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Development of semi-ab initio interionic potential for CaO and MgO

Zhiwei Cuia, Yi Suna* and Jianmin Qub

aDepartment of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, P.R. China; bDepartment of
Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

(Received 9 August 2012; final version received 7 March 2013)

In this paper, we propose a novel method to derive the interionic potentials for CaO and MgO in conjunction with ab initio
calculation and empirical three-body interaction. By using the Chen–Mobius lattice inversion, the pairwise interaction
between cations and anions can be evaluated from multiple virtual structures. The quantum-chemistry calculation is carried
out to derive the short-range potential for the same species of ions. Empirical three-body interactions are then adopted to heal
the drawbacks arising from purely pairwise potential, such as Cauchy relation. The proposed potential is verified by
molecular dynamics simulations of some primary properties, including pressure and temperature dependence of lattice
constant, elastic constants and phase transition of CaO and MgO. Simulation results are in good agreement with the existing
experimental data and ab initio calculations, showing that the developed potentials are valid over a wide range of interionic
separations. It is believed that this approach can be readily extended into other materials.

Keywords: ab initio; Chen–Mobius lattice inversion; interionic potential; molecular dynamics simulation; elastic
constants

1. Introduction

On the basis of the Chen–Mobius inversion [1–3] and

quantum chemistry technique [4,5], we have derived the

interionic pair potentials of solid solution gadolinia-doped

ceria from multiple virtual structures and isolated ion pairs

[6,7]. Using the ab initio interionic potentials, we

calculated the static properties of CeO2, Gd2O3 and

Ce2O3 as well as doped concentration and temperature

dependence of lattice constants, diffusion coefficients, pair

correlation functions and elastic constants, which are

consistent with corresponding experimental measure-

ments. In particular, because of the quantum-chemical

technique, the potential can be used in solid solution due to

the same function form and parameters of the identical

ions [6,7]. The successful results motivate us to extend the

methodology to other ionic solids. In this work, we mainly

focus on the development of interionic potential for

alkaline-earth oxides MgO and CaO, which are the most

abundant components in the Earth’s lower mantle and have

been used typically for understanding bonding in ionic

oxides [8].

To this end, extensive studies have been conducted to

investigate the equation of state, B1–B2 phase transition,

as well as temperature/pressure dependence properties of

CaO and MgO [9–13]. For example, potential-induced

breathing (PIB) model has been used to calculate most of

the properties of alkaline-earth oxides [14,15]. The

temperature and pressure dependence of equation of states

was examined by using a breathing shell model [16]. In

addition, by fitting the forces and stress tensor, an

aspherical ion model (AIM) [17–19] was developed for

various relevant minerals and melts of the Ca–Mg–Al–

Si–O system. In most of the previous studies [15,16,19],

the interionic potentials were fitted with an a priori

function form, and the quality of the interionic potential

was strongly dependent on the fitted properties. Different

potential parameters may give divergent results [6]. Such

outcomes may be due to the limitation of the empirical

potential framework. On the other hand, some ab initio

potentials for ionic solids have been developed based on

the Chen–Mobius inversion [1–3]. This procedure is

independent of experimental data; however, some draw-

backs still exist. The interaction between cations and

anions will cause uncertainty and different parameters of

the potential on the same species of ions [2,6]. Therefore,

the lattice inversion method is limited to the solid solution

with identical ions.

In this paper, we propose a novel method to derive the

interionic potential for CaO and MgO by accounting for

the lattice inversion, quantum-chemical calculation and

empirical three-body fitting. For simplicity, all the ions are

assumed to be formally charged, i.e. Ca2þ, Mg2þ and O22.

Such an assumption is to eliminate the influence of the

difference in charges on uniform ions during the charge

determination [6,7]. First of all, the relevant cubic

structures of different phases are constructed. Then, we

compute the pseudo-potential total energies by ab initio

calculations. After that, the short-range interactions

between cations and anions are directly extracted from

the total energy difference by the lattice inversion
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approach. Meanwhile, the function form and parameters of

the potential on the same species of ions are determined by

fitting the deviation between the quantum-chemical

calculations and Coulomb energy. Finally, the empirical

three-body interactions are introduced to improve the

mechanical properties by patching the mismatch between

the pairwise potential and experimental measurements.

The paper is organised as follows: in Section 2, the

development of interionic potential of AO (A ¼ Ca, Mg)

is presented. In Section 3, several molecular dynamics

(MD) simulations, such as lattice constants, elastic

constants and phase transformation, are carried out to

validate the derived interionic potentials.

2. Development of interionic potential of AO

(A 5 Ca, Mg)

2.1 Lattice inversion for interionic potentials between
cations and anions

Consider a system of N ions and the pairwise energy is

E pair ¼ ECoul þ E SP ¼ ECoul þ ESP
þþ þ ESP

22 þ ESP
þ2; ð1Þ

where ECoul is the Coulomb energy, which could be

evaluated by the Ewald summation technique or Wolf

method [20]. E SPrepresents the short-range interactions

between different elements, which means that we cannot

calculate each term on the right hand side of Equation (1)

by only one individual structure. Some virtual structures

are required to introduce more configurations and

interionic spacing. It is noteworthy that these virtual

structures must have identical sublattices constructed by

cations and anions, which is aimed at eliminating the

interactions between the identical ions.

At room temperature, pure AO is the rock salt

structure. Hence, the prototypical structure of AO is

chosen to be of B1-type. Another related structure should

be given to obtain the short-range interaction between A2þ

and O22. These two structures have the same ion

arrangement, i.e. the sublattices of cations and anions are

both face centre cubic. Here, the zinc blende structure (B3-

type) is taken as the secondary structure [3].

Figure 1 shows the total energies of the above-

mentioned structures versus lattice constant a, where

a ¼ 4.0–13.0 Å. They are calculated by the CASTEP

program [21], using ultrasoft pseudo-potentials together

with Perdew–Burke–Ernzerhof generalised gradient

approximations exchange, i.e. correlation function. The

k-mesh points over the Brillouin zone are generated with

parameters 11 £ 11 £ 11 for the biggest reciprocal space

and 3 £ 3 £ 3 for the smallest one by the Monkhorst–Pack

mesh. A plane-wave basis set with 380 eV/atom cutoff is

applied. The energy tolerance for self-consistent field

convergence is 5.0 £ 1027 eV/atom for all calculations.

Based on our previous work [6], the inversion

coefficients of the B1 and B3 structures can be expressed

as follows:

ESP
B1ðþ2Þ ¼ Etot

B1 2 ECoul
B1 2 Eiso

B1 ¼
1

2

X
i;j;k

FSP
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iþ j2 1:0
� �2

þ jþ k2 1:0
� �2

þ k þ i2 1:0ð Þ2
q

a

2

� �
;

ð2Þ

ESP
B3ðþ2Þ ¼ Etot

B3 2 ECoul
B3 2 Eiso

B3 ¼
1

2

X
i;j;k

FSP
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iþ j2 0:5
� �2

þ jþ k2 0:5
� �2

þ k þ i2 0:5ð Þ2
q

a

2

� �
;

ð3Þ

where E tot denotes the total energies obtained by the

CASTEP program and E iso denotes the energy of isolated

ions, which is independent on interionic separation [1–3,6].

Figure 1. Total energies of CaO and MgO versus lattice constants.
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By using Equations (2) and (3), we evaluated the short-

range pairwise potential FSP
þ2ðrÞ between cations and

anions directly by the Chen–Mobius lattice inversion [1].

Such technique can also be applied for the derivation of the

potentials between the same species of ions. However, it is

not practical in the case of atomic motion of solid solution

due to their distinct forms and parameters [2,6]. Hence, the

quantum-chemical method is used to derive the potential

between two identical ions in the following section.

2.2 Quantum-chemical calculation for potential
between uniform ions

The GAUSSIAN03 [22] software is used for the quantum-

chemical calculation. A correlation method, QCISD (T,

Full)/6-311G, is applied for the model chemistry and basis

set. In order to obtain the short-range interaction between

uniform ions, the total charge and spin multiplicity S

(number of lone pair electrons þ 1) for each ion

configuration should be specified. Because all ions are

assumed to be formally charged, the outer electron shell of

ion is fully occupied, i.e. the spin multiplicity S is always

1. The following two consecutive steps were conducted to

derive the interionic potential: (1) determination of the

isolated ion energy and (2) comparison with pair ions

energy and formal charged Coulomb energy.

Figure 2 shows the energies corresponding to the

interionic separation rij of Ca2þ, Mg2þ and O22 ions.

Clearly, the computed quantum-chemical results are very

close to the Coulomb energies, which imply that the total

charge of the system is distributed uniformly on each

atom. In addition, the difference between Coulomb and ab

initio calculations can be considered as the short-range

interionic potential of the same species of ions.

Apparently, the potential is negligible once the separation

is larger than 6 Å, indicating a pure Coulombic interaction

between two identical ions in a gaseous phase. Note that

the potentials could be applied in all structures, because

the ab initio calculations are independent of a specific

lattice structure. The forms and parameters of the potential

function, which are only dependent on the discrete energy

values, show much better portability, especially in solid

solution system [6].

2.3 Pairwise potential function forms and parameters

The short-range pair potential curves can be extracted

from lattice inversion and quantum-chemical calculations.

The suitable potential function forms are selected to fit the

potential curves. In this study, the following short-range

potential function forms are utilised:

Fþ2ðrÞ ¼ FSP
þ2ðrÞ þFCoul

þ2 ðrÞ

¼ aþ2 exp bþ2 1 2
r

cþ2

� �� �
þ

qþq2

4p10r
;

ð4Þ

F22ðrÞ ¼ FSP
22ðrÞ þFCoul

22 ðrÞ

¼ a22 exp
b22

2
1 2

r

c22

� �� �
2 1

� �2

21

( )
þ

q2
2

4p10r
;

ð5Þ

Fþþ rð Þ ¼ FSP
þþ rð Þ þFCoul

þþ rð Þ

¼ aþþ exp
bþþ

2
1 2

r

cþþ

� �� �
2 1

� �2

21

( )
þ

q2
þ

4p10r
;

ð6Þ

where FSP
þ2ðrÞ is the exponent repulsive. FSP

22ðrÞ and

FSP
þþðrÞ are Morse functions. Parameters a, b and c for

different cases are tabulated in Table 1.

Figure 2. (Colour online) Comparison of Ca2þ ions, Mg2þ ions and O22 ions between Gaussian03 calculation and Coulomb interaction.
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2.4 Three-body potential model

The static properties of equilibrium of AO at zero

temperature and pressure can be computed by pairwise

potential. It is found that (shown in Table 3) the potentials

can describe the structures of CaO and MgO approximately

but with unphysical Cauchy relation (C12 ¼ C44). Thus,

some three-body interactions are needed to eliminate the

drawbacks arising from the pairwise potentials. In this study,

it is anticipated to derive an effective three-body potential

function by fitting the elastic constants. For simplicity, the

short-range three-body potential FST is assumed to be

neglected beyond the nearest neighbour (NN) distance. For a

three-body potential, FSTðrij; rik; uijkÞ, its corresponding

elastic constants can be obtained by

CST
11 ¼

›2FSTðaÞ

›12
1

� �
a¼a0

; CST
12 ¼

›2FSTðaÞ

›11 ›12

� �
a¼a0

;

CST
44 ¼

›2FSTðaÞ

›12
4

� �
a¼a0

;

ð7Þ

where 1i is the strain tensor. The three-body potential is

assumed as

FST rij; rik; uijk
� �

¼ f rij; rik
� �

g uijk
� �

¼ f rij; rik
� �

g cos uijk
� �

;

ð8Þ

where

cos u ¼
~rij�~rik

rijrik
¼

Að1Þ

rijrik
ð9Þ

and

~rij�~rik ¼ Að1Þ ¼ ~rij0�~rik0 þ a2
0 211rijxrikx þ 212rijyriky
�

þ213rijzrikz þ14 rijyrikz þ rijzriky
� �

þ15 rijxrikz þ rijzrikx
� �

þ 16 rijyrikx þ rijxriky
� �	

:

ð10Þ

Here, r0 and a0 are the nearest distance and lattice constant of

equilibrium state, respectively. rix, riy and riz are the ith

atomic coordinates in x, y and z directions, respectively.

According to Equation (7), the elastic constants of three-

body potential CST
11 , CST

12 and CST
44 can be derived as

CST
11 ¼

›2FST

›12
1

¼ a4
0 £

›2f

›r2
ij

 !
r4
ijx

r2
ij

 !  

þ 2
›2f

›rij ›rik

� �
r2
ijxr

2
ikx

rijrik

 !
þ

›2f

›r2
ik

� �
r4
ikx

r2
ik

� �!
g

þ
›f

›rij

� �
2

r4
ijx

r3
ij

 !
þ

›f

›rik

� �
2

r4
ikx

r3
ik

� � !
g

þ 2
›f

›rij

� �
r2
ijx

rij

 !
þ

›f

›rik

� �
r2
ikx

rik

� � !
2rijxrikx

rijrik

�

2
r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
cos u

!
›g

› cos u

þ f 3
r4
ijx

r4
ij

þ 2
r2
ijxr

2
ikx

r2
ijr

2
ik

þ 3
r4
ikx

r4
ik

 !
cos u

 

2
r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
4rijxrikx

rijrik

!
›g

› cos u

þ f
2rijxrikx

rijrik
2

r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
cos u

 !2
›2g

› cos2 u

1
A;

ð11Þ

CST
12 ¼

›2FST

›11›12

¼a4
0£

›2f

›r2
ij

 !
r2
ijxr

2
ijy

r2
ij

 !
þ

›2f

›r2
ik

� �
r2
ikxr

2
iky

r2
ik

 ! !
g

 

þ
›2f

›rij›rik

� �
r2
ijxr

2
ikyþr2

ijyr
2
ikx

rijrik

 !
g

þ
›f

›rij

� �
2
r2
ijxr

2
ijy

r3
ij

 !
þ

›f

›rik

� �
2
r2
ikxr

2
iky

r3
ik

 ! !
g

þ
›f

›rij

� �
r2
ijx

rij

 !
þ

›f

›rik

� �
r2
ikx

rik

� � !
2rijyriky

rijrik

�

2
r2
ijy

r2
ij

þ
r2
iky

r2
ik

 !
cosu

!
›g

›cosu

þ
›f

›rij

� �
r2
ijy

rij

 !
þ

›f

›rik

� �
r2
iky

rik

 ! !
2rijxrikx

rijrik

�

2
r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
cosu

!
›g

›cosu

þf 3
r2
ijxr

2
ijy

r4
ij

þ
r2
ijxr

2
ikyþr2

ijyr
2
ikx

r2
ijr

2
ik

þ3
r2
ikxr

2
iky

r4
ik

 !
cosu

 !
›g

›cosu

þf 2
r2
ijy

r2
ij

þ
r2
iky

r2
ik

 !
2rijxrikx

rijrik
2

r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
2rijyriky

rijrik

 !
›g

›cosu

þ f
2rijxrikx

rijrik
2

r2
ijx

r2
ij

þ
r2
ikx

r2
ik

 !
cosu

 !
2rijyriky

rijrik

�

2
r2
ijy

r2
ij

þ
r2
iky

r2
ik

 !
cosu

!
›2g

›cos2u

!
; ð12Þ

Table 1. Parameters of the short-range interaction.

Species a (eV) b c (Å)

Ca2þ–O22 0.20 8.17326 3.12508
Mg2þ–O22 0.20 7.9910 2.86464
Ca2þ–Ca2þ 0.24760 10.13505 2.58565
Mg2þ–Mg2þ 0.05657 10.56375 1.98963
O2–O22 0.77109 7.85216 1.99458
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CST
44 ¼

›2FST

›12
4

¼a4
0£

›2f

›r2
ij

 !
r2
ijyr

2
ijz

r2
ij

 !  

þ2
›2f

›rij›rik

� �
rijyrijzrikyrikz

rijrik

� �
þ

›2f

›r2
ik

� �
r2
ikyr

2
ikz

r2
ik

 !!
g

þ
›f

›rij

� �
2
r2
ijyr

2
ijz

r3
ij

 !
þ

›f

›rik

� �
2
r2
ikyr

2
ikz

r3
ik

 ! !
g

þ2
›f

›rij

� �
rijyrijz

rij

� �
þ

›f

›rik

� �
rikyrikz

rik

� �� �

£
rijyrikzþrijzriky

rijrik

� �
2

rijyrijz

r2
ij

þ
rikyrikz

r2
ik

 !
cosu

 !
›g

›cosu

þf 3
r2
ijyr

2
ijz

r4
ij

þ2
rijyrijzrikyrikz

r2
ijr

2
ik

þ3
r2
ikyr

2
ikz

r4
ik

 !
cosu

 !
›g

›cosu

þf 22
rijyrijz

r2
ij

þ
rikyrikz

r2
ik

 !
rijyrikzþ rijzriky

rijrik

� � !
›g

›cosu

þf
rijyrikzþrijzriky

rijrik

� �
2

rijyrijz

r2
ij

þ
rikyrikz

r2
ik

 !
cosu

 !2
›2g

›cos2u

1
A:

ð13Þ

The three-body potential can be fitted directly with

Equations (11)–(13) once we know the difference of elastic

constants between pair potential and experimental data.

Here, the three-body function FST is assumed as

either FSTðrij; rik; uijkÞ ¼ ½f ðrijÞ þ f ðrikÞ�gðuijkÞ (ADD) or

FSTðrij; rik; uijkÞ ¼ f ðrijÞf ðrikÞgðuijkÞ (MUL). Because of the

rock salt structure of AO, we have FST
A2O2Aðrij; rik; uijkÞ ¼

FST
O2A2Oðrij; rik; uijkÞ. The elastic constants of FST are: (1)

only MUL can modify the C12 with gðuÞ ¼ 1, (2) MUL and

ADD are used to adjust the elastic constantC11 in the case of

gðuÞ ¼ cos u and (3) MUL and ADD can modify the C44

with gðuÞ ¼ cos2 uþ cos3 u. Clearly, the components in

three-body interactions are fully decoupled. Based on the

analysis above, the three-body interaction can be rewritten as

FST ¼l1 exp g1 12
rij

h

� �� �
exp g1 12

rik

h

� �� �
1þ cosuð Þ

þl2 exp g2 12
rij

h

� �� �
þexp g2 12

rik

h

� �� �
 �

þl3 exp g3 12
rij

h

� �� �
þexp g3 12

rik

h

� �� �
 �

þl4 exp g4 12
rij

h

� �� �
þexp g4 12

rik

h

� �� �
 �
cos2uþcos3u
� �

:

ð14Þ

Here, the first term on the right hand side is used to

modify the C12 of AO, whereas the second and third terms

are to correct C11 and lattice constants. The elastic

constant C44 is adjusted by the last term in Equation (14).

All the parameters in this equation are listed in Table 2.

3. Application of interionic potentials

3.1 Static properties

By using the developed interionic potentials, we computed

the static properties of the equilibrium of B1-AO

structures at zero temperature and pressure, such as lattice

constants, lattice energy and elastic properties, and are

illustrated in Table 3. The results obtained from the

CASTEP calculation and other empirical functions are

also presented for comparison. Clearly, a good agreement

is achieved.

For further validity of our developed interionic

potentials, the physical properties of the B2-AO structure

are also calculated, as displayed in Table 4. The lattice

constant of CaO is very close to the experimental data at

the pressure of 60 GPa, which reveals that our potential

can predict the properties of other phases accurately. Thus,

it is evident that our interionic potential is robust.

3.2 AO at 0K under high pressure

The pressure dependence of physical properties is also

investigated to verify the developed interionic potential.

The results are depicted in Figures 3–5. Owing to lack of

experiment results, the ab initio calculations are carried

out for comparison. In the pressure range from 0 to

200 GPa, the lattice constants (Figure 3) and elastic

constants (Figure 4) of the MD and ab initio calculations

show the same trend with small discrepancy. The slightly

large values by ab initio calculation may be attributed to

the larger lattice constant obtained at zero temperature and

pressure than that from experiments. Moreover, note that

from 0 to 200 GPa, the lattice constant reduces gradually

from 4.2 to 3.6 Å for MgO and from 4.8 to 4.0 Å for CaO

(Figure 3). This reveals that our interionic potential could

describe the evolution of materials behaviours in extended

phase space.

Cauchy relation, i.e. C12 ¼ C44 þ 2P, is regarded as a

measure of the contribution from the many-body

interaction. Figure 5 shows the Cauchy violation as a

Table 2. Parameters of the short-range three-body potential for CaO and MgO.

l (eV) g

l1 l2 l3 l4 g1 g2 g3 g4 h(Å)

CaO 22.2244 0.03855 2.7459 25.439 2.1561 1.078 7.0684 5.4546 1.195
MgO 22.6333 0.08512 1.0496 0.045 1.9096 0.9548 6.2062 0.9096 1.054
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Table 3. Static properties of CaO and MgO in rock salt structure.

Lattice constant (Å) Bulk modulus (GPa) Lattice energy (eV)
Elastic constants (GPa)

C11 C12 C44

CaO This work (only pair) 4.853 117.3 17.50 192.9 79.5 79.5
This work (0 K) 4.792 116.5 17.39 233.7 57.9 79.3
This work (300 K) 4.810 110.6 220.0 56.4 76.9
Wang [3] 4.842 129.8 17.46 235.5 77.0 99.2
AIM [19] 4.809 116.1 231.9 58.2 73.0
PIB [14] 4.820 102.0 15.05 206.0 50.0 66.0
Expt [9] 4.810 114.0 18.70 220.6 56.6 80.3
CASTEP 4.837 103.3 198.1 55.9 75.2

MgO This work (only pair) 4.312 173.7 19.54 252.5 134.3 134.3
This work (0 K) 4.203 166.8 19.16 314.7 92.9 157.5
This work (300 K) 4.216 158.5 295.3 90.1 154.9
Zhang [23] 4.286 169.6 18.98 314.9 97.0 169.0
Karki [11] 4.251 158 291 91 139
Matsui [24] 4.212 161 294 94 157
Expt [25,26] 4.216 162.2 20.05 295.9 95.4 153.9
CASTEP 4.286 145.9 257.2 90.3 135.2

Figure 3. Comparison of lattice constants for CaO and MgO.

Table 4. Static properties of CaO and MgO in CsCl structure.

Lattice constant (Å) Lattice energy (eV) Bulk modulus (GPa)

CaO This work 2.883 16.83 135.2
Wang [3] 2.955 16.45 154.0
MPIB [15] 2.890 13.75 140.0
CASTEP 2.937 105.8

CaO (60 GPa) This work 2.644
Wang [3] 2.727
Expt [10] 2.642

MgO This work 2.567 17.99 174.3
Baltache [27] 2.604 163
CASTEP 2.681 135.8
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function of applied pressure. The deviation tends to be

larger with the increment of pressure, which indicates that

the many-body force becomes more profound at high

pressure.

3.3 Phase transition

It is well known that AO is a rock salt crystalline and can

be transformed into a CsCl-type structure under high

pressure. Some first-principles calculations have been

carried out to study such phase transition, for instance,

60–70 GPa for CaO [10,28,29] and 400–486 GPa for

MgO [11,13,30].

Figure 6 shows the calculated energy per atom versus

volume per atom for both B1 and B2 phases. Obviously,

the B1 phase is stable at low-pressure regime, whereas the

B2 structure is more favourable at high-pressure regime.

To investigate the B1–B2 phase transition in AO, we

calculated the enthalpy (E þ PV) of both B1 and B2

structures as a function of pressure (0–200 GPa for CaO,

and 0–800 GPa for MgO). The crossing points of the

enthalpy curves shown in Figure 7 determine the critical

pressures in which the phase transition from B1 to B2

occurs. They are 67.99 GPa for CaO and 400.4 GPa for

MgO, which are very close to experimental results [10]

and ab initio predictions [11,30].

We also calculated the variation of relative volume

with pressure for B1 and B2 phases. For CaO, the volume

of B1 phase is reduced by 27%, which is consistent with

the ab initio calculations [31]. The volume reduction of

MgO is approximately 50% over the pressure range 0–

400 GPa. The volume change of MgO from B1 phase to B2

phase is 0.665 Å3, which is smaller than that of Karki’s

values 0.458 Å3. This may be due to the larger transition

pressure predicted by ab initio [11].

Figure 4. Comparison of elastic constants for CaO and MgO.

Figure 5. Comparison of Cauchy violation for CaO and MgO.

962 Z. Cui et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 1

7:
12

 1
1 

O
ct

ob
er

 2
01

3 



Figure 8 shows the calculated elastic constants of B1

and B2 phases as a function of applied pressure. It is seen

that C11 is more sensitive to pressure than C12 and C44.

This is because C11 represents elasticity in length, whereas

C12 and C44 are associated with the elasticity in shape. At

the pressure of 70 GPa, the shear deformation of MgO is

prone to occur along the (100) plane because C11 .

C12 . C44 [13]. A similar phenomenon for CaO takes

place at a pressure of 15 GPa. In addition, both B1 and B2

phases are elastically stable, i.e. C11 . 0, C11 . C12 and

C44 . 0 [32]. This is also in agreement with other

literature [13].

The elastic properties of isotropic polycrystalline

material are unique because of two elastic stiffness

coefficients, namely, the bulk (B) and the shear (G)

modulus [11]. They can be computed as follows:

B ¼
C11 þ 2C12

3
and G ¼

1

2
GU þ GLð Þ; ð15Þ

GU ¼ C44 þ 2
5

CS 2 C44

þ
18 Bþ 2C44ð Þ

5C44 3Bþ 4C44ð Þ

� �
; ð16Þ

GL ¼ CS þ 3
5

C44 2 CS

þ
12 Bþ 2CSð Þ

5CS 3Bþ 4CSð Þ

� �
; ð17Þ

where CS ¼ ðC11 2 C12Þ=2. The dependence of the

modulus for AO under pressure is explored and the results

are shown in Figure 9. A linear relationship between the

modulus and pressure is detected. The bulk and shear

modulus of the B2 phase are relatively larger than those of

Figure 6. Total energy per atom versus volume per atom for B1 and B2 phases.

Figure 7. Enthalpy per atom versus volume per atom for B1 and B2 phases.
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the B1 phase, which may be caused by larger C12 and C44

of B2.

The effect of pressure on the propagation of elastic

waves in materials provides insights for understanding

interatomic interactions. The elastic constants completely

specify the mechanical properties and acoustic velocities

of a crystal structure. The dependence of wave velocities

upon hydrostatic pressure has been reported [11,13]. In

fact, the longitudinal and shear wave velocities Vp and Vs

can be extracted by

Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ 4G=3

r

s
and V s ¼

ffiffiffiffi
G

r

s
; ð18Þ

where r is the density of the material.

Figure 10 shows the calculated acoustic velocities of

AO as a function of pressure reflecting a typical linear

relationship. This is reasonable because both the long

wavelength longitudinal and shear acoustic modes stiffen

under pressure. Furthermore, the longitudinal wave is

faster than the shear wave in both B1 and B2 phases.

Finally, the anisotropy factor which is the ratio of C44

and ðC11 2 C12Þ=2 is determined for both B1 and B2

phases, as shown in Figure 11. The B1 phase exhibits low

elastic anisotropy at zero pressure, and the degree of

anisotropy increases with pressure. At low pressure, the

anisotropy factor decreases dramatically with pressure,

which is consistent with previous studies [12,33].

3.4 AO at high temperature

The MD simulations at finite temperatures are conducted

to validate the robustness of developed interionic

potential. The model used in our MD simulation includes

1000 ions (5 £ 5 £ 5 AO supercell). The NPT ensemble

(fixed atom number, pressure and temperature) is adopted,

implemented by Nose–Poincare thermostat [34], metric-

tensor pressostat [35] and generalised leap-frog algorithm

Figure 8. Dependence of elastic constants on hydrostatic pressure of CaO and MgO.

Figure 9. Bulk and the shear modulus as a function of pressure of CaO and MgO.
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[36] for time integration. Wolf algorithm [20] is used to

estimate the Coulomb interaction, and combination

neighbour list algorithm [37] is adopted to increase the

computational efficiency. The cutoff distance is set as

10.0 Å. The temperature for the simulation varies from 300

to 3000 K with an iteration of 100 K. The supercell model

is equilibrated for 1 £ 106 steps, and an additional 2 £ 106

steps are used for data collection.

Figure 12 shows the volume expansion with the

increment of temperature. The volume V0 at 300 K and

0 Pa is calculated as the benchmark. In the intermediate

temperature range (300–1200 K for CaO and 300–1800 K

for MgO), our results match perfectly with Anderson’s

measurement [38]. At a higher temperature regime, our

calculations are close to Fiquet’s values [39].

Then, the elastic constants are evaluated by the stress

and strain fluctuation formula [40] as shown in Figure 13.

For better comparison, the experimental data are

transformed by Equation (19) which show good agreement

with our results

CS
11 2 CT

11 ¼ CS
12 2 CT

12 ¼ BS 2 BT and CS
44 2 CT

44 ¼ 0:

ð19Þ

4. Concluding remarks

In this paper, a novel method has been developed to derive

the interionic potential for CaO and MgO by combining the

benefits of Chen–Mobius lattice inversion, quantum-

chemical calculation and empirical three-body interaction.

This approach is anticipated to provide a bridging between

ab initio potential and empirical functions. The ab initio

calculations are used to obtain the short-range pairwise

potentials, whereas the three-body interactions are

Figure 10. Vp and V s velocities as a function of pressure of CaO and MgO.

Figure 11. Anisotropy factor as a function of the pressure of CaO and MgO.
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introduced to heal the drawbacks arising from the sole

pairwise potentials. The newly developed potentials for

CaO and MgO are validated by a bundle of MD simulations

on physical properties. Simulation results demonstrate the

robustness of the developed interionic potentials.

In conclusion, we need to point out that the three-body

interaction used in this paper only fits via elastic constants.

We believe more physical properties included in the fitting

process could lead to more accurate results, such as

phonon dispersion and dielectric properties. In addition,

more materials (e.g. Al2O3 or PbO2) will be studied in

future to extend the application of this approach. All these

will be addressed in future studies.
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