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Abstract

A hierarchal scale transition technique is introduced to model the effect of imperfect interfaces on the elastoviscoplastic response of
composite materials. This novel framework is based on a two-step procedure. In the first step, an inclusion is embedded in a matrix phase
and the interface between the two phases is imperfect. The embedded inclusion is homogenized via the use of a Mori–Tanaka scheme. In
a second step the homogenized inclusion is introduced in a matrix phase representing the homogeneous equivalent material, and the mac-
roscopic response of the material is obtained via the self-consistent approximation. The model is applied to the case of pure nanocrys-
talline copper and allows the activity of grain boundary sliding to be quantified.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The strength, ductility and cyclic response of multiph-
ased materials are dependent on the individual response
of each material’s constituents, and on the interaction
between each phase. The predominant effect of such
interaction is localized along the interfaces between each
phase.

Such interface effects are of great interest in the case of
nanostructured materials which typically exhibit a large
volume-to-interface ratio. This is particularly the case for
nanocrystalline materials with grain sizes smaller than
�30 nm for which the volume fraction of grain boundaries,
which constitutes an interphase between two crystals, is as
high as 50% [1]. Also, as exhibited in transmission electron
microscopy experiments and quasi-continuum simulations
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on bicrystal interfaces, the grain boundary/grain interior
interface is typically imperfect and leads to a relative
motion of the two phases across the interface [2,3]. There-
fore, appropriate modeling of the response of composite
materials, and nanostructured materials in particular, will
account for the effect of imperfect interfaces.

The deformation mechanisms arising from the presence
of imperfect interfaces, and the formalisms allowing the
description of such interfaces, have been particularly inves-
tigated in the case of the creep response of polycrystalline
materials. Zener studied the effect of viscous grain bound-
aries on the elastic properties of isotropic polycrystals by
considering the relative motion of grain boundaries as a
shear stress relaxation process [4]. This model, applicable
at high temperatures and in the elastic regime, does not
describe the mechanisms – and their activation criteria –
by which grains slide relative to one another. Langdon pro-
posed a non-Newtonian viscous law that was valid in the
steady-state regime and that accounted for the effect of
the thermally activated mechanism of dislocation glide
and climb along the grain boundary [5]. This model was
rights reserved.

mailto:laurentc@lanl.gov


L. Capolungo et al. / Acta Materialia 56 (2008) 1546–1554 1547
later extended by Wu and Koul to account for the effect of
grain boundary precipitates [6,7]. Alternatively, Raj and
Ashby proposed a model for grain boundary sliding in
which the relative displacement of two crystals separated
by a non-planar interface is driven by steady-state vacancy
diffusion [8]. Mori and co-workers investigated the interre-
lations between diffusion accommodated and non-accom-
modated grain boundary sliding [9,10]. The proposed
framework is based on a hierarchal scale transition where
the displacement jumps at the interfaces, referred to as
Somigliana’s dislocations, are separated into a normal con-
tribution and a tangential contribution. The former arises
from steady-state diffusion while the latter arises from
non-accommodated grain boundary sliding described by
a Newtonian viscous law.

The above-mentioned models were developed to
describe the creep response of polycrystalline materials.
In the case of the quasi-static response of polycrystalline
materials, it was suggested in a recent quasi-continuum
study that grain boundary sliding may be described as a
stick–slip mechanism [3].

In terms of length scale, the interface needs to be
described at the length scale of the microstructure, and
the macroscopic effect of imperfect interface bonding can
be extracted from the use of a scale transition technique.
For example, Wei and Anand [11] introduced a numerical
model for the effect of imperfect interfaces on the response
of nanocrystalline materials in which the scale transition is
performed via the used of the finite element method. Simi-
larly, the scale transition could be performed via the use of
continuum micromechanics [9].

In this work, a hierarchal micromechanical scheme
accounting for the effect of imperfect interfaces is intro-
duced. The model is developed for the case of two-phase
materials and could be extended to the case of n-phase
materials. The scale transition is based on the following
procedure. First, the material is represented as a two-phase
material composed of an inclusion phase (phase 1) embed-
ded in a matrix phase (phase 2). The interface between the
two phases is assumed imperfect and the homogenized
viscoplastic response of the embedded inclusion is obtained
via the used of a Mori–Tanaka scheme [12]. Second, the
homogenized inclusion (HI) is embedded in a second
matrix phase representing the homogeneously equivalent
material (HEM) and the macroscopic response of the mate-
rial in the viscoplastic regime, is obtained via the self-con-
sistent approximation. In this second step, the interface
between the HI and HEM is assumed perfect. The solution
to the elastoviscoplastic problem is obtained via the field
translation method introduced in work by Sabar et al.
[14] and Berbenni et al. [13]. The model is applied to the
case of pure nanocrystalline copper using the behavior of
grain interiors and grain boundaries described previously
by the authors [15–17]. As a first approach, the imperfect
interface is described via the introduction of a law account-
ing for the activity of stick–slip sliding discussed in Warner
et al.’s model [3].
2. Scale transition framework

Considering a two-phase composite material with imper-
fect interfaces, the material can be equivalently represented
as an inclusion embedded in a matrix phase or, as intro-
duced in work by Christensen and Lo [18], as a three-phase
material composed of a coated inclusion embedded in a
matrix phase. The former leads to a relatively simple expres-
sion for the localization relations while the latter typically
leads to softer predictions of the overall material response.
On the one hand, it was shown that three-phase models
more adequately account for interface effects [19]. Note that
these scale transition techniques based on three-phase rep-
resentations of the materials require the introduction of
interfacial operators [20]. In the case of perfect mobile inter-
faces, these can be obtained by using Hadamard compati-
bility conditions [19,21]; however, to the authors’
knowledge, no closed-form expressions of the interfacial
operators exist in the case of imperfect interfaces. On the
other hand, it was shown in early work by Qu [22,23] that
the effect of slightly more compliant interfaces on the elastic
response of two-phase composite materials can be
accounted for via the use of a two-phase representation.
Therefore the idea is to decompose an initially three-phase
problem into two two-phase problems. Precisely stated,
the first problem considered is that of an inclusion, repre-
senting phase 1, embedded in a matrix phase representing
phase 2. The interface between phases 1 and 2 is imperfect.
The homogenized response of problem 1 is obtained via the
use of the Mori–Tanaka scheme. It is then introduced into a
second problem composed of the HI introduced into the
HEM; the macroscopic response of the material in the
viscoplastic regime is subsequently obtained via the self-
consistent approximation. The overall elastoviscoplastic
response of the composite material is obtained via the field
translation method [14]. A schematic of the proposed
framework is presented in Fig. 1.

Prior to solving the problem of embedded inclusions with
imperfect interfaces in the case of elasticviscoplastic behav-
iors, let us treat the case of pure viscoplastic behaviors. As
mentioned in the above, the problem is treated in two steps
as presented in Fig. 2. First, the discontinuity between the
inclusion and the coating will be treated. This interface is
not perfect and allows relative sliding of the inclusion with
respect to the matrix. The behavior of the homogenized
inclusion will be extracted from the application of a
Mori–Tanaka scheme [12]. Second, the homogeneous med-
ium/homogeneous inclusion discontinuity is treated. In this
case the interface is perfect. Linking the solutions of steps 1
and 2 will lead to the desired expression of the localization
relation. However, let us note here that the inclusion/matrix
relation is clearly approximated in this approach.

The following notations will be used; the superscripts vp,
I, M, HI and e will refer to a viscoplastic term, to the inclu-
sion phase, to the matrix phase, to the homogenized inclu-
sion and to the effective material, respectively. Tensors will
be written in bold characters and their components will be



Solution for the pure 
viscoplastic case 

Mori Tanaka scheme for the 
matrix/inclusion materials 
with imperfect interface 

Development of the 
integral equation in the 

elastic-viscoplastic

Translation of the 
viscoplastic field 

Application of the self-
consistent

approximation

Solution for the elastic-
viscoplastic case 

Evaluation of the 
localization relation

Self-consistent scheme for the 
homogenized

inclusion/homogeneous
materials.
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denoted with subscripts i, j, k, l, m, n = 1,2,3. Also, B* (with
* = vpI, vpM, vpHI) will refer to viscoplastic localization
tensor and b* (with * = I, M, HI) will refer to viscosity ten-
sors. The symbol : will refer to the double dot product.
Finally, for the sake of brevity, the localization expres-
sion will be given solely with respect to the inclusion phase.
However, the equivalent localization expressions in the
case of the matrix phase are found simply from the macro-
homogeneity condition which sets the volume average of
the localization tensors equal to the identity tensor.

Let us first discuss the solution of step 1. For the sake of
clarity let us recall that the problem to be solved corre-
sponds to the case of a two-phase material composed of
an inclusion phase embedded in a matrix phase. Also, in this
case the inclusion/matrix interface is not perfect. Across the
interface the traction vector remains continuous:

Drijnj � ½rijðSþÞ � rijðS�Þ�nj ¼ 0 with i; j ¼ 1; 2; 3: ð1Þ
Here the superscripts + and � denote the respective posi-
tive and negative sides of the interface denoted S. n denotes
the vector normal to the interface. r denotes the Cauchy
stress tensor and the symbol D denotes a jump across the
interface. As a first approach, the jump condition across
the interface is given here in a manner similar to that
proposed by Qu [22] and relates the jump in the displace-
ment, denoted u, to the stress at the interface with a
tensor g:

Dui � uiðSþÞ � uiðS�Þ ¼ gijrjknk: ð2Þ

Here gij represents the compliance of the interface and is gi-
ven by

gij ¼ adij þ ðb� aÞninj: ð3Þ

For the sake of illustration, a sliding law describing the
mechanism of stick–slip is proposed. a is given by the fol-
lowing formula:

a ¼ dc

rc 1�
P

i
Dui

dc

� � : ð4Þ

Here dc and rc denote a critical distance and a critical
stress, respectively. This expression corresponds to the con-
verse of that proposed by Warner et al. [3] for the descrip-
tion of the stick–slip mechanism. Since void creation is not
accounted for in this study b is set to zero. Let us recall that
the stick–slip mechanism corresponds to the alternate
bonding and debonding of the group of atoms delimiting
the interface. From Eq. (4), it can be seen that, until the
sum of the displacement jump reaches a critical relative dis-
placement dc, an increase in the sum of the displacement
jump leads to an increase in a. This would correspond to
the debonding of the group of atoms composing the inter-
face. Also, a should drop sharply when the sum of the
displacement jump reaches dc, which is the limiting value.
This would correspond to the creation of new atomic
bonds. Finally, let us note that as opposed to Onaka’s
work [10], the present model is not restricted to a constant
interface compliance.

Note here that the model could be extended to different
interface behaviors. For example, as discussed elsewhere
[22], the free sliding case can be studied by setting b to zero
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and a to infinity. With the above-mentioned representative
element, the typical expression of Navier’s equations –
which results from the consecutive use of the compatibility
and equilibrium conditions – can be obtained

bC
ijkl _uk;ljðxÞ � ðbC

ijkl � bijklðxÞÞ_evp
kl;jðxÞ ¼ 0: ð5Þ

Here, x; bC; b; _u, and _evp denote the position, the viscosity
tensor within the matrix phase, the local viscosity tensor,
the displacement rate and the local strain rate, respectively.
Also, at any point x the displacement engendered by a unit
force at point x0 must respect the following:

bC
ijlk

o
2G1kmðx; x0Þ
oxloxj

þ dimdðx� x0Þ ¼ 0 with i; j; k; l;m

¼ 1; 2; 3: ð6Þ

Here G1, d and d(x � x0) denote Green’s function, Kro-
necker’s delta and the Dirac function, respectively. The
symbol o/ox denotes a partial derivative. Integrating the
following equation on a volume, denoted X, and multiply-
ing the resulting equation by the displacement rate vector,
_u, leads to the following expression:Z

X

_uiðxÞbM
ijkl

o2G1kmðx; x0Þ
oxloxj

dXðrÞ ¼
� _umðx0Þ x0 2 X

0 x0 62 X

�
ð7Þ

Using the divergence theorem, one can rewrite the volume
integral in Eq. (7) as follows:Z

X

_uiðxÞbM
ijkl

o
2Gkmðx; x0Þ
oxloxj

dXðxÞ

¼
Z

S
_uiðxÞbM

ijkl

oGkmðx; x0Þ
oxl

nj dSðxÞ

�
Z

V
_ui;jðxÞbM

ijkl

oGkmðx; x0Þ
oxl

dXðxÞ ð8Þ

where S denotes the surface surrounding X, and ni denotes
the unit outward normal. Furthermore, multiplying Na-
vier’s equation (5) by Green’s function and integrating
the resulting expression on the same volume X leads to
the following expression:Z

X
G1imðx; x0Þb

M
ijkl _uk;ljðxÞdXðxÞ

�
Z

X
G1imðx; x0Þ bM

ijkl � bI
ijkl

� �
_evp

kl;jðxÞdXðxÞ ¼ 0: ð9Þ

Subtracting (8) from (9) and using the divergence theorem,
one obtainsZ

S
bM

ijkl G1imðx;x0Þ _uk;lðxÞ � Iklmn � bM
klpq

� ��1

bpqmn

� �
_evp

mnðxÞ
� ��

� _uiðxÞ
oGkmðx;x0Þ

oxl

�
nj dSðxÞ

þ
Z

X

oG1imðx; x0Þ
oxl

bM
ijkl� bijkl

� �
_evp

kl ðxÞdXðxÞ ¼
_umx0 x0 2 X

0 x0 62 X

(

ð10Þ
Supposing the arbitrary volume to represent the inclusion’s
volume, denoted XI, Eq. (10) can be simplified by virtue of
local considerations. Therefore, when r0 belongs to the
inclusion, the constitutive relation can be identified within
the above expression and Eq. (10) becomes

_umðx0Þ ¼
Z

S�
G1imðx; x0Þrkl � bM

ijkl _uiðxÞ
oGkmðx; x0Þ

oxl

� �
nj dSðxÞ

þ
Z

XI

oG1imðx; x0Þ
oxl

bM
ijkl � bijkl

� �
_evp

kl ðxÞdXIðxÞ

ð11Þ
Similarly, in the case where x0 is exterior to XI, one obtains
the following relation:

0 ¼
Z

Sþ
G1imðx; x0Þrkl � bM

ijkl _uiðxÞ
oGkmðx; x0Þ

oxl

� �
nj dSðxÞ ð12Þ

Subtracting (11) from (12), one obtains the expression of
the displacement rate at any point within the representative
element:

_umðrÞ ¼
Z

S
bM

ijklD _uiðx0Þ
oGkmðx; x0Þ

oxl

� �
nj dSðx0Þ

þ
Z

XI

oG1imðx; x0Þ
oxl

bM
ijkl � bijkl

� �
_evp

kl ðx0ÞdV ðx0Þ ð13Þ

Let us note that the jump in the displacement rate is intro-
duced in Eq. (13). Differentiating the above expression and
supposing homogeneity of the strain rate tensor within the
inclusion, one obtains

_um;nðxÞ ¼
Z

S
bM

ijklD _uiðx0Þ
oGkmðx; x0Þ

ox0loxn

� �
nj dSðyÞ

þ
Z

V

oG1imðx; x0Þ
ox0loxn

bM
ijkl � bijkl

� �
_evp

kl ðx0ÞdV ðx0Þ ð14Þ

The expression of the local strain rate tensor is derived
from Eq. (14) via use of the compatibility condition:

_evp
ij ðxÞ ¼ T ijmn bM

� �
bM

mnkl � bI
mnkl

� �
_evpI
kl

þ
Z

S
bM

mnklD _ukðx0ÞC1ijmnðx0; xÞnl dSðx0Þ: ð15Þ

Here T(bM) denotes the interaction tensor given by
T bM
� �

¼
R

X C1ðx; x0Þdx0, where C1ijklðx; yÞ denotes Green’s
modified operator. Eq. (15) can be further developed by
introducing the time derivative of the displacement jump
condition given by Eq. (2). Note that the time derivative
of the displacement jump will introduce the time derivative
of the stress tensor, which is supposed here to be negligible
compared to that of the interface compliance tensor. Hence
one obtains

_evp
ij ðxÞ ¼ T bM

mnpq

� �
bM

pqkl � bI
pqkl

� �
_evpI

kl

þ
Z

S
bM

mnkl _gkprpqnqC
1
ijmnðx0; xÞnl dSðx0Þ: ð16Þ

In order to pursue the analytical developments, the stress
state along the interface is supposed constant and equal
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to the stress state in the inclusion. Hence, introducing the
constitutive law in the inclusion into Eq. (16) and averaging
the resulting equation on the inclusion’s volume, one
obtains

_evpI
ij ¼ T ijpq bM

� �
bM

pqkl � bI
pqkl

� �
_evpI
kl

þ _evpI
ab bI

pqabbM
mnklT ijmn bM

� � Z
S

_gkpnqnl dSðx0Þ þ _evpM
ij :

ð17Þ

Note here that the third term on the right-hand side of Eq.
(17) results from the boundary conditions. Let us approxi-
mate the above integral by its average value. Hence, one
obtains

_evpI
ij ¼ T ijpq bM

� �
bM

pqkl � bI
pqkl

� �
þ bM

pqabRabmnbI
mnkl

� �
_evpI

kl þ _evpM
ij ;

ð18Þ
where R is given by

Rmnpq ¼
1

4XI

�
Z

S
_gmpnqnnþ _gmqnpnnþ _gnpnqnmþ _gnqnpnm

� �
dSðx0Þ:

ð19Þ
Note here that in the case of a simple expression of the
interface compliance, an analytical expression of tensor R
can be obtained. Eq. (18) can be written as follows:

_evpI
ij ¼ BvpI

ijkl _e
vpM
kl ; ð20Þ

where BvpI denotes the localization tensor given by

BvpI
ijkl¼ I ijkl�T ijpq bM

� �
bM

pqkl�bI
pqkl

� �
þbM

pqabRabmnbI
mnkl

� �h i�1

:

ð21Þ
Finally step 1 is concluded via the Mori–Tanaka approxi-
mation, which leads to the following expression of the
overall viscosity tensor bHI:

bHI ¼ 1� fð ÞbM þ f bI : AvpI: ð22Þ
Here f denotes the inclusion’s volume fraction. The previ-
ous set of equations (e.g. Eqs. (20)–(22)) provides a com-
plete solution to the first step of the development. In the
second step of the framework, the HI is introduced in a
medium representative of the overall material. The inter-
face between the HI and the effective material is assumed
perfect. Hence, one obtains the localization expressions gi-
ven by

_evpHI
ij ¼ BvpHI

ijkl
_Evp

kl : ð23Þ

Here _Evp denotes the macroscopic viscoplastic strain rate
tensor and the localization tensor is given by

BvpHI
ijkl ¼ I ijkl � T ijpq beð Þ be

pqkl � bHI
pqkl

� �� ��1

; ð24Þ

where be denotes the effective viscosity tensor. From the
solutions of steps 1 and 2 the overall localization relation
can be derived. Precisely, combining the macrohomogene-
ity condition of step 1 and the two localization relations gi-
ven by Eqs. (23) and (20), one obtains the following
localization relation:

_evpI ¼ BI : _Evp; ð25Þ
where the overall viscoplastic localization tensor is given
by

BI ¼ ð1� f 0Þ BvpHI
� ��1

: BvpI
� ��1 þ f 0 BvpHI

� ��1
h i�1

: ð26Þ

Here f0 denotes the volume fraction of the homogenized
inclusion. From the localization relation in the above, the
viscoplastic problem can be completely solved. The solu-
tion to the purely viscoplastic problem can be extended
to the case of elastoviscoplastic solutions via the use of
the field translation method introduced in work by Sabar.
For the sake of conciseness the field translation framework
will not be repeated here. Hence, the overall elastovisco-
plastic localization relation is given by

_eI ¼ AI : ð _E � _EvpeÞ þ AI : BI : _Evp þ AI : SE : Se

: ðcI : _evpI � C e : BI : _EvpÞ: ð27Þ

For the sake of simplicity, let us assume that the averaged
local viscoplastic strain rate can still be related with Eq.
(25). Similarly, the averaged local elastic strain rates can
be related via the equivalent to Eq. (25) in the case of pure
elastic behavior. Hence, AI represents the elastic equivalent
of the localization tensor BI. However, let us note that an-
other interface condition must be introduced to describe
the contribution of imperfect interface bonding to the elas-
tic deformation. Also, Ce, cI, Se, SE denote the macroscopic
elasticity tensor, the local elasticity tensor in the inclusion
phase, the overall compliance tensor and Eshelby’s tensor
[24], respectively. Hence, a complete solution can be found
in the case of elastoviscoplasticity.

3. Application to nanocrystalline materials

The hierarchal scale transition framework presented in
the above was applied to simulate the size effect in pure
face-centered cubic copper polycrystals in which imperfect
phase bonding is expected to occur when the crystallite size
lies in the nanometer range. This may lead to damage that
limits the ductility of the material. As a first approach the
present study is limited to the onset of relative sliding of
grains, and void creation is not accounted for. In a contin-
uation of previous work by the authors [15], the model will
be applied solely in the viscoplastic case. The inclusion
phase will represent grain interiors and the coating phase
will represent grain boundaries and triple junctions. Both
phases are assumed isotropic.

Viscoplastic deformation in crystallites with sizes larger
than �30–50 nm occurs – in the quasi-static range – via the
thermally activated glide of dislocation. Dislocation mobil-
ity is hindered by the stress fields resulting from the
presence of grain boundaries and of sessile dislocations
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[25–27]. The stored dislocation density evolves via the
athermal dislocation storage mechanism and the thermally
activated dislocation annihilation mechanism [28,29].
When the grain size is smaller than �30–50 nm, experi-
ments report severely reduced stored dislocation density
[30] and dislocation storage, and annihilation may not be
activated. Simultaneously, it was suggested via molecular
dynamics simulation and transmission electron microscopy
that grain boundaries act as dislocation sources [30–32].
The emission of dislocations from grain boundaries will
have two effects: (i) local atomic reorganization within
the grain boundary and (ii) deformation within the grain
interior following the glide of an emitted dislocation.

The viscoplastic response of the crystallites – represented
by the inclusion phase – accounts for the thermally acti-
vated glide of dislocations described by a power law [17]:

_evpI
eq ¼ _e0

rI
eq

rf

 !m

: ð28Þ

Here _evpI
eq denotes the equivalent viscoplastic strain rate

within the inclusion phase. rI
eq; _e0; m; rf denote the equiv-

alent stress in the inclusion phase, a reference strain rate,
the flow exponent and the flow stress at 0 K, respectively.
The flow stress at 0 K accounts for the contributions of
the stored dislocations and the grain boundaries:

rf ¼ aMGb
ffiffiffi
q
p þ b=

ffiffiffi
d
p

: ð29Þ
Here a is a constant. G, M, q, b, b and d, respectively, de-
note the shear modulus, the Taylor factor, the dislocation
density, the magnitude of the Burgers vector, the Hall–
Petch slope and the grain size. The dislocation density
evolves via athermal storage – resulting in a decrease in
the mean free path of mobile dislocations – and via dy-
namic recovery:

dq

de
vpI
eq

¼ M
k0

d
þ k1

ffiffiffi
q
p � k20

_evpI
eq

_e�

 !�1=n

q

0
@

1
A: ð30Þ

Here k0, k1 and k20 are three parameters controlling
the rate of storage and annihilation of dislocations. As
mentioned in the above, in the case of crystallites smaller
than �30 nm, dislocation annihilation and storage may
not be activated. Therefore, below this grain size, the dislo-
cation density evolution will be deactivated in a set of
simulations.

Grain boundaries and triple junctions, represented by
the matrix phase, are assumed to deform via the combined
activity of grain boundary dislocation emission and pene-
tration, for which a constitutive law was introduced by
the authors. It is assumed that grain boundary dislocation
emission, which is know to be thermally activated, triggers
the dislocation penetration mechanism, which leads to a
net strain within the grain boundary opposite to the source.
In other words, consistent with molecular dynamics simu-
lations, it is assumed that every emitted dislocation ends
its trajectory in the grain boundary opposite the source.
The equivalent viscoplastic strain rate in the matrix phase
is given by [17]

_evpC
eq ¼

v

d3

rI
eq

rI
c

 !m

exp �DG0

kBT
1�

K � rC
eq

rM
c

 !p !q !
: ð31Þ

Here d; rI
eq; rI

c; m; kB; T ; rC
eq; p and q represent the grain

diameter, the Von Mises stress in the grain core, the grain
core flow stress at 0 K, the flow exponent, the Boltzmann
constant, the absolute temperature (K), the Von Mises
stress in the matrix phase, and two coefficients that charac-
terize the shape of the dislocation emission resistance
curve, respectively. The critical emission stress at 0 K and
the free enthalpy of activation are represented by rM

c and
DG, respectively. These two parameters are extracted from
molecular dynamics simulations of stepped bicrystal inter-
faces. K denotes a stress heterogeneity factor which com-
pensates for the limitations of the micromechanical
scheme used in this work which is limited to homogeneous
states of stress and strains within each phase. Moreover,
these stress and strain heterogeneities were predicted in sev-
eral models. In the previous equation, v is given by

v ¼ mdism0d sinðhÞ
ðmdis þ mGBÞl

ð32Þ

Here mdis, mGB, m0, d, h and t represent the average disloca-
tion rest mass, the interface mass affected by a dislocation
absorption event, the ledge density per unit area, the dislo-
cation emission angle and a numerical constant,
respectively.

Finally, the constitutive law presented in the above and
the scale transition framework combined with the proposed
interface conditions (e.g. Eq. (4)) were implemented to sim-
ulate the size effect in copper. Precisely, the tensile response
of nanometer and conventional copper representative vol-
umes was simulated for several grain sizes. Note that this
model allows the prediction, in a qualitative manner since
elasticity is not considered, of the coupled activity of grain
boundary sliding and grain boundary dislocation emission
and penetration.

The parameters that are used are given in Table 1. All
parameters related to the inclusion phase and the matrix
phase are extracted from Refs. [16,17]. In the case of the
interface, the critical debonding length dc was varied from
1 to 3 nm, which corresponds approximately to �3–10
interatomic distances. Since grain boundary sliding can
be localized in grain boundaries as well as triple junctions,
a simple rule of mixture was used to estimate the critical
sliding stress. Since triple junctions are known to exhibit
a structure devoid of any particular order, similar to an
amorphous structure, its critical sliding stress is estimated
to be equal to the yield stress of a hypothesized amorphous
copper material. w in Table 1 refers to the grain boundary
thickness. Note that as opposed to previous work by
the authors, the free enthalpy of activation and the criti-
cal emission stress are calculated via molecular simulations
[9].



Table 1
Model parameters

Inclusion phase m = 230 n = 21.25 a = 0.33 M = 3.06
b = 0.257 nm b = 0.11 Mpa m�1/2 k = 3.9E9 m�1 k1 = 1.E10 m�1

k20 = 330 _e� ¼ 1=s _e0 ¼ 0:005=s lI = 38 GPa

Matrix phase _mdis ¼ 3:15 pN ps2=Å
2

d = 40 m0 = 0.03 l = 1/2
mGB ¼ p � w2

4 � l � qGB qGB = 7.61 g/cm3 lM = 30 GPa w = 1 nm
DG0 = 103.8 mJ/m2 rM

c ¼ 2450 MPa p = 1 q = 1.5

Interface dc = 1, 2, 3 nm rTJ
c ¼ 800 MPa

Fig. 3. Effect of grain boundary sliding on the evolution of yield stress
with grain size.

1 For interpretation of color in Fig. 3, the reader is referred to the web
version of this article.
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In order not to overestimate the effect of grain bound-
aries and triple junctions, the volume fractions of the inclu-
sions in steps 1 and 2 are different. Precisely, in the first step
the matrix phase represents only half the volume fraction
of the grain boundaries and triple junctions predicted with
a spherical grain assumption. Consequently in step 1, the
volume fraction of the inclusion, denoted f (the volume
fraction of matrix is equal to 1 � f), is given by

f ¼ d
d þ w=2

� �3

: ð33Þ

However, in step 2 the volume fraction of the inclusion, de-
noted f0 (the volume fraction of the HEM is equal to
1 � f0), is given by

f 0 ¼ d þ w=2

d þ w

� �3

: ð34Þ

Finally, the critical sliding stress, denoted rc in Eq. (4), is
taken as the mixture rule between the critical grain
boundary stress rM

c and the critical triple junction stress
rTJ

c . Nanocrystalline materials exhibit numerous size ef-
fects, such as size-dependent strain rate sensitivity and
‘‘abnormal” evolution of the yield stress with the grain
size characterized by the breakdown of the Hall–Petch
law [33,34] resulting from the activity of mechanisms
not operating in the conventional regime. The two most
probable mechanisms which were suggested to result in
the breakdown of the Hall–Petch law are (i) grain bound-
ary sliding and (ii) grain boundary dislocation emission
[35–37].

As shown in a previous study, the mechanism of grain
boundary dislocation emission can result in a softening in
the viscoplastic response of nanocrystalline materials.
However, the activation of grain boundary dislocation
emission requires the presence of large states of stress
within the grain boundaries. When the stress heterogeneity
factor,K, is equal to 1, grain boundary dislocation emission
is severely limited, if not inactive, and one would expect the
abnormal grain boundary sliding to be the primary soften-
ing mechanism. This can be observed in Fig. 3, which
shows the evolution of the yield stress with respect to the
inverse of the square root of the grain size. The dark bold
curve corresponds to the case where grain boundary sliding
is activated, while the dark dashed curve corresponds to the
case where grain boundary sliding is deactivated. The red1

curves correspond to plots of the Hall–Petch law for two
different initial states of stress in the conventional regime.
The stress heterogeneity factor was set to 1 in these simula-
tions. Hence, the effect of grain boundary dislocation emis-
sion is negligible. On the one hand, when grain boundary
sliding is not allowed, no remarkable breakdown of the
Hall–Petch law is predicted. However, let us note that a
Hall–Petch slope slightly lower than that measured experi-
mentally is predicted. On the other hand, one can observe
that grain boundary sliding, modeled here as a stick slip
mechanism, leads to a noticeable breakdown of the Hall–
Petch law. Hence, the model predicts that the sole activity
of grain boundary sliding is sufficient to lead to the
observed softening in the viscoplastic response of nano-
crystalline materials.

Fig. 4 shows the tensile response of 15 nm grain nano-
crystalline copper for three values of the critical debonding
length dc (1, 2 and 3 nm). Let us remark that the effect of
the debonding length on the overall model prediction is
negligible in the possible range of values of the parameter.

As discussed above, in the nanocrystalline regime, the
activity of dislocations within grain interiors – in terms of
storage and annihilation – is expected to be negligible.



Fig. 4. Effect of grain critical debonding length on the macroscopic tensile
response of 15 nm grain nanocrystalline copper.
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Hence, in Fig. 3 and in previous analyses by the authors
and others, the response of grain interiors is clearly overes-
timated. The effect of this assumption is presented in Fig. 5
which shows the evolution of yield stress with the inverse of
the square root of the grain size in the case where disloca-
tion activity is not prevented (bold curve) and in the case
where dislocation evolution is deactivated for grain sizes
smaller than 30 nm (dashed curve). The stress heterogene-
ity factor, K, was set to 1. Hence, grain boundary disloca-
tion emission is negligible. One can observe that upon
deactivating the dislocation evolution, the yield stress
decreases sharply with a decrease in the grain size prior
to increasing again with a reduced Hall–Petch slope. The
sharp decrease is an artifact resulting from the fact that
when dislocation activity is prevented, the response of the
inclusion phase becomes elastic–perfectly plastic. There-
fore, the grain interiors present no hardening, resulting in
this sharp decrease. However, one can observe that, disre-
garding the offset in the two curves, the slopes remain
equal, independent of the activity of dislocations. Hence,
it is shown here that models accounting for dislocation
Fig. 5. Effect of intragranular dislocation activity on the evolution of yield
stress with the grain size.
storage and annihilation within the nanocrystalline regime
clearly overestimate the response of grain interiors and,
consequently, the overall response. Hence, no quantitative
conclusion can be drawn from such models. However, as
shown in Fig. 5, qualitative analysis can still be performed
from these approximated models.

The simultaneous effect of grain boundary sliding and
grain boundary dislocation emission is presented in
Fig. 6, which shows the evolution of the yield strength with
the inverse of the square root of the grain size. In these sim-
ulations, dislocation evolution is allowed within the grain
interiors. Three cases are presented, corresponding to stress
heterogeneity factors K=1, 1.5 and 2, represented by the
bold, dashed and dotted curves, respectively. One can
observe that the softening in the viscoplastic response of
nanocrystalline materials, characterized by the breakdown
of the Hall–Petch law, becomes more pronounced with an
increase in the stress heterogeneity factor. This results from
the fact that an increase in the stress heterogeneity factor
results in an increase in the activity of grain boundary dis-
location emission. One can observe in Fig. 7, which pre-
sents predictions of the tensile response of 15 nm grain
nanocrystalline copper in the cases where the stress hetero-
geneity factor, K, is set to 1, 1.5 and 2, that the activity of
grain boundary dislocation emission results in a softening
in the viscoplastic response of nanocrystalline materials.

From the above figures, it can be seen that the proposed
model allows the prediction of the simultaneous, and
implicitly coupled, activity of grain boundary sliding and
grain boundary dislocation emission. Among other things,
one can conclude that the breakdown of the Hall–Petch
law should be more pronounced in the case of nanocrystal-
line materials presenting highly irregular grain boundaries.
Hence, this should apply to nanocrystalline materials fabri-
cated by severe plastic deformation, which have been
shown to exhibit highly stepped grain boundaries [38]. Sim-
ilarly, nanocrystalline materials with less irregular grain
boundaries will deform viscoplastically via grain boundary
Fig. 6. Coupled effect of grain boundary dislocation emission and grain
boundary sliding on the evolution of yield stress with the grain size.



Fig. 7. Effect of grain boundary dislocation emission on the macroscopic
tensile response of 15 nm grain nanocrystalline copper.
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sliding. In the case of an accommodation of grain bound-
ary sliding via vacancy diffusion, the material’s ductility
is not then prejudiced by the activity of grain boundary
sliding. However, in the case where vacancy diffusion is
not activated, or where it is activated at a rate not sufficient
to accommodate grain boundary sliding, the deformation
of nanocrystalline materials will be followed by void crea-
tion within the material. This case will be the subject of
future study. Also, it was shown that the grain size distri-
bution and related variance has a non-negligible influence
on the response of nanocrystalline materials [39]. This fea-
ture will be added to the present model.

4. Conclusion

A hierarchal scale transition framework was introduced
to allow the prediction of the overall elastoviscoplastic
response of composite materials with imperfect interfaces.
The homogenization procedure relies on the decomposition
of a three-phase material’s representation into two two-
phase problems. First the viscoplastic response of a repre-
sentative volume element composed of the two imperfectly
bonded phases is predicted via the introduction of interface
conditions and via the Mori–Tanaka approximation. Sec-
ond, the homogenized material is embedded in a matrix
with effective properties and the overall viscoplastic
response is predicted with the self-consistent approxima-
tion. Finally the overall elastoviscoplastic behavior is
obtained via the field translation method. The model was
applied to the case of pure nanocrystalline copper for
which both the activity of dislocation glide, grain boundary
dislocation emission and grain boundary sliding were con-
sidered. The relative sliding of grain interiors was modeled
as a stick–slip mechanism where the compliance of the
interface varies during deformation. It was shown that
the present framework allows the prediction of the simulta-
neous activity of grain boundary dislocation emission and
grain boundary sliding. The former is expected to be pre-
dominant in the case of nanocrystalline materials with a
high content of largely non-uniform grain boundaries,
while the latter is expected to be predominant in the case
of nanocrystalline materials with a high content of uniform
grain boundaries. Further study will investigate the mech-
anism of void creation and the effect of grain size
distribution.
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