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a b s t r a c t

This paper reports the development of a new stress-dependent chemical potential for

solid state diffusion under multiple driving forces including mechanical stresses. The

new stress-dependent chemical potential accounts for nonlinear, inelastic, and finite

deformation. By using this stress-dependent chemical potential, insertion and extrac-

tion of lithium ions into a silicon particle is investigated. The distribution and evolution

of diffusion-induced stress during the insertion/extraction processes are numerically

calculated. Critical particle size is obtained as a function of the charging/discharging

rates. It is also found that when plastic deformation occurs, the hoop stresses on the

particle surface, contrary to intuition, can become positive even during the charging

process, which may explain some of the recent experimental observations.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the societal interest in energy storage and clean energy conversion devices, ionic transport and diffusion in
various solids under electrochemical driving forces have attracted much attention in recent years. For example,
Swaminathan and Qu (2007a, b, c, 2009) had investigated the diffusion-induced stress in both planar and tubular solid
oxide fuel cells. Zhou et al. (2010a, b) considered the stress-oxidation interaction in selective oxidation of Cr–Fe alloys used
in solid oxide fuel cells. Very recently, a number of studies have appeared on the diffusion-induced stress in silicon anode
in lithium ion batteries, e.g., Sethuraman et al. (2010), Bower et al. (2011), Gao and Zhou (2011), Haftbaradaran et al.
(2011), Huang and Zhu (2011) and Zhao et al. (2011a, b). In all these aforementioned works, the fundamental physics
involved is the atomic or ionic diffusion in solids under multiple driving forces. Atomic diffusion in a solid may change the
solid’s composition from its stoichiometric state. Such a deviation from stoichiometry usually is accompanied by a
volumetric change. If the volumetric change is not accommodated appropriately, it would generate a mechanical stress
field in the solid, which would in turn affect the diffusion process. Such stress and diffusion interaction is governed by the
thermodynamic equilibrium of the solids.

Although thermodynamic equilibrium of multi-component solids under mechanical stress has been the subject of
research since Gibbs’ time (Gibbs, 1906), the framework for solid state diffusion involving the change of composition while
remaining in the solid state was not established until much later (Li et al., 1966; Larche and Cahn, 1973). In their seminal
work, Larche and Cahn (1973) developed a thermodynamic framework for multi-component solids which reach
equilibrium under non-hydrostatic stress. The framework was based on the assumption that ‘‘there exists a certain
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identity which we shall call network which is embedded in the solid and permit the definition of a displacement and hence
a strain’’ (Larche and Cahn, 1973). Based on this assumption, a stress-dependent chemical potential was introduced to
account for the interaction between stress and diffusion. Since then, Larche and Cahn have used this general framework to
solve a number of material science and engineering problems (Larche and Cahn, 1973, 1978, 1982, 1985, 1987, 1992).
Recent works on the diffusion-induced stress in silicon anode in lithium ion batteries (e.g., Sethuraman et al., 2010; Bower
et al., 2011; Gao and Zhou, 2011; Haftbaradaran et al., 2011; Huang and Zhu, 2011; Zhao et al., 2011a, b), have all been
based on this general framework of Larche and Cahn.

In the framework of Li et al. (1966) and Larche and Cahn (1973, 1978), only the hydrostatic Cauchy stress (trace of the
Cauchy stress tensor) enters the stress-dependent chemical potential. As a result, the underlying diffusion equation is
actually independent of any accompanying stress field. To fully account for the two-way interaction between stress and
diffusion, Wu (2001) derived a different stress-dependent chemical potential in which, instead of the hydrostatic Cauchy
stress, the Eshelby momentum tensor (Eshelby, 1951, 1975) is involved. However, because of the particular approach used,
the elastic moduli used in Wu’s model must be those of the solid at its stoichiometry state, not at the current state.

In this paper, we present a new stress-dependent chemical potential for the finite deformation of solids. It is shown that
our new stress-dependent chemical potential reduces to that of Wu (2001) if the elastic moduli are invariant to the
compositional change, and to that of Larche and Cahn (1973) if both the elastic and the compositional strains are small.
Comparisons among these three stress-dependent chemical potentials are made numerically by using a simple
cause study.

As an example to illustrate the application of the newly developed stress-dependent chemical potential, insertion and
extraction of lithium ions into a silicon particle is investigated. The distribution and evolution of diffusion-induced stress
during the insertion/extraction processes are numerically calculated. Critical particle size is obtained as a function of the
charging/discharging rate. It is also found that when plastic deformation occurs, the hoop stresses on the particle surface,
contrary to intuition, can become positive even during the charging process.

2. Finite deformation kinematics and kinetics

The kinematics of the motion of material particles in a continuum medium can be described by a continuous
displacement field u given by

u¼ x�X, ð1Þ

where x is the position occupied at the current time t by the particle which occupied the position X in the initial
configuration (t¼0). The deformation of the continuum can be described by the deformation gradient tensors

FiJ ¼
@xi

@XJ
¼ diJþ

@ui

@XJ
, f Ij ¼

@XI

@xj
¼ dIj�

@uI

@xj
: ð2Þ

Clearly, we have fIkFkJ¼dIJ, where dij is the Kronecker delta. The Lagrangian finite strain tensor is defined in terms of the
deformation gradient tensor

EIJ ¼
1

2
ðFkIFkJ�dIJÞ ¼

1

2

@uI

@XJ
þ
@uJ

@XI
þ
@uk

@XI

@uk

@XJ

� �
: ð3Þ

The state of stress at a point in a continuum can be represented by the Cauchy stress tensor sij in the current (or
deformed) configuration. In addition to the Cauchy stress, the first and second Piola–Kirchhoff (P–K) stress may also be
introduced, respectively,

s0
Ij ¼ Jf Ikskj, ~sIJ ¼ Jf Ikf Jmskm, ð4Þ

where J¼ detðFiJÞ is called the Jacobian that represents the volumetric change under the deformation FiJ.
The static equilibrium of the material particles requires

@s0
Ij=@XI ¼ 0 or @sij=@xi ¼ 0: ð5Þ

3. Compositional change

Without loss of generality, we consider a solid substance AxB that consists of species A and species B. It is assumed that
the concentration of A in AxB may vary from x¼0 to xmax, where xmax is the maximum possible concentration of A in AxB.
We note that the substance AxB may be a crystalline or an amorphous solid. In addition, the following derivation can be
easily extended to compounds with more than two species.

Furthermore, we assume that the solid in consideration can be represented by the network model of Larche and Cahn
(1973). Specifically, we assume that the lattice sites of species B form a network within which species A can move (diffuse).
This allows the definition of a displacement and hence a strain of the solid.
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Depending upon the materials and temperature, there might be a particular value of x¼x0 (which could be zero) so that
the solid substance AxB is in a stress-free stoichiometric state. In this paper, we identify this stress-free stoichiometric state
as the initial state, and material particles in this state will be identified by their Lagrangian coordinates X attached to
this state.

Deviation from its stoichiometric state may cause a volumetric change (deformation) of the solid. If the change in the
concentration of A is uniform throughout the solid, and the solid is not constrained mechanically, the deformation would
be uniform and no stress would be generated anywhere in the solid, albeit the solid has undergone a volumetric change.
Such a homogeneous deformation of the solid is inelastic since no stress is generated. Thus, it is called an eigen-
transformation. However, if the solid is constrained mechanically or if the concentration is not uniform throughout the
solid, stresses may be created due to the incompatibility of the eigen-transformation. In addition, plastic deformation may
also occur, which can also be considered as an eigen-transformation. Consequently, elastic deformation has to occur to
ensure that the total deformation is compatible. Therefore, the total deformation of the solid from its initial state may be
written as

F¼ FeFn, Fn
¼ FcFp, ð6Þ

where Fc represents the eigen-transformation due to the compositional change, Fp represents the plastic deformation, and
Fe represents the elastic deformation associated with Fn so that the total deformation is compatible.

Eq. (6) represents a deformation that transforms the initial (undeformed) state of the solid to its final (current or
deformed) state. The total deformation can be viewed as a sequence of eigen-transformation represented by Fn followed by
an elastic deformation represented by Fe. The state of the solid after the eigen-transformation Fn is called the intermediate
state. We note that the intermediate state is a stress-free state, and is not necessarily kinematically compatible. The three
states of the solids are schematically shown in Fig. 1, where for clarity, the Cartesian coordinate systems {eI,eJ,eK}, fe

î
,e

ĵ
,e

k̂
g,

and {ei,ej,ek} have been used in the initial, intermediate and the final (current) states, respectively.
It follows from the first of (3) that the total Lagrange strain can be written as

E¼ 1
2ðF

T F�IÞ ¼ ðFn
Þ
T EeFn

þEn, ð7Þ

where

Ee
¼ 1

2 ½ðF
e
Þ
T Fe
�I�, En

¼ 1
2½ðF

n
Þ
T Fn
�I� ð8Þ

can be regarded as the elastic strain and the eigenstrain, respectively.

4. Internal energy and chemical potential

Let x0 and xmax be, respectively, the stoichiometric and maximum concentration of species A in AxB. Then, the deviation
from the stoichiometric concentration can be measured by c¼ ðx�x0Þ=xmax. For brevity, c will still be called the
concentration in the rest of this paper without causing any confusion. If the total deformation gradient F¼FeFn and the
concentration c are taken as the independent variables, the total internal energy density per unit volume in the reference
frame can be written as

PðF,cÞ ¼jðcÞþWðF,cÞ ¼jðcÞþ JnwðF,cÞ, ð9Þ

where j(c) is the internal chemical energy in the intermediate state per unit volume of the reference frame, W(F,c) is the
strain energy in the current state per unit volume of the reference frame, w(F,c) is the strain energy per unit volume
of the intermediate state, and Jn is the Jacobian that transforms an infinitesimal volume element in the initial state to the

Fig. 1. Decomposition of the total deformation.
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corresponding volume in the intermediate, i.e.,

Jn ¼ detðFn
Þ: ð10Þ

We note that writing W(F,c) as Jnw(F,c) is to facilitate the derivations below. Also, for brevity, the dependence of P on
entropy and temperature is not explicitly expressed.

The chemical potential of species A per mole of species A is a thermodynamic function given by

mðF,cÞ ¼
Vm0

xmax

@PðF,cÞ

@c

� �
F

¼ m0ðcÞþtðF,cÞ, ð11Þ

where Vm0 is the molar volume of AxB at the stoichiometric concentration, the notation (@/@c)F means that the partial
derivative is performed while keeping F constant, and

m0ðcÞ ¼
Vm0

xmax

@jðcÞ
@c

, tðF,cÞ ¼
Vm0

xmax

@½JnwðF,cÞ�

@c

� �
F

, ð12Þ

are the stress-independent and stress-dependent parts of the chemical potential, respectively.
We note that the m(F,c) defined in (11) is typically not a true chemical potential. Often, it is a diffusion potential

(Swaminathan et al., 2007b). The interpretation of m(F,c) may differ depending upon the particular material system of
interest. Nevertheless, the mathematical form is the same and the derivations below equally apply.

The stress-independent part of the chemical potential may be written as

m0ðcÞ ¼ m0
0þRgT logðgcÞ, ð13Þ

where m0
0 is a constant that represents the chemical potential at a standard state, Rg is the standard gas constant, T is the

temperature in Kelvin, and g is the activity coefficient which represents the effects of interactions (non-ideal) among the
atoms/molecules. We note that g may also depend on c. For a dilute solution, interactions among the atoms/molecules are
negligible, thus gE1.

In the remaining part of this section, we focus on carrying out the differentiation in the stress-dependent part of the
chemical potential. Note that the strain energy depends not only on the deformation, but also on the stiffness C of the solid,
which may also be a function of the concentration c. Therefore, the derivative with respect to c may be carried out in two
steps, first for fixed C, then for fixed deformation, i.e.,

tðF,cÞ ¼
Vm0

xmax

@½JnwðF,cÞ�

@c

� �
F

¼
Vm0

xmax

@½JnwðF,cÞ�

@Fn

îJ

@Fn

îJ

@c

 !
F,C

þ Jn
@wðF,cÞ

@c

� �
Fe ,Fn

2
4

3
5: ð14Þ

For convenience, we denote fn¼(Fn)�1. Making use of the well-known relationships

@Jn

@Fn

îJ

¼
@detðFn

Þ

@Fn

îJ

¼ Jnf n
Jî
,

@f n
Iĵ

@Fn

k̂L

¼�f n
Ik̂

f n
Lĵ

, ð15Þ

one can show

@Fe
mn̂

@Fn

îJ

 !
F,C

¼
@ðFmK f nKn̂Þ

@Fn

îJ

 !
F,C

¼ FmK
@f nKn̂

@Fn

îJ

¼�FmK f n
Kî

f nJn̂ ¼�Fe
mî

f nJn̂: ð16Þ

Thus,

@wðF,cÞ

@Fn

îJ

 !
F,C

¼
@wðF,cÞ

@Fe
mn̂

@Fe
mn̂

@Fn

îJ

 !
F,C

¼�
@wðF,cÞ

@Fe
mn̂

� �
F,C

Fe
mî

f nJn̂: ð17Þ

Consequently,

@½JnwðF,cÞ�

@Fn

îJ

 !
F,C

¼
@Jn

@Fn

îJ

 !
F,C

wðF,cÞþ Jn
@wðF,cÞ

@Fn

îJ

 !
F,C

¼SJK f n
Kî

, ð18Þ

where

SJK ¼ dJK WðF,cÞ�Jn
@wðF,cÞ

@Fe
mn̂

� �
F,C

FmK f nJn̂ ð19Þ

can be called the generalized Eshelby stress tensor in that for hyperelastic materials

@wðF,cÞ

@Fe
mn̂

¼
1

Jn
Fn

n̂Ks
0
Km ð20Þ

which leads to the conventional Eshelby stress tensor (Eshelby, 1951, 1975)

SJK ¼ ½dJK WðF,cÞ�s0
JmFmK �: ð21Þ

Z. Cui et al. / J. Mech. Phys. Solids 60 (2012) 1280–1295 1283



Author's personal copy

It is not surprising that the Eshelby stress tensor naturally appears in the stress-dependent chemical potential. In fact,
as pointed out in Cleja-Tigoiu and Maugin (2000) that the Eshelby stress tensor often arises in problems involving
compositional/microstructural changes, because the Eshelby stress tensor provides a stress measure in the elastically
released intermediate configuration.

The appearance of the Eshelby stress brings the elastic energy into the chemical potential. Thus, the interplay between
a composition-generated deformation and another elastic field may become important via the interaction energy. This
marks the fundamental difference between the current model and the model of Larche and Cahn (1973, 1978). Further
discussions of this difference can be found in Wu (2001).

In conjunction with the first of (4), one can easily show that

SKK ¼ ½3WðF,cÞ�s0
KmFmK � ¼ 3WðF,cÞ�Jskk: ð22Þ

Finally, substituting (18) into (14) gives the stress-dependent part of the chemical potential

tðF,cÞ ¼
Vm0

xmax
SJK f n

Kî

@Fn

îJ

@c

 !
F,C

þ Jn
@wðF,cÞ

@c

� �
Fe ,Fn

" #
: ð23Þ

Further, if the material is linearly elastic, one has

WðF,cÞ ¼ JcwðF,cÞ, wðF,cÞ ¼ 1
2C

îĵk̂l̂
Ee

îĵ
Ee

k̂l̂
, ð24Þ

where C
îĵk̂l̂

is the elasticity tensor of the material in the intermediate state, which may depend on the concentration c. In
this case, (23) can be cast into a form that is more convenient to use

tðF,cÞ ¼
Vm0

xmax
�

1

3

@Jc

@c
Fe

îm̂
Fe

în̂
C

m̂n̂k̂l̂
Ee

k̂l̂
þ

1

2
Jc
@C

îĵk̂l̂

@c
þ
@Jc

@c
C

îĵk̂l̂

 !
Ee

îĵ
Ee

k̂l̂

#
:

"
ð25Þ

Clearly, three terms of right side of (25) represent the chemical potential contributions from first Piola–Kirchhoff stress
tensor, varying elastic modulus and elastic strain energy, respectively.

5. Special cases

In the rest of this paper, we assume. First, note that for hyperelastic materials under elastic deformation with isotropic
eigen-transformation Fc

¼(Jc)1/3I, (23) reduces to

tðF,cÞ ¼ VB
m

Z
Jc SKKþ

Jc

xmax

@wðF,cÞ

@c

� �
Fe ,Fc

" #
: ð26Þ

where Jc
¼ 1þ3Zxmaxc and VB

m is the molar volume of species B in the initial state. Z is the coefficient of compositional
expansion (CCE), which is a material property that characterizes the linear measure of the volumetric change due to unit
change of the concentration (Swaminathan et al., 2007c). For a given material, the CCE can be obtained either
experimentally, or by conducting molecular dynamic simulations (Swaminathan and Qu, 2009; Cui et al., 2011).

It is noted that, although the form of (26) is similar to that of Wu (2001), there is a significant difference between these
two results. The elasticity tensor C(c) appeared in (26) is evaluated at the current concentration c, while in Wu (2001) the
elasticity tensor is evaluated at the stoichiometric concentration. In other words, when explicitly written, Wu’s result is
actually

tðF,cÞ ¼ VB
m

Z
Jc SKK jc ¼ 0þ

Jc

xmax

@wðF,cÞ

@c

����
c ¼ 0

� �
Fe ,Fc

" #
: ð27Þ

Clearly, the difference between (26) and (27) becomes negligible when the concentration deviates slightly from
stoichiometry and/or the elastic modulus does not change significantly with respect to the concentration. In fact, these
were the assumptions implicitly used in Wu (2001). These assumptions are necessary because of the particular method
used in Wu (2001) to derive (27).

Next, again consider isotropic eigen-transformation Fc
¼(Jc)1/3I, Jc

¼ 1þ3Zxmaxc. Further, assume that the deformation is
linearly elastic, and both the elastic strain and the eigenstrain are small so that terms of order r0Ee or higher can be
neglected and JcE1. Under these assumptions, one can show that (23) reduces to

tðF,cÞ ¼
VB

m

xmax
�
skk

3

@Jc

@c
þ

1

2

@C
îĵk̂l̂
ðcÞ

@c
Ee

îĵ
Ee

k̂l̂

" #
: ð28Þ

This is identical to the result given by Larche and Cahn (1973). In other words, the result of Larche and Cahn (1973) is
valid only when both elastic strain and eigenstrain are small. For some problem, the eigenstrain may not be small. For
example, insertion of lithium into silicon can induce as much as 400% volume change. Clearly, Jc can be significantly
different from unity.
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Author's personal copy

To compare the different levels of simplifications and their validity, we consider an idealized example in this section.
Imagine a spherical particle made of one mole of amorphous silicon (Si) atoms. For simplicity, we assume that particle is
encased within a rigid shell so that its volume cannot expand, as shown in Fig. 2. Next, assume that x moles of lithium (Li)
are inserted into the particle so that the concentration of Li in the LixSi is c¼ ðx=xmaxÞ, where for Si, xmax ¼ 4:4. Further, we
assume that Li is uniformly distributed throughout the spherical particle. Clearly, this is an extremely idealized example.
But, it will serve our purpose.

Under these assumptions, it is obvious that F¼I and Fp
¼I. Thus, one can easily write down the following:

Fc
¼ ðJc
Þ
1=3I, Fe

¼ ðJc
Þ
�1=3I, Ee

¼ 1
2 ðJ

c
Þ
�2=3
�1

h i
I: ð29Þ

We further assume that the LixSi alloy is isotropic and linearly elastic, i.e.,

WðF,cÞ ¼
Jc

2

EðcÞ

ð1þnÞ
n

1�2n ðE
e
k̂k̂
Þ
2
þEe

ĵk̂
Ee

k̂ĵ

� �
, ð30Þ

where Poisson’s ratio n is independent of c and Young’s modulus is given by

EðcÞ ¼ Eð0Þ½1þZExmaxc�: ð31Þ

The constant ZE is the intrinsic material property that characterizes the variation of Young’s modulus with respect to Li
concentration c. Combining (29) and (30) leads to

WðF,cÞ ¼
3EðcÞJc

8ð1�2nÞ ½ðJ
c
Þ
�2=3
�1�2: ð32Þ

For LixSi under elastic deformation, the compositional expansion may be written as Jc
¼ 1þ3Zxmaxc.

Making use of the above, the stress-dependent part of the chemical potential can be evaluated from (26)–(28). Shown
in Fig. 3 is the comparison among these different formulas versus c. The parameters used in the calculations are tabulated

Fig. 2. Illustration of spherical particle with a rigid shell.

Fig. 3. t(F,c) vs. c computed from (26) (this paper), (27) (Wu, 2001), and (28) (Larche and Cahn, 1973), respectively.
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in Table 1. It is seen that for c less than 10%, these three formulas give very similar results. The results are different for
larger concentrations (i.e., larger eigenstrains) or larger elastic strains.

6. Spherical silicon particle

As an example to illustrate the use of the newly developed stress-dependent chemical potential, we consider a
spherical amorphous silicon (Si) particle of initial radius R0 (anode). Let the particle be immersed in a liquid electrolyte of
infinite extent containing lithium ions of sufficient concentration. Further, by neglecting the hydrostatic pressure in the
liquid electrolyte, the particle surface can be considered traction-free. Thus, the problem is spherically symmetric, i.e., in
the spherical coordinate system (R,Y,F), the displacement field inside the Si particle can be written as

uR ¼ uðR,tÞ, uY ¼ uF ¼ 0: ð33Þ

The traction-free boundary condition is thus expressed as

sRðR0,tÞ ¼ sRYðR0,tÞ ¼ sRFðR0,tÞ ¼ 0: ð34Þ

During lithium insertion, the boundary condition for the Li flux at the surface can be written as

JRðR0,tÞ ¼ J0½1�cðR0,tÞ�, JYðR0,tÞ ¼ JFðR0,tÞ ¼ 0, ð35Þ

where J0 is a constant representing the charging rate. It can be shown that (35) is a linearized form of the Butler–Volmer
equation (Chen et al., 2009). Upon discharging (lithium extraction), the boundary condition for the Li flux at the surface
should be changed to

JRðR0,tÞ ¼�J0cðR0,tÞ, JYðR0,tÞ ¼ JFðR0,tÞ ¼ 0, ð36Þ

Further, we assume that the lithiated state (LixSi) remains amorphous so that its elastic properties are linear and
isotropic before plastic yielding occurs, and can be represented by Young’s modulus and Poisson’s ratio

EðcÞ ¼ E0ð1þZExmaxcÞ, n¼ n0, ð37Þ

where E0 and v0 are the elastic properties of pure amorphous Si. The constant ZE represents the variation of Young’s
modulus with respect to Li concentration c.

Finally, assume that the eigen-transformation during lithiation is isotropic and given by

Fc
¼ ðJc
Þ
1=3I, Jc

¼ 1þ3Zxmaxc, ð38Þ

where xmax ¼ 4:4 represents the saturation of Li in LixSi, and Z is the CCE (Swaminathan et al., 2007b).
We are now ready to derive the governing equations for the insertion/extract process. First, symmetry of the problem

dictates that the deformation is

F¼/F11,F22,F33S¼/1þ@u=@R,1þu=R,1þu=RS, ð39Þ

where the brackets stands for the diagonal of a matrix. If the plastic deformation is incompressible, i.e., detðFp
Þ ¼ 1, one can

write

Fp
¼/lp,1=

ffiffiffiffiffi
lp

q
,1=

ffiffiffiffiffi
lp

q
S, ð40Þ

Table 1
Material properties and initial parameters used in our model.

A0, parameters of the activity constant �0.3063 eV/atom

B0, parameters of the activity constant �0.4003 eV/atom

D0, diffusivity of Si anode 1�10�16 m2/sa

_d0, characteristic strain rate for plastic flow in Si 1�10�3 s�1

E0, elastic constant of pure silicon 90.13 GPab

m, stress exponent for plastic flow in Si 4c

Rg, gas constant 8.314 J K�1 mol�1

R0, initial radius of unlithiated Si anode 200 nm

T, temperature 300 K

VB
m , molar volume of Si 1.2052�10�5 m3/mol

xmax , maximum concentration 4.4

a, coefficient of diffusivity 0.18d

Z, coefficient of compositional expansion (CCE) 0.2356

ZE, rate of change of elastic modulus with concentration �0.1464b

n0, Poisson’s ratio of Si electrode 0.28

sf, initial yield stress of Si 0.12 GPac

a Liu et al. (2011).
b Rhodes et al. (2010).
c Bower et al. (2011).
d Haftbaradaran et al. (2011).
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where lp is the plastic stretch in the radial direction. Combining (38) and (39) leads to

Fe
¼/Fe

R,Fe
Y,Fe

FS¼ ðJ
c
Þ
�1=3 1þ@u=@R

lp
,ð1þu=RÞ

ffiffiffiffiffi
lp

q
,ð1þu=RÞ

ffiffiffiffiffi
lp

q� 	
, ð41Þ

where Fe
Y ¼ Fe

F due to symmetry. Clearly, there are three unknowns, i.e., u, c and lp. Making use of (41) in (8) gives the
elastic strain

Ee
¼ 1

2½ðF
e
Þ
T Fe
�I� ¼/Ee

R,Ee
Y,Ee

YS: ð42Þ

Let the elastic behavior be defined by the strain energy density in the reference frame

WðF,cÞ ¼
Jc

2

EðcÞ

ð1þnÞ
n

1�2n
ðEe

k̂k̂
Þ
2
þEe

ĵk̂
Ee

k̂ĵ

� �
: ð43Þ

The strain energy density in the intermediate state is simply w(F,c)¼(W(F,c)/Jc). The first P–K stress can then be
computed from (43) using (20). For the particular case considered here, it can be shown that the non-zero components of
the first P–K stress tensor are given, respectively, by

s0
R ¼

JcEðcÞ

ð1þnÞð1�2nÞ
ð1�nÞEe

Rþ2nEe
Y


 � 2Ee
Rþ1

1þ@u=@R
, ð44Þ

s0
Y ¼ s

0
F ¼

JcEðcÞ

ð1þnÞð1�2nÞ ðnEe
RþEe

YÞ
2Ee

Yþ1

1þu=R
: ð45Þ

In deriving (44) and (45), FeFcFp
¼F has been used. The corresponding Cauchy stresses are given by

sR ¼
EðcÞ

ð1þnÞð1�2nÞ ð1�nÞE
e
Rþ2nEe

Y

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2Ee
R

q
1þ2Ee

Y
, ð46Þ

sY ¼ sF ¼
E cð Þ

ð1þnÞð1�2nÞ ðnEe
RþEe

YÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2Ee
R

q : ð47Þ

To describe the plastic behavior, we first consider the rate of plastic deformation tensor

Dp
¼ 1

2½ðL
p
Þ
T
þLp
�, ð48Þ

where Lp is the plastic part of the spatial gradient of the velocity

Lp
� FeFc _F

p
ðFp
Þ
�1
ðFc
Þ
�1
ðFe
Þ
�1: ð49Þ

Since all three deformation gradient tensors are diagonal in the particular case considered here, the rate of plastic
deformation is simplified to

Dp
¼ _F

p
ðFp
Þ
�1
¼

_lp

2lp
/2,�1,�1S: ð50Þ

Next, consider the deviatoric part of the Cauchy stress

s¼ r�
skk

3
I¼

sR�sY

3
/2,�1,�1S: ð51Þ

The corresponding effective stress is then given by

sef f ¼

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffi
tijtij

p
¼ 9sR�sY9: ð52Þ

Finally, the viscoplastic behavior of LixSi can be described by the following constitutive equation:

Dp
¼
@Gðsef f Þ

@s
, ð53Þ

where Gðsef f Þ is the flow potential. Following Bower et al. (2011), we adopt the following power-law form for the flow
potential:

Gðsef f Þ ¼
sf
_d0

mþ1

sef f

sf
�1

� �mþ1

H
sef f

sf
�1

� �
, ð54Þ

where H(x) is the Heaviside step function, sf, _d0 and m are material constants, which may depend on the Li concentration.
Clearly, sf is the unidirectional yield (Cauchy) strength, _d0 is the reciprocal of viscosity and m is the stress exponent (m¼1
yields viscoelastic behavior). We note that this is a slightly modified version of the one used by Bower et al. (2011). The
modification is to ensure a smooth transition from the elastic to the plastic regimes. The material constants sf, _d0 and m

used in the numerical simulations are listed in Table 1.
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Making use of (54) in (53), and carrying out the derivative lead to

Dp
¼ sgnðsR�sYÞ

_d0

2

sef f

sf
�1

� �m

/2,�1,�1SH
sef f

sf
�1

� �
, ð55Þ

where sgn(x) is the Sign function. Combining (50) and (55) yields

_lp

lp
¼ sgnðsR�sYÞ

_d0
sef f

sf
�1

� �m

H
sef f

sf
�1

� �
: ð56Þ

This is effectively the constitutive law governing the viscoplastic deformation of the LixSi particle.
Other equations governing the insertion/extraction process include the only non-trivial mechanical equilibrium

equation

@s0
R

@R
þ2

s0
R�s0

Y
R

¼ 0, ð57Þ

and the only non-trivial continuity equation

@c

VB
m@t
þ
@JR

@R
þ

2JR

R
¼ 0: ð58Þ

where

JR ¼�
D

RgT

c

VB
m

@mðF,cÞ

@R
, ð59Þ

is the only non-zero component of the Li flux, D is the diffusivity, which may be stress and concentration dependent.
It can be shown that by using the elastic constitutive equations and the kinematic equations, the stresses, the elastic

strains and the chemical potential can all be expressed as functions of three independent variables, namely Li
concentration c, radial displacement u, and the radial plastic stretch lp, all of which are functions of R and t. Therefore,
(56)–(58) form a system of three nonlinear partial differential equations (PDEs). The boundary conditions for these PDEs
are given by (34) and (35) for insertion and (36) for extraction. In addition, initial conditions are needed, which can be
specified by

cðR,0Þ ¼ 0, uðR,0Þ ¼ 0, lpðR,0Þ ¼ 1 ð60Þ

These define a boundary/initial value problem that can be solved to obtain c, u, and lp. Once c, u, and lp are known as
function of R and t, other field quantities can be computed. For example, the stress sR and sY can be obtained from (46)
and (47).

The above boundary/initial value problem does not seem to admit an analytical solution. It is solved numerically in this
study by using the COMSOL multiphysics software. In our numerical calculations, the activity constant and the diffusivity
are assumed to depend on Li concentration according to the followings (Haftbaradaran et al., 2011):

g¼ 1

1�c
exp

1

RgT
2ðA0�2B0Þc�3ðA0�B0Þc

2

 �� �

, ð61Þ

D¼D0
~D �D0 exp

aVB
ms0

Y
RgT

 !
: ð62Þ

The values of A0 and B0 can also be derived from the mixing enthalpy of LixSi by using first-principles calculations
(Shenoy et al., 2010). The constants in the above and other materials properties used in the numerical calculations are
given in Table 1.

For convenience, the following non-dimensional parameters are introduced in the numerical solution

~R ¼
R

R0
, ~D ¼

D

D0
, ~t ¼

D0t

R2
0

, ~u ¼
u

R0
, ~JR ¼

VB
mR0JR

D0
, ~J0 ¼

VB
mR0J0

D0
: ð63Þ

The numerical results presented here are all in terms of these non-dimensional parameters.
Let us first consider the cases where plastic deformation does not occur. Shown in Fig. 4 is the Li concentration

distribution along the radial direction at different times and under various charging rates. It is seen that within the
charging rate considered here, 10�3r ~J0r10�1, the concentration is rather uniform over the particle, even at very early
times. At later times (not shown) the concentration becomes almost uniform. To generate large distribution gradient,
higher charging rates are needed, which would generate extremely high stress.

The stress distribution corresponding to the cases shown in Fig. 4 is presented in Fig. 5. It is seen that the stresses are
rather non-uniform along the radial direction, although the Li concentration is relatively uniform (see Fig. 4). Furthermore,
even for a few percent of Li concentration, the stress can be as high as several hundreds of MPa. The results for the hoop
stress sY also show that it is tensile in the inner core, and compressive in the outer shell. Intuitively, this seems to make
sense since Li has higher concentration in the outer shell as indicated in Fig. 4.
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The evolution of stresses at the center and at a point on the particle surface is plotted in Fig. 6 under different charging
rates. One obvious observation is that stresses reach their maximum at the very beginning of charging, and decreases
dramatically afterwards, and eventually vanishes at full charge (not shown). The maximum stress increases monotonically
with increasing charging rate. In particular, we note that the hoop stress on the outer surface is always negative, or the
outer shell of the particle is always under compression. As will be seen later, this is not the case when plasticity is
considered.

Fig. 7 provides a perspective of the non-dimensional charging rates used in the above calculations, where the Li
concentration or capacity is plotted as a function of ~t ~J0. First, it is rather interesting that all the data fall onto a single line,
indicating that charging time and charging rate are reciprocal. In other words, double the charging rate would reduce the
time to full charge by half. Second, the curve shows that the time to full charge depends on the charging rate ~J0. For
10�3r ~J0r10�1, the time to full charge is between 20r ~tr2� 103. Since ~t ¼ ðD0t=R2

0Þ, one needs to know the diffusivity
and the particle radius in order to convert ~t to real time. For example, for R0¼100 nm, D0¼10�16 m2/s, the real time
corresponding to the above range of dimensionless time is between 33 min and 55 h. Fig. 7 also shows that charging gets
harder at higher capacity. For example, the figure shows that charging the anode to 90% capacity takes only about half the
time needed to fully charge it.

It is well known that the large stress induced by Li insertion may damage the Si anode during charging and discharging
(e.g., Cheng and Verbrugge, 2010). Damage is most likely to occur when the Si particle is greater than a critical size (e.g.,
Kim et al., 2011). This critical particle size can be estimated based on the fact that our numerical results show that the
maximum stress smax is a power-law function of the dimensionless charging rate ~J0, i.e., smax ¼ Að~J0Þ

1=n, where A and n are
constants depending on the material properties, the anode geometry, and how the maximum stress is defined. It then
follows the definition of ~J0 that the critical radius for damage initiation is given by

Rc ¼
D0
~J0c

J0Vm
¼

BD0

J0Vm

sc

E0

� �n

, ð64Þ

Fig. 4. Li concentration distributions at different times and under different charging rates.
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Fig. 6. Evolution of stresses at the center and at a point on the surface of the particle.

Fig. 5. Stress distribution at different times under various changing rates.
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where sc is the critical stress (a material property) at which damage occurs, and B is dimensionless constants that may
depend on the material properties, the anode geometry, and the particular failure criterion used. For example, if
smax ¼maxfsef f g ¼ sc ¼ sf , where sf is the yield strength and seff is given in (52), is used as a failure criterion, the constants
for a spherical particle will be B¼35 and n¼1.3.

Eq. (64) shows that the critical particle size Rc inversely depends on the charging rate J0. Plotted in Fig. 8 are the Rc vs. J0

curves for several different values of sc. For a given charging rate, one can identify the critical particle size beyond which
damage would occur. Similarly, one can also find the time needed to charge a particle at the highest possible charging rate
without causing damage. This information is shown in Fig. 9, where the time to 80% of full charge is plotted as a function of
the maximum possible charging rate without causing damage (plastic yielding in this case) for various yield strengths of
the LixSi alloy.

To compare with available experimental data in the open literature, we have also carried out the same computations
and analyses for a Si wire anode. Without showing all the results, we only mention that, using the parameters in Table 1,
we found that B¼18, and n¼1.2 for the Si wire anode. The critical wire diameter predicted by (64) is about 220 nm when
the charging rate is C/10 (i.e., the anode is fully charged in 10 h). This is in good agreement with the experimental
observations under the same charging rate (Teki et al., 2009).

When plastic deformation is allowed, not only the magnitude of the stress is reduced due to yielding, the distribution of
stresses is also altered significantly. As Fig. 10 shows, the radial stress is positive at early charging stage, and gradually
becomes negative throughout the particle after certain charging time. More remarkably, the hoop stress, in the beginning,
is positive inside and negative near the surface, i.e., the surface is under compression. As charging progresses, the sign
switches, i.e., the hoop stress gradually becomes negative inside the particle, and positive near the surface, indicating that
the particle surface will be subjected to tensile hoop stress at some point during charging.

Fig. 7. Li concentration (or charge capacity) versus charging time under a given charging rate, or Li concentration versus charging rate for a given

charging time.

Fig. 8. Critical particle size against plastic deformation as a function of charging rate.
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To better visualize the evolution of the hoop stress, Fig. 11 plots the hoop stress at the center and at a point on the
particle surface as a function of time. It is seen that, at the center, the hoop stress (which equals the radial stress at the
center) starts from zero, raises to a positive maximum, then decreases gradually to a negative value. On the surface, hoop

Fig. 9. The time needed to reach 80% of full charge by using a maximum possible charging rate without causing plastic yielding.

Fig. 10. Stress distribution when plastic deformation is allowed.
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stress increases (negatively) first, reaches a (negative) maximum, then starts to increase and eventually becomes positive
increases with charging time. As pointed out by Zhu (2011), the positive hoop stress near the surface is caused by
plasticity. At the very early stage of charging, the surface is subjected to large compressive stress, which causes
compressive plastic yielding near the surface. As the charging progresses, the Li concentration near the center of the
particle increases. Consequently, the center region starts to expand as well. However, the outer region had already been
plastically compressed, which acts as a thin shell that constraints the center region’s expansion. As a result, tensile hoop
stress is generated near the particle surface. This reverse plasticity might explain the surface cracks observed in the
experiments (Ryu et al., 2011; Zhu, 2011).

Another interesting observation is that the center region of the particle remains elastic as shown in Fig. 12
where the distribution of plastic stretch is plotted along the radial direction at several different times. It is seen that
the elastic–plastic boundary moves inwardly toward the center of the particle during charging. But, even after a fairly long
charging time, the center regions still remains elastic. This is due to the fact that the stress field near the center region is
almost hydrostatic (at the center, sR¼sY), which according to the yield criterion used does not facilitate plastic
deformation.

The discharging process can be simulated by using the boundary condition given by (36). The corresponding hoop
stresses at the center and on the surface are plotted in Fig. 13. On the surface, the hoop stress starts at zero, goes through a
maximum compressive stress, and eventually becomes positive. During discharging (Li extraction), the hoop stress on the
surface remains positive, and does not return to zero even at fully discharged state. There is clearly residual plastic
deformation. At the center, evolution of the hoop stress is similar to the hoop stress on the surface, except the sign is
switched. After the second insertion/extraction cycle (not shown), the stress hysteresis becomes stabilized.

In closing, we point out that, although not presented here, we have carried out simulations using several different
plastic constitutive laws. It appears that the solutions are very sensitive not only to the type of constitutive laws used, but

Fig. 11. Evolution of hoop stress at the particle (a) center and (b) surface under different charging rates. The insets are to show the behavior at short

charging time.
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also to the parameters used in these constitutive laws. This points out a critical need to accurately characterize the
viscoplastic behavior of LixSi alloys either experimentally or through molecular dynamic simulations.

7. Summary

In this paper, an explicit and compact form of the stress-dependent chemical (or diffusion) potential is derived for
solids subject to finite strain deformation. The new stress-dependent potential reduces to that of Wu (2001) when the
elastic stiffness tensor does not change with the concentration, and to that of Larche and Cahn (1973) when both the
elastic and compositional strains are small.

As an example to illustrate the application of this new stress-dependent chemical potential, the stress fields in a
spherical amorphous Si particle induced by Li insertion/extraction are investigated in both elastic and elastic–plastic
regimes. In the elastic regime, we showed that the critical particle size is inversely related to the insertion rate and scales
up as a power law function of the yield strength (see (64)). In the elastic–plastic regime, we found that the hoop stress
becomes positive during charging, indicating the particle surface is subjected to tensile hoop stress. We postulated that
this tensile hoop stress near the particle surface is responsible for the radial cracks observed in experiments (Ryu et al.,
2011; Zhu, 2011). Further, we showed that the center region of the particle remains elastic during the entire Li insertion/
extraction cycle.
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Fig. 12. Distribution of plastic stretch along the radial direction at different times.

Fig. 13. Evolution of hoop stress on the particle surface and center during the first charging/discharging cycle.
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