
∂

−−=
∂
∂                                                                      (2-5) 

Equations (2-4) and (2-5) are the two fundamental equations that will be 

employed to calculate voltage and current along a coaxial cable. They are more 

commonly used in electrical engineering than the second order wave equations and will 

therefore be used in this simulation. Boundary conditions are built in explicitly and do 

not need to be enforced (Taflove 1996). 

 5



 

Figure 2-2 
Measurement of a crimp at 6m 
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Reflection shown in Figure 2-3b is produced when changes in the geometry of the 

cable, such as a reduction in diameter, create a change in its electrical properties. The 

pulse reflects off these discontinuities and returns to the source. Reflections can also be 

caused by changes in the dielectric material or by abrasions on the outer conductor. 

However, the focus of this investigation will be discontinuities caused by changes in the 

cable’s geometry. Field pulses are launched and recorded by a Tektronix 1502B TDR 

cable tester in this study. It launches multiple, one-volt signals with a 200 picosecond rise 

time along the cable and records the reflections that return to the source (Tektronix, 

1975). 

Figure 2-2 shows a typical reflection recorded by the cable tester. The 

discontinuity was caused by shearing the cable 6 meters from the upstream end nearest 

the pulser. The reflection amplitude is measured from the baseline to the trough of the 

reflection. Figure 2-2 shows a baseline of 50mρ and a trough of 22.6mρ producing a 

reflection amplitude of 27.4mρ. In order to reduce errors read from small changes near 

the endpoints of the reflection, the reflection width is arbitrarily measured at 10% of the 

total amplitude, that is 2.74mρ. Subtracting 2.74mρ from the baseline of 50mρ produces 

endpoints with amplitudes of 47.3mρ. Therefore, when moving from left to right, the 

width is measured from the start at 47.3mρ until the amplitude once again reaches 47.3 

mρ. As shown in Figure 2-2, the width of the crimp reflection a 6 meters is measured as 

82mm wide. 

All the field data that will be presented later on were imported, viewed and 

analyzed using Northwestern University TDR Signature Analysis (NUTSA) software 

(Huang et al, 1993). This program gives the coordinates of each data point on the screen 

and allows accurate determinations of the width (mm) and amplitude of the reflection 

(mρ). 
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Figure 2-3 
Comparison of the incident wave at 2m and 263m and its corresponding reflection signatures 
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FIELD TEST DATA 
 

A 530m long, 22.2mm diameter solid aluminum coaxial cable similar to that used 

to monitor rock displacement and subsidence over abandoned mines, was deformed by 

Pierce et al (1994) at varying distances to gather voltage reflection data. Crimps and 

shears were placed at increasing distances up to 527m and their voltage reflections were 

measured. 

As described by Pierce et al (1994), crimp deformations are typically placed at set 

intervals prior to installation of the cable to serve as distance markers. They are created 

by clamping the cable to a specified diameter with a pair of standard vice grips. In this 

study they are 12mm wide and reduce the cable diameter from 22.5 to 15mm. To 

generate crimps of larger width, the cable is clamped adjacent to the previous crimp. 

Widths of crimps will therefore be multiples of 12mm. 

Single shear deformations were created by the shear box shown in Figure 3-1a. 

This device produces single shear deformities, which would be produced in the field by 

dislocations along a single sliding rock joint or soil shear band. The shearing occurs over 

a 2mm width and axial displacements are caused by turning the screw on the left. Figure 

3-1b presents photographs of both a shear deformation and a crimp deformation. 

 

3.1. Single deformities 

Figure 3-2a,b,c shows reflections from the TDR pulser made by a 7.5mm shear 

displacement at 45m, 92m, and 265m respectively. Figure 3-2d,e,f shows the reflections 

for a single crimp a 6m, 94m, 263m respectively. The first deformation was placed at a 

distance of 265m from the pulser and its reflection was measured. Subsequent 

deformations were placed at decreasing distances from the pulser until the last and closest 

reflection was placed at 6m. With this sequence of events, no upstream deformations 

interfered with downstream reflections. Three observations can be made from Figure 3-2. 

First, the width of the reflection increases with distance. Second, the amplitude of the 

reflection decreases with distance. Both of these changes in the reflection result from the 

dispersion or lengthening of the signal front that results from energy losses as the signal  
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Figure 3-1: a. Photograph of shearing apparatus.  b. Photograph of deformed cable caused 
by a shear deformation (left) and a crimp deformation (right).  (After Pierce et al, 1994). 
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Figure 3-2 
Field shear and crimp reflections at increasing distances. 
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travels down the cable. Third, at comparable distance the thinner shears produce smaller 

amplitude reflections. 

Figure 3-3 shows that a 3:1-linear relationship exists between crimp induced 

reflection width and distance traveled over a distance of 100m. Previous work by Pierce 

et al (1994) describes exponential relationship between amplitude and transmission 

distance for shears for travel distances up to 500m, as shown in Figure 3-4b. Figure 3-4a 

plots reflection amplitude versus distance for the nine crimps shown in Figure 3-3. At 

short distances, it shows a more random relationship between signal amplitude and 

transmission distance. However, given that an exponential relationship does exist for long 

travel distances, the position of the data points does allow for the possibility of an 

exponential curve fit within the given data points. 

 

3.2. Two Deformities at Large Separation Distances 

 It is important to validate the model for both single and multiple deformities. 

Interaction between multiple deformities is most important as multiple deformities are 

likely. Once the model is validated for simple single interactions, it can then be employed 

to predict likely amplitudes resulting from more complex but untested combinations that 

occur in the field. The most simple interaction is that between two shears or a crimp and a 

shear. It is important to evaluate how the downstream reflection coefficient changes when 

the deformity of an upstream shear increases. 

To model a simple two-deformity interaction, the effect of an upstream shear on a 

downstream crimp was measured. Figure 3-5a presents the reflected signal of the shear as 

the relative shear of the 22.2mm diameter cable is increased from 5 to 16mm. Reflection 

amplitude is shown to increase with a slight increase in width. This slight increase in 

width agrees with the physical deformations in the cable since it begins to deform outside 

of the 2mm shear band as shearing increases. Figure 3-5b presents the measured 

downstream effect on the crimp. 

After the upstream shear experiment was completed, an upstream crimp was 

increased in width. The change in its reflected signature as the width increased from 

12mm to 60mm is shown in Figure 3-6a. Reflection width and amplitude increase as the 

crimp width increases. This also agrees with physical deformations in the cable since the  
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Figure 3-3 
Measured reflection width produced by a single standard 12mm wide, 7.2mm deep crimp located at an increasing distance from the pulser.
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Figure 3-4: Comparison of amplitude vs. travel distance for a. single crimp (12mm wide) and b. shear displacements (2mm wide) 
(after Pierce et al, 1994)
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Figure 3-5: Effect of an increasing upstream shear reflection on a downstream crimp reflection.
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deformation width is increasing. The effect on the downstream crimp is shown in Figure 

3-6b. Comparison of Figure 3-5b and Figure 3-6b shows that there is a less downstream 

effect produced by increasing the width of the crimp than by increasing the shear 

displacement beyond 12mm. 

These results show that increasing the shear deformity has a greater effect on 

downstream reflections than increasing the width of a crimp. Figure 3-6 shows that a 

60mm wide, 7.2mm deep crimp did not affect the downstream crimp reflection. 

However, Figure 3-5 shows that an upstream shear 2mm wide with shear displacements 

greater than 12mm deep (almost twice that of the crimp) were necessary to produce more 

than a 1.4mρ change in the downstream reflection or a 5% change as shown in Figure 3-

7. This influence results from the large reduction in diameter by shearing than by crimps. 

Thus changing more significantly the signal to be reflected by the downstream crimps. 

 

3.3. Multiple Deformities at Small Separation Distances 

To study the interaction of distant multiple shears within close proximity to each 

other, Pierce et al (1994) performed the following experiment. Two shears were placed 

1.5m apart from each other at a distance of 95m and a similar set was placed at a distance 

of 263m. The experiment was conducted by first creating a 10mm shear displacement at 

263m and recording its reflection data. Next, a shear was created 1.5m upstream from the 

original shear. Shear displacements were made in 2.5mm increments from 5 to 10mm. 

Reflection data were recorded at the end of each increment until the second shear 

deformation reached 10mm. The same procedure was repeated at 95m. Figures 3-8a and 

3-8b show the results of the two experiments. The data show that at both 95m and 263m, 

there was essentially no loss in amplitude nor gain in width of the downstream reflection 

as the upstream reflection increased. 

To investigate further interaction of distant but close deformations, a third shear 

was added 1.5m upstream of the second shear deformation at 95m. Reflection data were 

again measured at shear displacements of 5mm, 7.5mm and 10mm. The data are shown 

in Figure 3-8c. Once again, the third shear produced no noticeable effect on the other 

shear reflections. It should be noted that all three reflection amplitudes are not uniform in  
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Figure 3-6: Effect of a reflection from an increasing upstream crimp width on a downstream crimp reflection. 
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Figure 3-7 
Percent loss in downstream crimp amplitude versus upstream shear amplitude

 18



 

 
 
 
 

Figure 3-8: Effects of an increasing upstream shear reflection on a downstream 10mm shear reflection. 
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size. This difference results from the fact that after each shear was produced, the cable 

would elastically rebound slightly, decreasing the original size of the shear deformation 

and thus its corresponding reflection amplitude. However, regardless of amplitude size, 

the downstream shear reflections remained constant as the upstream shear deformation 

increased. 

Thus far, it has been observed that the reflection width increases at a linear rate 

with distance, while reflection amplitude decreases with an exponential rate with 

distance. It was observed that the presence of a far upstream discontinuity led to a 

decrease in the downstream reflection amplitude. On the contrary, the interaction 

between two or three deformities at close separation distance but a great distance from 

the source was negligible, as long as the upstream reflections are less than 25 mρ or the 

shear displacement is not more than 50% of the cable diameter. 
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4. NUMERICAL APPROACH TO MODELING CABLE DEFORMATIONS 

 

A finite difference model was chosen to model the wave propagation along the 

cable. Cable deformations affect the electrical properties of the cable such as capacitance, 

inductance and impedance. The numerical method equates a change in cable geometry at 

a specific location on the cable with a change in the electrical properties of the cable at 

that point. In this approach, electrical changes are accounted for as a lumped capacitance 

and resistance (Bilaine, 1994). As mentioned before, the inductance changes due to 

abrasion of the outer conductor of the cable are neglected. The geometry of a deformation 

is not directly considered in this model, only change in the capacitance associated with 

this deformation. 

 

4.1. Mathematical approach of the problem 

 The model is based upon a frequency-domain finite difference solution of the 

transmission line equations (Taflove, 1996). Values of voltage, V, current, I, and 

frequency dependent resistance, R, are computed at each cell along the cable for each 

time step. By time stepping the equations, the incident pulse is tracked as it propagates 

along the cable. The number of time steps assigned to the model is dependent on the 

propagation velocity of the wave and the number of cells the wave will travel. The 

FORTRAN code is listed in Appendix A. 

 Frequency dependent loss is taken into account, through Fourier transform 

techniques to decompose time-domain signals into its various sinusoidal frequency 

components and an inverse Fourier transform routine. Once the signal has been 

subdivided into its various frequency components increasing loss coefficients may be 

applied to increasing frequency components. Once the higher frequency amplitudes have 

been proportionally reduced, the signal is recomposed into its time domain through an 

inverse transform.  

The program allows the input of the nominal capacitance and inductance of the 

cable that need to be first calculated using cable characteristics such as inner and outer 

conductor diameters and relative dielectric permeability.  Capacitive discontinuities can 

be introduced at any number of locations at any point, and their width can be spread over 
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one or several cells. The cell width may also be adjusted according to the size of the 

discontinuity to be modeled.  

The transmission line equations for a wave propagating down a lossy coaxial cable are 

(Miner, 1996). 

),(),(1),( tzV
C
Gtz

z
I

C
tz

t
V

−
∂
∂

−=
∂
∂                                        (4-1) 

),(),(1),( tzI
L
Rtz

z
V

L
tz

t
I

−
∂
∂

−=
∂
∂                                         (4-2) 

where: I = current, C = capacitance, V = voltage, R = resistance (frequency dependent), L 

= inductance (constant here), t = time. Equations (4-1) and (4-2) only account for 

frequency independent loss. 

 However, frequency dependent loss must be considered and thus added to the 

wave equations. To avoid numerical stability problems (Kath 1998), this loss is applied 

symmetrically. That is half to the voltage equation (4-1), half to the current equations (4-

2). Let G* be the frequency dependent conductance added in parallel to the circuit and 

entering the voltage equation and R* the frequency dependent resistance added in series 

in the circuit and appearing in the current equation. To get stable solutions, G* and R* 

must be equal to one half of the total frequency dependent loss coefficient that we get 

from calibration as explained in section 4.7 called loss1 (Kath, 1998). 

 The application of the loss in the code is done as follows. A first value of the 

current and voltage are computed taking only frequency independent loss into account 

using equations (4-8) and (4-9). Then, these voltages and current are transformed to the 

frequency domain using a Fourier Transform. The frequency dependent loss is applied to 

the Fourier Transformed voltage and current by multiplying them by the exponential as 

shown in equation (4-3). 
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where: Rk is the frequency dependent loss at cell k, 
L

RR
2

* 1= , R1 is the frequency 

dependent loss coefficient or loss1 from calibration as shown in Section 4.7 and L is the 

nominal inductance, A is the number of time steps between application of the frequency 

dependent loss and ak is the component frequency on which Rk will be applied. 

 Equations (4-1) and (4-2) can be discretized into finite steps in time and space: 
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where: Iright  = current at the next cell space during a particular time step, Ileft: = current at 

the previous cell space during a particular time step, Vright = voltage at the next cell space 

during a particular time step, Vleft = voltage at the previous cell space during a 

particular time step, Inew = current at the next time step to be calculated at a particular cell 

space, Iold = current at the previous time step to be calculated at a particular cell space, 

Vnew = voltage at the next time step to be calculated at a particular cell space, Vold = 

voltage at the previous time step to be calculated at a particular cell space. 

The FORTRAN finite-difference code computes the voltage and current at each 

cell by manipulating equations (4-5) and (4-6) into the following form: 
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At each time step, the voltage and current are first updated to account for the basic 

propagation in the waveguide using a centered finite-difference scheme through a 

leapfrog approach, (Kath, 1998). The 1-D wave equation can be written as follows.  

xt uu =  

Using central differences, one approximates any function, u, as: 

 

dx
tdxxutdxxu

dt
dttxudttxu

2
),(),(

2
),(),( −−+

=
−−+

 

 
Or: 
 

( )),(),(),(),( tdxxutdxxu
dx
dtdttxudttxu −−++−=+  

Starting with u(x,t-dt), one uses an approximate spatial derivative centered at (x,t) 

to get the value of u(x,t+dt). The picture is one of “leaping” from t-dt to t+dt. Then one 

goes from t to t+2dt, using the previously calculated values of u(x,t+dt) and so on and so 

forth. One advantage of the leap-frog method for modeling wave-propagation is that at 

precisely the (Courrant, Friedlich, Levy) CFL condition, that is when the time step equals 

the time the wave needs to cross one cell, the method is a discrete version of the wave 

equation and any input shape propagates without distortion. 

As described above, the frequency dependent loss for that time step is then 

applied through an operator splitting technique (Kath, 1998). Resistance, R in equations 

(4-3) is split and the frequency dependent, R1, and independent, R0, parts of the loss are 

applied separately. The frequency independent part of the loss is applied at each time 

step, when the frequency dependent part is applied every “A” time steps in order to save 

on computation time. The parts of the signal for the voltage and current not including the 

source are transformed into the frequency domain and the proper amount of loss is 

applied to each frequency component. 

 Since the frequency dependent loss is computed every A number of 

computational cycles, the R1 should be multiplied by A to impose the correct amount of 

loss upon the signal as shown in equation (4-3). This assumes that the amount of 

frequency dependent loss that occurs during the propagation of the wave through A 

computational cycles equals A times the frequency dependent loss that the wave 
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Figure 4-1 
Border geometry and smoothing polynomial function 
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undergoes during one cycle. At this time, the time step of computation is equal to the 

transit time across one cell. Therefore, the number of computational cycles, A, represents 

A cells. This assumption of linear increase in loss with each time step is only 

approximately true, and holds as long as A is kept relatively small with respect to the 

wave length of the higher significant frequency. The runs were performed with A=8. 

 The ak power in equation (4-3) can be recast in terms of frequency. First consider 

that the length of the domain lfft can be defined as the product of the cell width: 

cellsn
lz =∆  and the number of cells in the fft domain: nfft. 
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z∆
π2  is the frequency increment ∆f used to decompose the signal into its various 

frequency components. Thus as k increases, f increases by ∆fk. Hence: 
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This derivation shows that the frequency dependent loss can be expressed as follows: 
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 One can see in equation (4-12) that the frequency dependent loss is proportional 

to the square root of the frequency. However, another proportionality function other than 

the square root function could have been chosen. 
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The source interacts poorly with the Fourier transformation of signals at nearby 

cells, therefore, the edges of the domain near the source and terminus are located in a 

border, and the Fourier transform is applied only done on the central part of the domain. 

In order to interpret model signatures, they must be transformed back into the 

physical, or time domain. However, transformation of transitory phenomena requires a 

zero value at the boundary. Thus, to be kept continuous, the response must be smoothed 

when linked to the boundaries. The boundaries of the domain are considered to be 

reflectionless. 
 

4.2. Input to the code 

 The FORTRAN code reads the parameters in the input file whose format is shown 

in Appendix C. The numbers input in this file have units as shown below. 

Cable length in meters 
 Including the border region 
Number of Fast Fourier Transform (fft) points  

Number of points over which the fft will be calculated. This is also he number of 
cells less the borders. 

Number of border points  
Number of points on each side of the central zone on which the Fourier transform 
is calculated 

Rise time (s)    
Time required to reach full voltage, as illustrated in Figure 4-2 

Final time (s)    
Time at which the code should stop computing voltages 

Loss rate 0 (dB/m)   
Frequency independent loss. Being very small, it was ignored for the runs 
performed herein 

Loss rate 1 (dB/m)   
Frequency dependent loss that was calculated during the calibration process. 

Nominal capacitance (Farads, F)  
Capacitance for cells where there is no crimp or shear. 

Nominal inductance (Henrys, H)  
Inductance for cells where there is no crimp or shear. The model was operated 
without changes in inductance at shears or crimps. 

Source location    
Number of cells separating the source from the beginning of the cable (left 
extremity of the cable). To avoid any numerical instability due to the interaction 
between the source and the Fourier Transform, this number should be smaller 
than the number of points in the borders. 
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Figure 4-2: Shape of TDR voltage pulses. Initial pulses typically have short rise times, tr, of 200 
picoseconds, and long durations t0. 
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Interval for calculating loss (number of time steps) 
Frequency dependent loss calculation requires the computation of two ffts which 
imply a long computational time: therefore, the code allows the user to calculate 
this loss at a larger time interval than the time step. 

Output interval (number of time steps)    
To save on running time, it is also possible to write the output at a larger time 
interval than the time step: this is the output interval. 

Number of crimps 
Number of crimps you want to add along the cable. This should be an integer 
number 

Crimp location    
Location of the first crimp in number of cells (number of points from the source) 

Capacitance at crimp   
Capacitance at the crimp or shear location, which is larger than the normal value 

Inductance at crimp    
Inductance taken at the crimp or shear, in this work, it will be the same as the 

nominal inductance since inductive discontinuities are not taken into account. However, 
by inclusion in the formulation, inductance may be taken into account in other 
applications of this model. 

 

The format of the numbers is important for proper operation. All integers must be 

input as integers and all real numbers must be input as real numbers. For example: do not 

write 2 for the frequency dependent loss but 2.0 and do not write 200.0 for the crimp 

location but 200. 

 

4.3. Inductance and capacitance 

 Inductance, L, and capacitance, C, are dependent on the geometry and dielectric 

material of the cable. Capacitance and inductance for any non-deformed cable are 

calculated from the cable’s geometry and electrical properties in the following fashion, 

per meter of cable (Taflove, 1996): 
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where: =0µ  permeability of free space ( =0µ 4π10−7Η/m), =0ε  permittivity of a 

vacuum ( =0ε 8.854.10−12F/m), =rε  relative permittivity of the dielectric material, 

 inner conductor radius, =innerr =outerr  outer conductor radius.      

When the cable is sheared or crimped, its capacitance will change locally. This 

change is lumped into that represents the change in capacitance for one given cell. 

The lumped capacitance change per unit deformation must be measured for each cable as 

will be discussed in section (4.7). 

C∆

 

4.4. Selection of a Cell Width 

Figure 4-3 shows the cell analog of an elemental length of the transmission line. 

Each unit represents a finite difference cell of length z∆  with variable values of 

capacitance, C, which represent changes in the cable geometry. The cell width should be 

chosen small enough to model known discontinuities while maintaining high resolution. 

Crimp deformations are made in 12mm increments. A cell width of 6mm was chosen and 

thus, each crimp deformation increment is represented by the same change in capacitance 

in two adjacent cells. The spacing is also small enough to allow for detection of small 

discontinuities (<50mρ  in amplitude). 

Even though shear deformations are concentrated over a width of 2mm, the 

geometry of the cable can be affected over a width as wide as 25mm (Pierce, 1997). 

Modeling the discontinuity over only a 2mm-wide cell could not provide a wide enough 

reflection compared to the field data. Increasing the capacitive discontinuity would not 

increase the width of the reflection but did increase its amplitude. Consequently, it was 

chosen to increase the width of the discontinuity itself rather than the value of the change 

in capacitance over a 2mm wide cell where a shear had been introduced. For example, a  

particular shear reflection measured in the field at 2m was 67mm in width and 41mp in 

amplitude. When a 2mm cell discontinuity was simulated in the model, its measured 

width was only 22mm. As the change in capacitance was increased in order to match the 

field reflection, the amplitude increased to values greater than 41mp, yet the width 

remained constant at 22mm.  
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Figure 4-3 
Cell model of the cable for finite difference calculations 
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Therefore, the only means available to increase the width of the reflection was to 

increase the width of the capacitive discontinuity. Additional experimentation revealed 

the reflection width matched the 2mm shear field data best when the width of the 

capacitive discontinuity approached 6mm. This approach is enforced by the fact that 

though the majority of the shear deformation will occur over the 2mm shear band, a 

significant amount of deformation occurs on both sides of the band (out of a total width 

of approximately 25mm). 

Another approach would be to use a finer grid spacing and vary the values of the 

lumped capacitance over the area. Largest values would represent the 2mm shear band 

while significantly smaller values would represent deformations further away from the 

band. However, this approach is far more complex and requires more computation time 

for a limited increase in accuracy and was abandoned. 

One can also reduce the cell width and see how the computed values evolve with 

the reduction of the cell width. This approach allows to select the smallest cell width for 

which computed values do not change when using a smaller cell width. 

 

4.5. Incident pulse 

The incident wave was based on the specifications of the cable tester, a Tektronix 

1502B TDR pulser. As shown in Figure 4-4, the initial idealized pulse has a rise time of 

200 picoseconds between the 10% and 90% points of the peak amplitude of one volt 

(Tektronix, 1975). Therefore, given a propagation velocity equal to the speed of light 

(c=3. ), and a rise time, , of 200 picoseconds in the modeled cable, the rising 

portion of the pulse will extend over a width, 

.  

18 .10 −sm rt

mmmsmsl 60060.0)103)(10200( 1812 ==⋅××=∆ −−

Since the model uses a 6mm cell width, the incident wave will extend over 10 

cells. 

As the cable is an imperfect conductor, the propagation velocity of the pulse will 

be less than the speed of light. For the cable used in the model, the propagation velocity, 

is . This velocity is calculated using the values of capacitance and  propV 181064.2 −⋅× sm
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Figure 4-4 
Comparison of the incident wave at 2m and 263m and its corresponding reflection signatures
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inductance found in Equations (4-9) and (4-10) based on the cable geometry: (Taflove, 

1996) 

LC
Vprop

1
=                                                                   (4-15) 

Voltage and current of each cell is calculated every seconds (cell 

width divided by the propagation velocity) which is the time necessary for the leading 

edge of the pulse to traverse one cell. The maximum time step between calculations is 

equal to the travel time. This time interval satisfies the Courant-Friderichs-Lewy (CFL) 

condition in the finite difference method, which requires the time step to be shorter or 

equal to the time necessary for the wave front to cross one cell. The time step used in the 

model is calculated as 

111027.2 −×

propV
z∆ . 

 

4.6. Resistance 

Resistance needed to model any cable can be found by inspection of the shape of 

the incident wave (Taflove, 1996). As the incident pulse propagates down the cable, the 

rise time increases or the front spreads out in time or disperse, which affects the shape of 

any reflection discontinuity it encounters. 

The value of the resistance assigned to Equation (4-3) is dependent upon 

frequency (Ramo, 1993), as losses caused by skin effect in a cable exhibit a frequency-

dependant behavior. The reason why resistance is dependent upon frequency is that 

higher frequencies go over more cycles than smaller frequencies along the same 

propagation distance. Therefore, they undergo a larger amount of hysteric loss per unit 

length. Specifically, resistance is found to increase proportionally to the square root of 

the dominant frequency (Ramo 1993). However, other functions than the square root 

could be employed. The solution for the frequency dependent loss is made in the 

frequency domain. 

A sharper slope in the signal indicates a higher frequency content (Taflove, 1997) 

and therefore will attenuate faster than a shallower slope because the high frequencies are 

the first to diminish. For example, a 4X rise time will require twice (2 = 41/2) as much 

distance to double than a rise time of X, due to high frequency attenuation along the 
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cable.  Therefore, there is no need to recalibrate the model with changes the rise time 

since the model automatically accounts for changes in frequency.  This is shown in 

Figure 4-5. 

 

4.7. Resistance calibration 

The first step in calibrating the model to the field data is to plot reflection width of 

known deformations versus transmission distance in Figure 4-6. Nine 12mm-wide crimps 

were placed at increasing distances along the cable and their reflection widths were 

measured using NUTSA (Huang, 1993). The second step is to measure the slope of the 

reflection width-distance relationship to determine the increase in reflection width over a 

specified distance. The slope was measured from zero to 100 meters. Based on this slope 

the reflection width is found to increase by 220% after traveling 100 meters. The value of 

the frequency dependent loss (loss rate1) is adjusted to cause the reflected wave of the 

model to increase in width at the same rate as in the field data. 

It is also important to consider what information the cable tester receives after 

launching a pulse through the cable. The signal on the screen shows the reflection 

magnitude and location on the cable. However, there is no information on the incident 

pulse or the effects of loss on the rise time. Therefore, the assumption was made that the 

rise time of the incident pulse in the model will increase at the same rate as the width of 

the reflected wave. Based on this assumption, the width and corresponding amplitude of 

the modeled reflection should be consistent with field reflections at increasing distances. 

Calibration of the model can be accomplished in the following way. Assume it is 

desired to calibrate the model for a 50m cable. First approximate the loss coefficient by 

measuring the ratios of the reflection width created by a crimp located at 50m to that for a 

crimp located at 10m. Plotting a graph such that in Figure 4-7 might be helpful in this 

regard. Employ this value as the loss rate1 for the loss coefficient and calibrate the change 

in capacitance necessary to produce a given reflection amplitude. Rerun the code for the 

same examples used to determine the first approximation and obtain a second value for 

the loss rate1. It may be necessary to repeat the process several times until the required 

precision is reached. Given the uncertainties involved and the measurement errors, it is 

impossible to hope for more than a 10% precision on the calibrated parameters. Results  
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Figure 4-5 
Effect of the increase of the rise time on the smearing of the wave front 
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Figure 4-6 
Width vs. distance travels for a standard 12mm crimp located at increasing distances from the source 
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            Figure 4-7 
Measured vs. calculated widths for standard crimp located at an increasing distance from the source and different values of the frequency dependent loss 

coefficient
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can then be replotted on a graph showing measured widths vs. calibrated widths to 

compare several loss rates. 

It is important to be careful not to base the whole calibration on runs made for 

short propagation distances because those are far less accurate than for long propagation 

distances. For example, the sensitivity of modeled width to change in the loss rate at 10m 

is so low as to be non-existent. Only at 30m did the sensitivity increase, so as to be able 

to fit a loss rate to the width of a crimp-induced reflection. In addition the change in 

capacitance vs. cable deformation relationship is best determined from relationships 

developed at distances where deformities are expected. 

 

4.8. Calibration of capacitive discontinuities 

It is also necessary to calibrate a known shear and crimp deformation with an 

appropriate change in lumped capacitance. The capacitive discontinuity for a standard 

crimp was calibrated by matching the calculated amplitude of a modeled reflection to the 

measured amplitude of a reflection caused by a crimp of known dimensions. Since the 

model is to be used for propagation distances of about 50m, the capacitive discontinuity 

was calibrated at 50m. In this way, the modeled results match best the measured data for 

such propagation distances as 30m to 50m, which is the common length of TDR cables 

used in soils. The field crimp had a width of 12mm (2 cells) and a compressed diameter 

of 15mm (a standard 7.2mm crimp as described in Chapter 3) and was located at a 

distance of 51 meters. The resulting reflection amplitude for a crimped cable diameter of 

15mm is 12mρ. The corresponding amplitude at 51m can be interpolated using the 

known measured amplitudes as being equal to 25mρ. The capacitive discontinuity was 

added to two 6mm cells. The change of capacitance necessary to create a 25mρ reflection 

at 50m is found by trial and error as being 120pF.  

The same procedure was followed to calibrate the change of capacitance 

corresponding to a known shear deformation. A 7.5mm deep, 2mm wide shear 

displacement was located at a distance of 45m. A 22.5mρ amplitude was produced by the 

7.5mm shear. The capacitive shear discontinuity was added to one 6mm cell. It was 

found by trial and error that a 150pF discontinuity is required to produce the 22.5mρ 

reflection amplitude at 45m.  
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Once the model is calibrated to capacitance changes at long distances, the same 

value of lumped capacitance can be used for shorter or greater distances to simulate the 

same discontinuity.  Chapter 5 will compare modeled signatures and field data at larger 

propagation distances. 

 

4.9. Additional assumptions and possibly interesting issues 

There is an issue of when to observe the modeled reflection after it occurs. The 

model allows the propagation of the reflection back to the source. Since that is where the 

measurements are made in the field, these reflections were captured after their return, to 

be analyzed.  

For relatively large loss rates such as 0.5dB/m and far from the source, the 

reflection spike may be sloped and the amplitude might become difficult to measure. For 

high loss rates such as these, a line is drawn tangent to the apex and the amplitude and 

width deduced from that tangent as shown in Figure 4-8. 

The calibration procedure was developed independently of the limitation imposed 

by ignoring the return of the reflections. Furthermore, calibration of resistance is based 

upon the increase in measured width reflections produced by a single crimp at increasing 

distances.  

Similar calibration of the lumped capacitance caused by a single discontinuity is 

calculated independently of travel distance. Thus, each calibration procedure is 

independent of either multiple discontinuity interaction or consideration of the return 

travel. Multiple deformations were studied in detail. Results of this study are presented in 

Chapter 5. 
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Figure 4-8 
Measurement of the reflection widths for long travel distances of large amount of loss
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5.   COMPARISON OF SIMULATED AND MEASURED REFLECTIVE   

      SIGNATURES 

 

The goal of the model is to simulate reflections produced by known deformities in 

order to predict reflections produced by unmeasured interactive deformities. In order for 

the model to replicate this behavior, two calibrations are needed as explained in Chapter 

4. First, frequency dependent resistance, R, must be calibrated by matching the increasing 

width of the incident pulse to the increasing width of standard crimp field reflections at 

increasing distances. Second, Capacitance, C, must be calibrated by matching modeled 

and measured crimp and shear amplitudes as these deformities increase in deformation 

with methods described herein. Calibration of C and R requires cable lengths of 20 m to 

30m. 

Once the frequency dependent resistance or loss and the capacitance sensitivity to 

cable deformation have been calibrated with field data, simulated reflections can be 

compared with measured reflections at longer distances. The use of frequency dependent 

loss allows accounting for all losses in the cable. Theoretically, it should not be necessary 

to calibrate a lumped capacitance to a reflection at longer distances since the lumped 

capacitance change is not function of distance. However, minor differences at 6m are 

greatly magnified at 100m. Therefore, the calibration should be made at the distances 

where the model is intended to be used. 

 

5.1. Single Discontinuities 

Reflection shapes measured in the field and produced by the model and compared 

in Figures 5-1 and 5-2. Figure 5-1 shows reflections caused by one 12mm crimp at 6m 

and 94m down the cable. Figure 5-2 compares reflections caused by one 7.5mm shear 

deformation at 45m and 92m down the cable. The widths and amplitudes of the 

reflections were measured with the methods outlined in Chapter 2. They are very similar 

to field measurements where spike-like reflections at small distances gradually become 

rounded with increasing travel distances. 

However, computed shear reflections are symmetrical when measured reflections 

are not. This measured asymmetry may be due to the presence of an additional
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Figure 5-1: Comparison of measured and modeled standard crimp at 6m and 94m.
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Figure 5-2: Comparison of measured and modeled 7.5mm shear displacement at 45m and 92m.
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capacitance change in the wiring between the pulser and the beginning of the cable. 

Asymmetry could be produced in the model by choosing a smaller cell width, so that a 

shear is wider than one cell and smearing the capacitive discontinuity non-uniformly over 

these cells. 

 For the crimp located at 94m, the calculated amplitude does not match the 

measured amplitude very well. This disagreement is due to the fact that the calibration of 

the capacitive discontinuities was made so that the model replicates best the measured 

data between 30m and 50m. Such a difference with the present model can be avoided by 

calibrating the capacitance change for long travel distances such as 94m. 

 The initial slope of the reflection is steeper in the model than in the measured 

data. Once again, this is proportional to the rise time used in the model. 

To compare the modeled results to the measured data more quantitatively, 

reflection widths are plotted versus propagation distance in Figure 5-3. Figure 5-4 shows 

the measured and calculated amplitudes and widths for crimps and shears as travel 

distance increases. The results show the model matching the signal geometry for both 

widths and amplitudes, in particular in the 30m to 50m region.  

For shears, both for amplitudes and widths, the model matches best between 

distances of 30m and 50m where the model is intended to be used. The model for shears 

is more accurate for amplitudes than for widths at long propagation distances. For crimps, 

the calculated amplitudes do not closely match the measured results for propagation 

distances close to 94m either.  

For both crimps and shears, the calculated results diverge from the measured at 

longer propagation distances. This is due to the fact that the resistance and capacitive 

discontinuity calibrations were made to best fit the measured and modeled data in the 

region ranging from 30m to 50m. 

As mentioned in Chapter 3, Pierce et al (1994) described an exponential decrease 

in amplitude versus distance. However, this exponential decrease is not verified by the 

results of the code over short distances of less than 100m. However, the linear increase in 

width with propagation distance is verified by the calculated values, both for crimps and 

for shears. 
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Figure 5-3 
Width vs. Distance traveled for a standard 12mm crimp located at an increasing distances from the source
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Figure 5-4: Comparison of measured and modeled reflection amplitude and reflection width vs. distance
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Problems arise during data acquisition. Amplitudes are generally measured to an 

accuracy between 3 to 5mρ (Pierce, 1997). This accuracy is controlled by noise and other 

distortions that can vary the reflection amplitude by 5mρ. This inaccuracy becomes 

critical as amplitudes decrease with distance. As changes become smaller, noise and other 

distortions in the cable make it difficult to distinguish true reflections. Therefore, what is 

measured in the field is not necessarily the exact reflection for a given deformation. 
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5.2. Multiple discontinuities 

As described in Chapter 3, field tests were performed to study the influence of a 

new reflection on downstream reflections. This interaction was modeled in a relative 

sense, because only a one-way path was employed. The comparative signals are only for 

a travel from the source through the upstream reflection off the deformity and then 5m 

back towards the source. Thus, the return path effects were not studied. However, using 

the results presented below, it is possible to predict the changes that these trends may 

undergo if the return path was studied. 

 

5.2.1. Effect of an increasing shear at 2m on a downstream crimp at 51m 

Increasing modeled shear reflection amplitude at 2m shows that the calculated 

reflections on a downstream crimp reflection at 51m have the same trend as those 

measured reflections. Figure 5-5 shows the calculated reflection signals. As the upstream 

shear deformity increases, the downstream crimp reflection amplitude slowly decreases 

and its width slightly increases.  In addition the apex translates slightly towards the end of 

the cable. However, the model is less sensitive to upstream discontinuities than the field 

data measurement show, indeed, the model yields a 17% decrease in amplitude when the 

upstream shear is changed from a standard, 7.5mm deep shear to a 15mm deep shear, 

when the field data yield a 40% decrease in amplitude. The relative increase in width in 

both cases being very similar. If the return path had been modeled, the amplitude would 

have decreased by a larger amount than without considering the complete return of the 

reflection. However, the relative change in amplitude would have remained the same. 

Therefore, the results presented above are a good estimate of the sensitivity of the model 

to multiple discontinuities.  

 

5.2.2. Effect of an increasing upstream shear at close proximity to another 

 The experiment performed by Pierce et al (1994) to study the interaction of 

multiple shears within close proximity to each other was also simulated. Two shears were 

modeled 1.5m apart at distance of 50 meters. Figure 5-6 shows calculated reflections. The 

upstream and downstream deformities are simulated by capacitive discontinuities. Both
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Figure 5-5 
Effect of an increasing upstream shear deformation 

at 2m on a downstream crimp reflection at 51m
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Figure 5-6 
Effect of an increasing upstream crimp discontinuity on a downstream crimp at 51m
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cases show a slight decrease in the downstream reflection amplitude and increase in 

width as the upstream reflection increases. For a 15mm deep shear located 1.5m upstream 

of a 7.5mm deep standard shear at 50m, the reflection amplitude decreases by 14% 

compared to the reflection caused by a unique standard shear at 50m. The measured data 

show essentially neither change in amplitude or in width for such interactions. This 

proves that the model is more sensitive to the interaction of a close upstream shear than 

the field data are. 

As explained in the precedent paragraph, if the signal had been looked at after its 

return back to the source, the relative change in amplitude and width would have 

remained the same. 

 

5.2.3. Effect of an increasing upstream crimp on a downstream crimp reflection 

The effect of an increasing upstream crimp on a downstream crimp reflection was 

also examined. The results show almost no change in width or amplitude, which is 

consistent with the field data and the apex of the reflection on the downstream crimp 

translates also towards the end of the cable. Results are shown in Figure 5-7. 

Considering the return path would again have led to the same trend, as was the 

case for the two precedent cases. 

The results presented above show the same trends than the measured data. 

However, it is possible to have the amplitudes and widths match more closely by 

decreasing the frequency dependent loss coefficient (loss1). The effect of the change in 

this coefficient on the widths and amplitudes of the reflected signal on a crimp at 50m is 

shown in Figure 5-8. These comparisons should be restudied by modeling the full return 

path to verify fully the model capability. However, since the amplitudes increase with a 

linear rate with propagation distance, considering the return path will only scale the 

reflection signal down but keep the relative decrease in amplitude constant. 
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Figure 5-7 
Multiple modeled shear discontinuities at close distance
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Figure 5-8 
Effect of the change in the frequency dependent loss on the calculated reflections on a standard 12mm crimp located at 51m
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6.   CONCLUSIONS AND RECOMMANDATIONS 
 

 This thesis describes the ability of a Fourier Transform finite-difference model, 

based upon transmission line theory, to simulate the interaction between multiple cable 

discontinuities. The numerical simulation was calibrated for a specific metallic coaxial 

cable by producing controlled capacitive discontinuities by shearing and crimping the 

cable. Measured reflections were then compared to those calculated with the calibrated 

properties. Specifically, this approach successfully includes a frequency dependent 

resistive loss.  

The following specific conclusions are tentatively drawn: 

1. The frequency domain finite difference code proves to be a stable model for the 

partial differential equations that rule the one dimensional wave propagation in a 

waveguide. Symmetrical application of the loss to both current and voltage 

sufficiently suppresses instabilities. 

2. Use of a Fourier Transform Technique to account for frequency dependent loss 

allows the calculated width of the reflected pulse to increase linearly with distance 

and the amplitude of the reflected pulse to decrease exponentially. 

3. Calibration of the model requires two steps that involve the full length of cable to be 

employed. First, calibration of frequency dependent loss is accomplished by matching 

the measured and calculated linear increase in width of a reflection with increasing 

distance. Second, calibration of the reflection with a change in cable-geometry (or 

capacitance) is accomplished by matching measured and calculated changes in 

amplitude of the reflection with change in geometry. 

4. At large propagation distances or for high loss rates, the steep slope of the front 

requires special consideration. 

5. Multiple discontinuities were studied and the results showed that the model replicated 

the field behavior for multiple discontinuities located at small or large distances one 

from another. However, the comparison was only made for a “one-way” path, the 

return path was not studied and more work is needed to fully test the model. 

6. Calculated signal reflections are symmetric rather than asymmetric as measured in the 

field. This difference requires more study. 
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7. Shear discontinuities were modeled with a single capacitive discontinuity spread over 

one six-millimeter cell. In reality, a shear deformity spreads over only two 

millimeters and is not uniform throughout. Future studies should investigate the effect 

of smaller cell sizes. 

8. Inductive effects caused by irregularities in the outer conductor were neglected and 

should be investigated in future work.  
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APPENDIX A 
 

LISTING OF THE FORTRAN CODE 
 

 
C.. 
      PROGRAM CABLE 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      double precision ind,ind0,loss0,loss1,length,loss 
      PARAMETER (nmax=32768) 
      dimension ind(nmax),cap(nmax),volt(nmax),curr(nmax) 
      complex*16 vtemp(nmax),vtempf(nmax) 
      complex*16 ctemp(nmax),ctempf(nmax) 
      dimension loss(nmax),z(nmax) 
      CHARACTER*4    NUMSTR 
      CHARACTER*9    FILENM 
C 
C     VARIABLES: 
C 
C     LENGTH = cable length (meters) 
C     NFFT   = number of FFT points (region excluding border) 
C     NBORD  = number of points in border 
C     ISRC  = location or source point (grid point -- integer) 
C     LMID  = loss calculation frequency (integer) 
C     IMID  = plotting frequency (integer) 
C     IMID  = plotting frequency (integer) 
C     NSMOOTH  = number of points in smoothing region 
C     CWIDTH = cell width (meters) = LENGTH/NFFT 
C     NCRIMP = number of crimps 
C     RISE   = rise time of source (seconds) 
C     DT     = time step (seconds) 
C     TF     = final time (seconds) 
C     LOSS0  = loss coefficient, frequency independent part 
C     LOSS1  = loss coefficient, frequency dependent part 
C     CAP0   = nominal capacitance (Henries) 
C     IND0   = nominal inductance (Farads) 
C     CAP    = capacitance array 
C     IND    = inductance array 
C     CURR   = current array 
C     VOLT   = voltage array 
C 
  
      OPEN (15,FILE='cable.in',STATUS='OLD') 
      REWIND (15) 
      READ (15,220) LENGTH 

 READ (15,200) NFFT     
      READ (15,200) NBORD 
      READ (15,240) RISE 
      READ (15,240) DT 
      READ (15,240) TF 
      READ (15,240) LOSS0 
      READ (15,240) LOSS1 
      READ (15,240) CAP0 
      READ (15,240) IND0 
      READ (15,200) ISRC 
      READ (15,200) LMID 
      READ (15,200) IMID 
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C 
      CWIDTH = LENGTH/NFFT 
      SPEED = 1/SQRT(IND0*CAP0) 
      BORDER = NBORD*CWIDTH 
      NCELLS = NFFT+2*NBORD 
      ISMOOTH = NBORD 
      fftwidth = length*nfft/ncells 
      NTIME = TF/DT+0.5 
       WRITE (6,*)   
       WRITE (6,280) LENGTH, '... cable length' 
       WRITE (6,260) NFFT, '... number of fft points' 
       WRITE (6,280) CWIDTH, '... cell width' 
       WRITE (6,260) NBORD, '... number of border points' 
       WRITE (6,260) NCELLS, '... number of cells' 
       WRITE (6,280) RISE, '... rise time' 
       WRITE (6,280) DT, '... time step' 
       WRITE (6,280) TF, '... stop time' 
       WRITE (6,260) NTIME, '... number of time steps' 
       WRITE (6,280) CAP0, '... nominal capacitance' 
       WRITE (6,280) IND0, '... nominal inductance' 
C 
      pause 
  
      DO 10 I=1,NCELLS 
C        print *,i 
        volt(i)=0 
        curr(i)=0 
        CAP(I)=CAP0 
  IND(I)=IND0     
  10  CONTINUE 
  
      READ (15,200) NCRIMP 
      DO 20 I=1,NCRIMP 
        READ (15,200) JLOC 
        READ (15,220) CAP(JLOC+NBORD) 
        READ (15,220) IND(JLOC+NBORD) 
  20  CONTINUE 
      CLOSE(15) 
  
 200  FORMAT (I10,14X,I6) 
 220  FORMAT (F20.16,4X,I6) 
 240  FORMAT (E20.16,4X,I6) 
 260  FORMAT (8X,I10,12X,A40) 
 280  FORMAT (8X,F20.16,2X,A40) 
  
      pi=acos(-1.0) 
  
c     store frequency dependent loss 
call ffti(nfft)    
      akmax=nfft*pi/fftwidth 
      do 30 j=2,nfft/2+1 
        ak=2*(j-1)*pi/fftwidth 
        loss(j)=exp(-loss1*lmid*sqrt(ak)*dt/(2.0*ind0)) 
        loss(nfft-j+2)=loss(j) 
  30  continue 
      loss(1)=1.0 
  
      do 35 j=1,nfft 
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       z(j)=1.0 
  35  continue 
      do 36 j=1,nbord+1 
       x=dble(j-1)/nbord 
       z(j)=3*x**2-2*x**3 
       z(nfft-j+1)=z(j) 
C      print *,z(j) 
  36  continue 
  
      VRIGHT=0.0 
VLEFT=0.0    
      cright=0.0 
  
C 
C main loop 
C 
      do 100 J=1,NTIME 
      write (6,910) J 
 910  format (1X,'cycle number...', I6) 
c 
c voltage source 
c 
      if ((J-1)*DT.LE.RISE) then 
         f=(J-1)*DT/RISE 
      else 
         f=1.0 
      endif 
c 
c update voltage 
      print *,'... update voltage' 
c 
      do 50 k=2,ncells-1 
       volt(k)=volt(k)-(dt/cwidth)*(curr(k)-curr(k-1))/cap(k) 
  50  continue 
      volt(1)=vleft 
      vleft=volt(2) 
      volt(ncells)=vright 
      vright=volt(ncells-1) 
      volt(isrc)=volt(isrc)+f 
c 
  
c update current 
      print *,'... update current' 
c 
      do 60 k=1,ncells-1 
       curr(k)=((1-loss0*dt/(2*ind(k)))*curr(k) 
     & -(dt/cwidth)*(volt(k+1)-
volt(k))/ind(k))/(1+loss0*dt/(2*ind(k))) 
  60  continue 
      curr(ncells)=cright 
      cright=curr(ncells-1) 
if (mod(j,lmid).eq.0) then   
       print *,'... do frequency dependent loss' 
       do 70 k=1,nfft 
         k2=k+nbord 
         vtemp(k)=volt(k2) 
         ctemp(k)=curr(k2) 
  70   continue 
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       call fftf(vtemp,vtempf,nfft) 
       call fftf(ctemp,ctempf,nfft) 
       do 80 k=1,nfft 
         vtempf(k)=vtempf(k)*loss(k)/nfft 
         ctempf(k)=ctempf(k)*loss(k)/nfft 
  80   continue 
       call fftb(vtempf,vtemp,nfft) 
       call fftb(ctempf,ctemp,nfft) 
       do 96 k=1,nfft 
         volt(k+nbord)=volt(k+nbord)*(1-z(k))+vtemp(k)*z(k) 
         curr(k+nbord)=curr(k+nbord)*(1-z(k))+ctemp(k)*z(k) 
  96   continue 
      endif 
c 
c      add source to current 
c 
       curr(isrc-1)=curr(isrc-1)+f*sqrt(cap(isrc)/ind(isrc)) 
c 
c      do output 
c 
       if (mod(j,imid).eq.0) then 
       print *,'... do output' 
         IK=INT(J/1000) 
         IH=INT(J/100)-IK*10 
         IT=INT(J/10)-IK*100-IH*10 
         IO=J-IK*1000-IH*100-IT*10 
         
NUMSTR=CHAR(IK+48)//CHAR(IH+48)//CHAR(IT+48)//CHAR(IO+48) 
         FILENM='v'//NUMSTR//'.dat' 
  
         OPEN (UNIT=12, FILE=FILENM) 
         CLOSE (12, STATUS='DELETE') 
         OPEN (UNIT=12, FILE=FILENM, STATUS='NEW') 
         REWIND (12) 
do 95 k=1,ncells       
           write (12,900) (k-1)*cwidth,volt(k) 
  95     continue 
 900     format (1x,2f20.6) 
         close(12) 
  
       endif 
  
 100   continue 
       stop 
       end 
  
* 
*****************************************************************
*** 
* 
      subroutine fftf(fold,f,n) 
      implicit none 
  
c  fast fourier transform (forward) from numerical recipes 
c  input array fold with real and imaginary parts in alternate 
cells 
c  upon return f contains its fourier transform 
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      integer nmax,div 
      parameter (nmax=32768,div=2) 
  
      integer n 
      complex*16 fold(nmax),f(nmax) 
  
      complex*16 x(nmax),z(nmax) 
      common/cfft/x,z 
  
      integer i,j,k 
      integer ns,nq,nd,iq,id 
  
      do k=1,n 
         f(k)=fold(k) 
      end do 
  
      ns=1 
      nq=n 
do while (nq .gt. 1)    
         nd=nq/div 
         ns=ns*div 
         iq=0 
         id=0 
         do i=1,ns 
            do j=1,nd 
               x(id+j)=f(iq+j)+conjg(z(id+1))*f(iq+j+nd) 
            end do 
            id=id+nd 
            iq=iq+nq 
            if (iq .ge. n) iq=iq-n 
         end do 
  
         if (nd .eq. 1) then 
            do k=1,n 
               f(k)=x(k) 
            end do 
            return 
         endif 
nq=nd        
         nd=nq/div 
         ns=ns*div 
         iq=0 
         id=0 
         do i=1,ns 
            do j=1,nd 
               f(id+j)=x(iq+j)+conjg(z(id+1))*x(iq+j+nd) 
            end do 
            id=id+nd 
            iq=iq+nq 
            if (iq .ge. n) iq=iq-n 
         end do 
         nq=nd 
      end do 
  
      return 
      end 
c 
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c================================================================
=====* 
c 
      subroutine fftb(fold,f,n) 
      implicit none 
  
c  fast fourier transform (reverse) from numerical recipes 
c  input array fold with real and imaginary parts in alternate 
cells 
c  upon return f contains its fourier transform 
  
      integer nmax,div 
      parameter (nmax=32768,div=2) 
  
      integer n 
      complex*16 fold(nmax),f(nmax) 
  
      complex*16 x(nmax),z(nmax) 
      common/cfft/x,z 
  
      integer i,j,k 
      integer ns,nq,nd,iq,id 
  
do k=1,n     
         f(k)=fold(k) 
      end do 
  
      ns=1 
      nq=n 
  
      do while (nq .gt. 1) 
         nd=nq/div 
         ns=ns*div 
         iq=0 
         id=0 
         do i=1,ns 
            do j=1,nd 
               x(id+j)=f(iq+j)+z(id+1)*f(iq+j+nd) 
            end do 
            id=id+nd 
            iq=iq+nq 
            if (iq .ge. n) iq=iq-n 
         end do 
if (nd .eq. 1) then      
            do k=1,n 
               f(k)=x(k) 
            end do 
            return 
         endif 
  
         nq=nd 
         nd=nq/div 
         ns=ns*div 
         iq=0 
         id=0 
         do i=1,ns 
            do j=1,nd 
               f(id+j)=x(iq+j)+z(id+1)*x(iq+j+nd) 
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            end do 
            id=id+nd 
            iq=iq+nq 
            if (iq .ge. n) iq=iq-n 
         end do 
nq=nd      
      end do 
  
      return 
      end 
c 
c================================================================
=====* 
c 
      subroutine ffti(n) 
      implicit none 
  
c fast fourier transform initialization - from numerical recipes 
c initializes sine and cosine vectors for fft routines 
  
      integer nmax 
      parameter (nmax=32768) 
  
      integer n 
  
      complex*16 x(nmax),z(nmax) 
common/cfft/x,z    
  
      integer j 
      double precision dt,ang,pi,a,b 
  
      pi=dacos(-1.d0) 
      dt=(pi+pi)/dble(n) 
      ang=dt 
  
      z(1)=dcmplx(1.0d0,0.0d0) 
      z(n/2+1)=dcmplx(-1.0d0,0.0d0) 
      z(n/4+1)=dcmplx(0.0d0,1.0d0) 
      z(3*n/4+1)=dcmplx(0.0d0,-1.0d0) 
  
      do j=2,n/4 
         a=dcos(((j-1)*2.0d0*pi)/dble(n)) 
         b=dsin(((j-1)*2.0d0*pi)/dble(n)) 
         z(j)=dcmplx(a,b) 
         z(n/2-j+2)=dcmplx(-a,b) 
         z(n/2+j)=dcmplx(-a,-b) 
         z(n-j+2)=dcmplx(a,-b)        
         ang=ang+dt 
      end do 
  
      return 
      end 
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APPENDIX B 
 

EXAMPLE RUN 
 

 The following input and output files correspond to the problem described below. 
It models the propagation of a 1V electric wave along a 98.304m long cable. A two cell, 
110pF discontinuity is located at 50m from the left border. 

 
Input file (cable.in) 
 
98.304    cable length(m) 
16384     number of fft points 
40     number of border points 
0.000000000227311010  rise time (seconds) 
0.0000000000227311  time step (seconds) 
0.03724266372   final time 
0.0     loss rate 0 (per meter) 
0.375    loss rate 1 (per meter) 
0.000000000075767349124 nominal capacitance (in Farads) 
0.000000189433594087  nominal inductance (in Henrys) 
10     source location 
8     interval for calculating fd loss 
8150     output interval 
2     number of discontinuities 
8333     location of discontinuity 1 
11.0E-11    value of discontinuity1 (in Farads) 
0.000000189433594087  value of discontinuity1 (in Henrys) 
8334     location of discontinuity 2 
11.0E-11    value of discontinuity2 (in Farads) 
0.000000189433594087  value of discontinuity2 (in Henrys) 
 
Output file (v16300) 
 
  

0.9875

0.9895

0.9915

0.9935

0.9955

0.9975

0.9995

2 2.2 2.4 2.6 2.8 3 3.2 3.4

Distance (m)

Vo
lta

ge
 (V

)
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Sequence needed to be followed for data input 

 

1. Choose the length of the cable: L 

2. Choose the cell width: w 

3. Compute N=Uw, which gives the number of w-wide cells to make up a L meters 

long cable. 

4. Choose N' the number of fft points (cells) as the closest power of 2 larger than N. 

5. Compute the new length of the cable corresponding to this new number of cells, 

N' given by L'=N'w. 

6. Choose the number of border points, this choice is arbitrary. 

7. Input the rise time corresponding to the pulser you are using. 

8. Choose the time step, ∆t, making sure that the CFL condition is satisfied, that is 

that the time step is smaller than the time needed for the wave to cross one cell, that is 

LC
1 , where L and C are the inductance and the capacitance of the cable. 

9. Compute the final time: ( ) tBordersNt f ∆⋅⋅+= 2'  

10. Input the frequency independent loss rate corresponding to the cable used. 

11. Input the frequency dependent loss rate. This parameter is given by the calibration 

procedure. 

12. Input the nominal capacitance and inductance corresponding to the cable used. 

They are given by the following formulas, as explained in more detail in section 4.4. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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outer
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r

L ln
2

0

π
µ
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⎠

⎞
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⎝

⎛
=

inner

outer
rel r

r
C ln2 0επε  

 

13. Input the source location. The value input must be smaller than the number of 

border points. 
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14. Input the number of iterations wanted between two Fourier Transform 

calculations. Increasing this number will decrease computation time and increase the 

accuracy. 

15. Input the number of discontinuities wanted along the cable as well as their values 

and locations along the cable. 
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