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In the current work, a set of semi-ab initio interionic pair potentials in a concise functional form with
parameters for gadolinia-doped ceria (GDC) systems is derived via the Chen–Mobius lattice inversion and ab
initio quantum-chemical calculation. The quality of the proposed potentials is verified by molecular dynamics
simulations of CeO2 and A2O3 (A = Ce and Gd) on their static properties, doped concentrations and
temperature dependence of lattice constants, mean-square displacements, pair correlation functions and
elastic constants. Simulation results are consistent with corresponding experimental data, showing that the
new form is valid over a wide range of interionic separations and applicable for describing structural
properties of ionic solids.
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1. Introduction

Solid electrolytes have received increasing attentions in recent
years for their applications in solid oxide fuel cells (SOFC) or oxygen
sensors. Among them, rare earth-doped ceria are widely used as the
intermediate temperature electrolyte. The effects of doped ionic
radius and concentrations to their electrical conductivity have been
studied both by experiments and atomic scale simulations [1–3]. For
example, Gd-doped ceria shows the maximum ionic conductivity
due to the optimal ionic radius of Gd3+ (about 1.04 Å) [4]. However,
under a low oxygen partial pressure, the matrix ceria experiences a
volumetric expansion [5], resulting to a discharge of the uniformly
charged Ce4+ to Ce3+. During the discharging process, some
additional oxygen vacancies are generated to keep electric neutrality.
Obviously, such internal structural changes will diminish the
mechanical performance of electrolyte [6].

To study the evolution behavior of non-stoichiometric GDC, the
molecular dynamics (MD) method is adopted in this work. MD is
proved to be a powerful technique to investigate the microscopic
nature of atomic motion. With MD method, many literature works
[7,8] have studied various properties of GDC. However, to the authors'
best knowledge, all the potential functions adopted in the previous
work, such as the Born–Mayer–Huggins form, were a priori [9–12].
And all their adjustable parameters are determined from the
equilibrium and near-equilibrium properties. Note for non-stoichio-
metric GDC, different potential parametersmay give divergent results.
For example, with each own parameters, Inaba et al. [11] found that
the GDC with Gd–Gd pairs was more stable than that with isolated Gd
atoms; while Wei et al. [7] pointed out that the Gd3+ was distributed
randomly in the ceria lattice. Similarly, Vyas's potential serves better
for predicting the coefficient of compositional expansion (CCE); while
Gotte's potential is more suitable for predicting the elastic constants
[13]. Hence within the empirical potential framework, it is hard
to determine a unique set of parameters yielding reasonable
results for all the properties of interest. Some other form needs to
be created.

Recently, Zhang and Chen [14,15] proposed a parameter-free
method to determine the pairwise potential by lattice inversion. The
potential form and all its parameters are directly evaluated from ab
initio calculations. For instance, the effective charges on ions are
determined at large lattice constant. With the aid of Chen–Mobius
inversion, the short-range pairwise potential is derived frommultiple
lattice structures. Although the procedure is independent of exper-
imental fitting data, some drawbacks still exist. Since the potentials
between cations and anions have influence on the derivation of other
potentials, some uncertainties exist and lead to different function
form and parameters of the potential on the same species ions [15].
Therefore the lattice inversion method is limited to the solid solution
with identical ions. On the other hand, the ab initio quantum-chemical
calculation involved in the derivation of potential model of atom
crystal [16,17] is performed with GAUSSIAN03 [18].

In this paper, we combine the lattice inversion and quantum-
chemical calculation to derive the interionic pairwise potential of
GDC. To simplify the derivation, the following assumptions are made
about the system: (1) all ions are formally charged [9,10,12]; and
(2) the cation–cation interactions are purely coulombic [9,10,12].
Note that the first assumption is to eliminate the influence of the
difference charges on uniform ions caused by the charge determina-
tion. The idea is to first construct an extended phase space using cubic
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Fig. 1. Virtual structures used for the ab initio pseudopotential total-energy calculations of CeO2. (a) T1 structure; and (b) T2 structure.
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structures of CeO2 and A2O3. Then the pseudopotential total-energy
calculations are performed. After that, the short-range interactions
between cations and anions are directly evaluated from a series of the
total energy difference by lattice inversion. Finally, the function and
parameters of the potential between O2− ions can be fitted by
quantum-chemical calculations.

The paper is organized as follows. In Section 2, the interionic
potential of GDC is derived. In Section 3, several applications using the
newly derived potential are given for verification purpose. Lattice
constants, mean square displacements, pair correlation functions,
coefficient of compositional expansion and elastic constants will be
discussed in detail.

2. Derivation of interionic potential of GDC

Consider a system consisting of N ions. All ions are assumed to be
formal charged for the sake of portability of the potential. The
pairwise energy Epair can be written as

Epair = ECoul + ESP++ + ESP−− + ESP+−; ð1Þ

where ECoul is the Coulomb energy and ESP is the short-range pairwise
energy between ions. Coulomb energy can be evaluated by the Ewald
summation technique or Wolf method [19]. However, terms on the
right side of Eq. (1) cannot be calculated independently by only a
single structure. Therefore virtual structures need to be introduced to
cover more configurations and interionic spacings of our interest.
These virtual structures must have identical sublattices constructed
by cations and anions.

2.1. Virtual structural models

As stated above, virtual structural models are introduced in order
to derive the proper interionic potentials between cations and anions
Fig. 2. Virtual structures used for the ab initio pseudopotential total-e
from an extended phase space including equilibrium and non-
equilibrium states. Here we concentrate on two types of virtual
models for CeO2 and A2O3 (A = Ce and Gd), respectively.

1ð ÞCeO2

At room temperature, pure ceria has the fluorite structure. Hence
the prototypical structure of CeO2 (T1 structure) is chosen to be
fluorite structure. Another relevant structure (T2 structure) should be
able to give the short-range interaction between Ce4+ and O2−. These
two structures have the same ion arrangement, i.e., the sublattice of
cation is face-centered cubic (FCC) and that of anion is simple cubic
(SC). T2 structure can be obtained by simply moving the sublattice of
anion 0.25a along 〈100〉, as shown in Fig. 1.

2ð ÞA2O3 A = Ce;Gdð Þ

Usually, Ce2O3 and Gd2O3 are of P-3M1 and IA-3, respectively.
However, P-3M1 is a non-cubic structure, and the IA-3 is the cubic
structure with 80 atoms. These two structures are not suitable for
lattice inversion. Based on the description of interionic pair potentials,
the interaction between two ions only depend on the interionic
separation. Hence the interionic pair potentials are assumed as
transferable in any structures. Here, the PN-3M structure is selected as
the prototypical structure of A2O3 (T1 structure). The sublattice of
cation is still FCC. Since the number of anions is only 6, less than that of
ceria, the sublattice constructed by anion is IM-3M structure. The
related structure (T2 structure) can be obtained by moving this
sublattice of anion 0.25a along 〈100〉, as shown in Fig. 2.

Since all these structures are complicated, the ratio of anions and
cations is not 1:1, the coordination number of each ion should be
calculated initially. Then the coefficients of inversion can be obtained,
as described below.
nergy calculations of A2O3. (a) T1 structure; and (b) T2 structure.
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Fig. 3. CeO2, Ce2O3 and Gd2O3 total energies versus lattice constant a in T1 and T2
structures from the ab initio calculations.
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2.2. Lattice inversion for interionic potentials between cations
and anions

Fig. 3 shows the total energies of those structures above versus
lattice constant a, where a=4.0–13.0 Å. They are calculated by
Fig. 4. O2− energies versus interionic distance rij in the range of 1 to 8
ultrasoft pseudopotentials, together with Perdew–Burke–Ernzerhof
(PBE) generalized gradient approximation (GGA) exchange, i.e.,
correlation function in the CASTEP program [20]. The k-mesh points
over the Brillouin zone are generated with parameters 11×11×11 for
the biggest reciprocal space and 3×3×3 for the smallest one by the
Monkhorst–Pack scheme. A plane-wave basis set with 410 eV/atom
cutoff is applied. The energy tolerance for self-consistent field (SCF)
convergence is 5.0×10−7 eV/atom for all calculations.

The energy calculated by first principle and the potential employed
inMD simulation can be connected bymeans of lattice inversion. Note
in the above structures, the status of cations and anions are distinct
due to the unbalanced ratio of anions and cations. For a crystal like
AxBy, the relationship between energy from first principle and that
obtained by MD simulation can be expressed as follows,

EpairCASTEP =
1
2
N1EA−A + N2EB−B + N1EA−B + N2EB−A

N1 + N2
; ð2Þ

where N1 and N2 are the numbers of atoms A and B, respectively, and
the four combinations Eα−β (α, β=A or B) denote the energy
between site pairs of atom species (α, β). The leading factor 1/2 is due
to double counting. For EA−B and EB−A are not necessarily the same, a
relation ofN1EA−B=N2EB−A always holds. Denoting the coordination
number of atom species α with neighbors of β as (CN)α−β, the
relationship of the coordination number between species A and B is
then

CNð ÞA−B

CNð ÞB−A
=

EA−B

EB−A
=

N2

N1
=

y
x
: ð3Þ

For simplicity, atoms with small CN are regarded as the center ion
in this paper. If xNy, Eq. (2) can be simplified to

EpairCASTEP =
1
2
N1EA−A + N2EB−B + 2N1EA−B

N1 + N2
: ð4Þ

We then apply Eq. (4) to CeO2 and A2O3.

1ð ÞCeO2

In CeO2 fluorite structure, each Ce4+ cation is surrounded by eight
O2− ions forming the corners of a cube, while each O2− has only four
Å compared with the ab initio calculations and Coulomb energy.

image of Fig.�3
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Table 1
The parameters of short-ranged potentials of CeO2 and A2O3.

Species a (eV) b c (Å)

O2−–O2− 0.77109 7.85216 1.99458
Ce4+–O2− 0.20 8.46211 3.42512
Ce3+–O2− 0.20 8.93524 3.25432
Gd3+–O2− 0.20 7.95857 3.40062

Table 3
Lattice constants of A2O3.

Lattice
constant

This work Gotte [12] Vyas [10] Minervini [34] Expt

Ce2O3 a (Å) 3.902 3.889 3.858 3.891 [35]
c (Å) 6.132 6.161 6.163 6.059 [35]

Gd2O3 a (Å) 10.790 10.805 10.810 [36]
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Ce4+ neighbors. Hence the ratio of cations and anions is 2:1. In ceria,
the number of cation is assumed to be N, then Eq. (4) is

EpairCASTEP =
1
2
NECe−Ce + 2NEO−O + 4NEO−Ce

3N

=
1
2
ECe−Ce + 2EO−O + 4EO−Ce

3
:

ð5Þ

Since CeO2 has two different structures T1 and T2, the short-range
interaction energy should be determined for each of them based on
Eq. (5). The results are as follows.

ESPT1ð + −Þ = EtotT1−ECoulT1 −Eiso

=
1
2
∑
i;j;k

4
3
ΦSP

+ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i + j−0:5ð Þ2 + j + k−0:5ð Þ2 + k + i−0:5ð Þ2

q a
2

� �

ð6Þ

ESPT2ð + −Þ = EtotT2−ECoulT2 −Eiso

=
1
2
∑
i;j;k

4
3
ΦSP

+ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i + j−0:5ð Þ2 + j + kð Þ2 + k + i−0:5ð Þ2

q
a
2

� �

ð7Þ

Note that here and after Etot denotes the total energies obtained by
CASTEP program, and Eiso denotes the energy of isolated ions, which is
independent on the interionic separation.

2ð ÞA2O3

Obviously, the ratio of cations and anions in A2O3 is 3:2. Taking the
numbers of anion and cation as 3N and 2N, respectively, the average
energy per atom is then written as

EpairCASTEP =
1
2
2NEA−A + 3NEO−O + 6NEO−A

5N

=
1
2
2EA−A + 3EO−O + 6EO−A

5
:

ð8Þ
Table 2
Static properties of CeO2 under 0 K and 0 Pa.

Lattice
constant
a0 (Å)

Lattice
energy
Elatt (eV)

Bulk
modulus
B0 (GPa)

Elastic constants (GPa)

C11 C12 C44

This work 5.418 34.30 223.1 458.2 105.6 106.1
Gotte [12] 5.411 33.95 203.5 402 104 61
Vyas [10] 5.411 35.21 267.9 554.2 124.6 123.6
Butler [9] 5.411 35.22 263.6 504.4 143.1 16.1
CASTEP 5.465 174.8 330.2 97.1 46.4
Expt [21] 5.411 236.0 403 105 60
With the same strategy, the short-range energy for T1 and T2
structures of A2O3 can be derived to be

ESPT1ð + −Þ = EtotT1−ECoulT1 −Eiso

=
1
2
∑
i;j;k

6
5
ΦSP

+ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i + j−0:5ð Þ2 + j + k−0:5ð Þ2 + k + i−0:5ð Þ2

q a
2

� �

ð9Þ

ESPT2ð + −Þ = EtotT2−ECoulT2 −Eiso

=
1
2
∑
i;j;k

6
5
ΦSP

+ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i + j−0:5ð Þ2 + j + kð Þ2 + k + i−0:5ð Þ2

q
a
2

� �

ð10Þ

In the above Eqs. (6)–(10), the short-range pairwise potential
Φ+−

SP (rij) between cation and anion can be evaluated directly by
Chen–Mobius lattice inversion. This is also true for evaluation of
potentials between uniform ions. However, it is not practical for the
case with atomic motion of solid solution due to their distinct forms
and parameters. Hence the quantum-chemical method is adopted
instead for potentials between same species ions.

2.3. Quantum-chemical calculation for potential between O2− ions

In Ref. [17], Ohta et al. utilized quantum-chemical calculations to
develop the potential model between atoms. They then use MD
method to simulate the atomic-scale reaction dynamics of Si etching
processes by Br+-containing plasmas. Even their work involves only
charge-neutral species, their techniquemotivates the current work on
the potential between O2− ions.

To carry out the calculation, we first impose the adiabatic assumption
for electron dynamics (Born–Oppenheimer approximation). Then the
interionic forces can be obtained from the derivatives of potential
functions with respect to the position of the nucleus. For quantum-
chemical calculations, we use the general purpose software GAUSSIAN03
[18]. A correlation method QCISD(T, Full)/6-311G(2df) is adopted as the
model chemistry and basis set. In order to obtain the short-range
interaction between O2− ions, the total charge and the spin multiplicity
Fig. 5. The comparison of different interactions of O2−–O2−.

image of Fig.�5


Fig. 7. The temperature dependence of the lattice constant from 300 to 1200 K.
Temperature step is 100 K.
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S (number of lone pair electrons+1) for each ion configuration should be
specified.Determinationof thepotential involves the following two steps:
(1) determination of the isolated O2− energy; and (2) comparison with
pair O2− ions energy and formal charged (−2) Coulomb energy. Fig. 4
shows these energies corresponding to the interionic separation rij. The
difference between Coulomb and ab initio calculations is assumed to be
not significant if rijN5 Å, i.e., the interaction between two uniform ions is
purely coulombic for interionic distance greater than 5 Å.

Based on the above strategies, the short-range interionic pair
potential can be evaluated from lattice inversion and quantum-
chemical technique. Fitting processes to the obtained potential curves
then give suitable potential function forms accordingly, as stated
below:

Φ +− rð Þ = ΦSP
+− rð Þ + ΦCoul

+− rð Þ

= a+−exp b+− 1− r
c+−

� �� �
+

qþq−
4πε0r

ð11Þ

Φ−− rð Þ = ΦSP
−− rð Þ + ΦCoul

−− rð Þ

= a−− exp
b−−
2

1− r
c−−

� �� �
−1

� �2
−1

� �
+

q2−
4πε0r

ð12Þ

Φ++ rð Þ = ΦCoul
++ rð Þ = q2þ

4πε0r
ð13Þ

where, Φ+−
SP (r) is the exponent repulsive part and Φ−−

SP (r) is the
Morse function. The involved parameters a, b, and c for different cases
are tabulated in Table 1.

3. Application of interionic potentials

In this section, the above developed interionic potentials are
applied to carry out several verifications. Each test is given in a
subsection.

3.1. Static properties of CeO2 and A2O3 at 0 K under no pressure

We first calculate the static properties of equilibrium CeO2 and
A2O3 at zero temperature and pressure. Lattice constants, lattice
energy, and elastic properties have also been calculated based on the
CASTEP calculation and other empirical functions. The results are
given in Tables 2 and 3.

All results, including the current one and those from empirical
potentials by Gotte [12], Vyas [10] and Butler [9] fit the experiment
data [21] reasonably well. All the latter three potentials utilize the
Fig. 6. The pressure dependence of the
same potential function form, but with different parameters. It is
well known that empirical potential depends strongly on the chosen
set of fitting properties, hence may not reproduce other properties
not in the set nicely. For instance, Butler's potential is fitted from
many crystals. Lack of experiment data at that time, the lattice
constant of GDC is much larger than experiment data. Similarly,
Vyas's potential overestimates the mechanical constants since it
is fitted from surface properties. In addition, Vyas's potential
has parameters for Ce3+–O2− identical to that for Ce4+–O2−, thus
failing to describe the structure of Ce2O3 accurately. Recently, Gotte
employs most properties of CeO2 and Ce2O3 to fit the potential
parameters. However, his potential gives larger conductivity and
lower CCE values [13] than the experimental ones. In short,
empirical potential may not describe the structure evolution
properly in extended phase space.

We also compare the short-range potential curves of O2−–O2−

using all the potentials mentioned above, as shown in Fig. 5. At the
nearest distance of O2−–O2− in CeO2, i.e., 2.7 Å, all the potentials are in
attractive sense. However, the interactions of O2−–O2− in Butler's and
Vyas' potential are very weak, leading to minor effect of the short-
range potentials to material properties. This case is improved in
Gotte's potential, where a stronger O2−–O2− interaction leads to
better mechanical constants. Unlike the adjustable parameters in
empirical potentials, our potential features are fixed magnitude of
interaction. This is due to the ab initio nature while selecting the forms
and parameters.
lattice constant from 0 to 200 GPa.

image of Fig.�6
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Fig. 8. Calculated and observed lattice parameters of GDC as a function of Gd2O3 content.
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3.2. CeO2 at 0 K under high pressure

To better assess the developed ab initio potential, we now extend
the system pressure from zero to a finite wide range and calculate the
lattice parameters of CeO2. The results are depicted in Fig. 6. In the
pressure range from 0 to 20 GPa, our results are in good agreement
with experiment data [22]. For a even larger range of 20–200 GPa,
where experimental data are absent, our calculation and CASTEP
share the same trend, with the CASTEP one slightly larger than ours.
This is due to a larger lattice constant by CASTEP calculation at zero
temperature and pressure than that from experiments. Also, note that
from 0 to 200 GPa, the lattice constant reduces gradually from 5.4 Å to
4.7 Å. This reveals that our interionic potential could describe the
evolution of material behaviors in extended phase space.

3.3. CeO2 at high temperatures

We now raise the system temperature to a finite one. For finite
temperature, themolecularmechanicsmethod is not appropriate soMD
simulations are adopted instead. The simulation system includes 1500
ions (5×5×5 CeO2 supercell). The NPT ensemble is adopted, imple-
mented by Nose–Poincare thermostat [23], metric-tensor pressostat
[24], and generalized leap-frog algorithm [25] for the time integration.
Wolf algorithm [19] is used to estimate the Coulomb interaction. The
cutoff distance is set as 10.82 Å. Each simulation is equilibrated for
1×106 steps. Andadditional 2×106 steps are evolved for data collection.

With the above MD setup, lattice constants are calculated in the
temperature range of 300–1200 K, as shown in Fig. 7. Both calculation
and experiment give the same trend. The smaller slopeof the calculation
Fig. 9. Pair correlation functions of Ce–O an
result indicates that the coefficient of thermal expansion by calculation
is smaller than the corresponding experiment data [26]. This is mainly
due to the formal-charge assumption. A potential proposed by Inaba et
al. [11] accounts for the fractional charge (0.675 of the formal charge)
and considers the lattice constants of both normal and high tempera-
tures in the fitting procedure. It is believed that such a potential with a
small fractional charge attenuating the attraction between anions and
cations may reproduce a better thermal expansion coefficient.

3.4. GDC structure

GDC consists of the basis CeO2 and the dopant Gd2O3. Such a
doping process can be represented as follows

Gd2O3↔
CeO2

2Gd′
Ce + V••

O + 3OX
O: ð14Þ

The dopant Gd is trivalent ion. When two Gd ions replace the
positions of two Ce ions, one oxygen vacancy is generated to keep the
charge neutrality. In MD simulations, the GDC structure is constructed
via three steps: (1) build the CeO2 structure with 5×5×5 supercells;
(2) replace someCe4+ ionsbyGd3+ ions; and (3) removesomeO2− ions
to form vacancies. To keep the electric neutrality, the compound always
has the chemical formula of (CeO2)1−x(Gd2O3)x/2 with various doping
ratios. Due to the randomization of the doping procedure, we give three
patterns to decide the arrangementmodeofGd3+ ions: 1) isolatedGd3+

ions, 2) randomdistribution, and 3) isolated Gd3+–Gd3+ ion-pair.With
the three ways, the relationships between lattice constants and Gd2O3

concentration for all these three patterns are depicted in Fig. 8. When
d Gd–O as a function of Gd2O3 content.

image of Fig.�8
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Fig. 10. Nearest distances of Ce–O, Gd–O, O–O as a function of Gd2O3 content.

Fig. 11. Pair correlation functions of O–O as a function of Gd2O3 content.
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doping concentration is greater than 0.1, pattern (1) and pattern
(3) cannot exist due to an excess of dopant ions. In fact, themax doping
concentration of pattern (1) is about 14.3 mol%, corresponding to the
chemical formula Ce0.75Gd0.25O1.875. Under certain circumstances, the
distribution of Gd3+ is sole. Thus the 10 mol% of doping content is close
to the limitation under random distribution situation.

When the doping concentration is less than 0.1, the difference of
lattice constants between the three patterns can be neglected. This
consequence perfectly matches the EXAFS data [27] and other
simulation results [7]. In the following GDC calculations, pattern
(2) is adopted to determine the Gd3+ ion distribution. The simulation
results fit well with the experiment data [28] in the doping
concentration range of 0–0.25 (Fig. 8).

3.5. Pair correlation functions in GDC

In order to investigate the microscopic structure, the pair
correlation functions (PCF) of all pairs of ions are calculated by

g rij
	 


=
nij rð Þ

4π NiNj = V
	 


r2Δr
ð15Þ

where, Ni and Nj are the numbers of ion i and j, respectively. V is the
volume of the system. nij(r) is the number of the pair of ion i and ion j
between the distance of (r−Δr/2) and (r+Δr/2).

We concentrate on the first peaks of Ce–O and Gd–O as a function
of the doping concentration at 300 K. The results are shown in Fig. 9.
The nearest cation–anion distances decrease with the increasing
gadolinia content. And Ce–O distance is smaller than Gd–O distance at
all gadolinia contents (Fig. 10). This might be due to the stronger
Coulomb interaction of Ce–O than that of Gd–O. Simulation results
match perfectly with the EXAFS data [29]. From Table 4, the distances
Table 4
Nearest-neighbor distance between cations as a function of Gd2O3 content.

Content of Gd2O3 Nearest neighbor distance (Å)

Ce–Ce Ce–Gd Gd–Gd

0.0204 3.8357 3.8248 3.7815
0.0526 3.8357 3.8248 3.7707
0.0753 3.8357 3.8248 3.8032
0.1111 3.8357 3.8140 3.7707
0.1364 3.8249 3.8120 3.7924
0.1755 3.8229 3.8033 3.7815
0.2048 3.8140 3.8002 3.7707
0.2500 3.8032 3.7924 3.7599
between cations decrease gradually with increasing gadolinia con-
tents. Furthermore, the PCFs of O–O for various gadolinia contents are
shown in Fig. 11. The greater nearest distance of O–O and the broad-
ening of the peaks are observed with increasing doping content.
Such broadening indicates that various kinds of oxygen sites become
possible. When the nearest distance is greater than 3 Å, the PCF of
high doping concentration is far from 0, implying that the site of
oxygen ion deviates from its original position.

The CN can be obtained by integrating the PCF, as shown in Fig. 12.
The CNs of Gd3+ and Ce4+ are analogical, i.e., the vacancy opts not to be
adjacent to any cations. This result is different from the conclusion of
Inaba et al. InRef. [11], theGd–Gdpair is the optimal arrangementmode.
And the Gd3+-vacancy-Gd3+ cluster is most likely the practical defect
for GDC. However, the currentwork shows that the randomdistribution
ofGd3+ ions ismore reasonable. The association energybetweenGd–Gd
is not measurable, thus the Gd3+-vacancy-Gd3+ cluster with CN=7
doesn't existwith the currentpotential. TheCNbeingbetween7 and8of
Ce4+ and Gd3+ indicates that the cation-vacancy cluster may not be
stabilized. This agrees with Wei's conclusions [7].

3.6. Mean square displacement in GDC

The mean square displacement can be evaluated by

msd tð Þ =
∑

D
→ri tð Þ−→ri 0ð Þ½ �2

E
N

ð16Þ

where, N is the number of ions, →ri is the position vector of ion i.
Notation 〈〉 stands for averaging over all times. It is obvious that msd
Fig. 12. Coordinate number of Ce4+ and Gd3+ as a function of Gd2O3 content.
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Fig. 13. Mean square displacement and diffusion coefficient of O2− as a function of Gd2O3 content.
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(t) is proportional to the time t. By Einstein diffusion equation, one
gets

lim
t→∞

msd tð Þ½ � = B + 6DΔt ð17Þ

where D is the diffusion coefficient. The slope of msd curve is 6D. Here
we calculate the msd curve as a function of doping content at 1000 K,
as depicted in Fig. 13. The msd curve initially increases, followed by a
descending segmentwith increasing gadolinia content. Themaximum
of msd is acquired at a doping concentration of 11.11 mol%. The
chemical formula is found to be Ce0.8Gd0.2O1.9, matching well with
experimental values [30].

By definition, diffusion coefficient D can be evaluated straightfor-
wardly by taking the slope of themsd curve. The experiment data [30]
can be used to find the diffusion constant by the Nernst–Einstein
relation. Since the ionic conductivity is proportional to D, a large D
means a large conductivity.

It is obvious that there exists a maximum ionic conductivity. We
argue that it is the trade-off effect between the increasing vacancy
sites and decreasing vacancy mobility with increasing Gd2O3

concentration. To see this, we divide the diffusion constant by the
number of vacancy. This gives conductivity per single vacancy, as
shown in Fig. 14. It is clear that the averaged conductivity decreases
continuously with increasing Gd2O3 content. The temperature
dependence of diffusion constant is of great interest. To accomplish
this, we take 20GDC (Ce0.8Gd0.2O1.9, which has the maximum
Fig. 14. Ionic conductivity per single vacancy.
diffusion constant) to calculate msd for a temperature range of 800–
2000 K. Results are depicted in Fig. 15, showing that the slope of msd
increases with a higher temperature, i.e., the ionic conductivity
follows the sense of change of temperature. Assuming that the
Arrhenius relation Eq. (18) holds, the activation energy (Ea) and the
temperature independent prefactor (D0) can be obtained. As a
comparison, other MD simulation results of YDC (Yttria-doped
ceria), LDC (Lanthanun-doped ceria) and reduced CeO2 are listed in
Table 5.

D Tð Þ = D0 exp
−Ea
RT

� �
ð18Þ

3.7. CCE of Non-stoichiometric GDC

In this section, we discuss the CCE of non-stoichiometric GDC. The
non-stoichiometric GDC is produced by putting extra vacancies
besides the original ones introduced by dopant. The additional
vacancy concentration can be created in stoichiometric GDC when it
is exposed to a low partial pressure of oxygen. Such reduction is
represented as

OX
O↔V••

O + 2e′ +
1
2
O2: ð19Þ

The defect reaction generates Ce3+ instead of Ce4+ and propor-
tional oxygen vacancies. This indicates that the total number of ions
decreases. The effect of this chemical change on the mechanical
property can be quantified by CCE and elastic constants, given that the
deviation from stoichiometry is not too significant.

Here, we calculate the properties of 10GDC (Ce0.9Gd0.1O1.95) and
20GDC (Ce0.8Gd0.2O1.9), where gadolinium atoms replace 10% and 20%
of the cerium sites in ceria, respectively. Their corresponding non-
stoichiometric forms are Ce0.9Gd0.1O1.95-δ and Ce0.8Gd0.2O1.9-δ, where
the subscript δ marks the additional oxygen vacancy concentration.

When δ is small, CCE, denoted by η, is defined as the linear strain
per deviation from stoichiometry, i.e.

η =
∂εL
∂ρ

����
ρ=ρ0

ð20Þ

where, εL is the linear chemical expansion and ρ is the vacancy
concentration. δ=ρ−ρ0 is the deviation from stoichiometry. Since
the non-stoichiometric GDC can be considered as the dopant Ce2O3

into GDC, we still employ the method that constructs the GDC
structure to produce the non-stoichiometric GDC structure. After the
structure optimization, the shape of system remains cubic, i.e., the

image of Fig.�13
image of Fig.�14


Fig. 15. Mean square displacement of 20GDC as a function of temperature.
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strain induced as a result of non-stoichiometry is purely volumetric.
Thus the linear strain can be evaluated as

εL =
V δð Þ−V 0ð Þ

3V 0ð Þ : ð21Þ

Fig. 16 depicts the relation εL versus δ. The results fit well with
experiment data [6]. Moreover, εL is proportional to the δ, leading to
η=εL/δ by Eq. (18). The values of CCE for 10GDC and 20GDC are given
in Table 6.

3.8. Elastic constants of non-stoichiometric GDC

Non-stoichiometric GDC has a cubic structure, hence it has three
independent elastic constants C11, C12 and C44. These constants can be
calculated directly with the stress-strain fluctuation formula [31].
Results for 10GDC and 20GDC are shown in Fig. 17. Note for both
GDCs, C11 decreases rapidly with increasing δ. This is due to the weaker
Coulomb interactionwith larger deviation fromstoichiometry.Notealso
that the elastic constants of 10GDC are larger than the correspondent
ones of 20GDC. It is the consequence of lower oxygen vacancy
concentration in the former. The δ dependence of C12 and C44 is small
and can be safely neglected.

Besides the properties of single crystals, the elastic constants of
isotropic polycrystalline GDC should be calculated for its applications
in SOFC. The polycrystalline properties are obtained by using a
homogenization method [32]. The bulk modulus of such an aggregate
is well defined, whereas the shear modulus is inherently uncertain,
depending on details of the arrangement and shape of the constituent
crystals. The bulk modulus is related to the elastic constants by

K =
C11 + 2C12

3
: ð22Þ
Table 5
Oxygen diffusion data from the present study compared with values for various results
from experiments and from MD simulations.

Sample D0 (cm2/s) D (cm2/s) Ea (kJ/mol) T (K) Ref.

Ce0.8Gd0.2O1.9 7.1 ∙10−5 49.5 800–2000 This work
Ce0.8Gd0.2O1.9 6.6 ∙10−7 1273 This work
Ce0.8Y0.2O1.9 3.6 ∙10−7 1273 Ref. [37]
Ce0.8Y0.2O1.9 1.1 ∙10−7 1273 Ref. [38]
Ce0.76La0.24O1.88 1.3 ∙10−7 1273 Ref. [38]
Ce0.8Gd0.2O1.9 2.4 ∙10−7 1273 Ref. [38]
Ce0.8Gd0.2O1.9 2.5 ∙10−7 44.0 1073 Ref. [1]
Ce0.8Gd0.2O1.9 8.9 ∙10−7 1273 Ref. [30]
CeO1.8778 5.7 ∙10−5 55.7 800–2200 Ref. [12]
CeO1.8778 2.6 ∙10−7 1250 Ref. [12]
The isotropic shear modulus in the Hashin–Shtrikman averaging
scheme is given by

G =
GU + GL

2
ð23Þ

where the upper and lower bounds are

GU = C44 + 2
5

CS−C44
+

18 K + 2C44ð Þ
5C44 3K + 4C44ð Þ

� �
ð24Þ

GL = CS + 3
5

C44−CS
+

12 K + 2CSð Þ
5CS 3K + 4CSð Þ

� �
ð25Þ

where CS=(C11−C12)/2. The elastic constants of polycrystalline can
be represented more conveniently by two familiar engineering
properties, Young's modulus and Poisson's ratio. Calculation results
and experiment data [33] have been presented in Fig. 18. Young's
modulus decreases with increasing deviation of stoichiometry.
Fig. 16. Compositional strain versus δ of 10GDC and 20GDC.
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Table 6
Average CCE values of 10GDC and 20GDC at various temperatures.

Temperature (K) CCE

10GDC 20GDC

300 0.08279 0.07792
500 0.08179 0.07511
700 0.07994 0.07376
900 0.07826 0.07167
1100 0.07709 0.07012
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However, Young's modulus and its variation with stoichiometry do
not show strong temperature dependence. Further, it is found that
Poisson's ratio is about 0.26 and varies within 6% over thewhole range
of temperature and non-stoichiometry considered here.
4. Concluding remarks

In this paper, we propose a novel method to derive the interionic
potentials of CeO2, Gd2O3 and Ce2O3 based on the ab initio
calculations. Pairs of hetero- and homo-species ions are handled by
multiple lattice inversion and quantum chemistry. The newly
developed potentials are verified by a bunch of MD simulations in
Fig. 17. Elastic constants versu
various categories on CeO2, GDC and non-stoichiometric GDC against
experimental data. Simulation results prove that the proposed
potential is reasonably good to be used for broad atomic simulations
of materials with involved ions.

There are several issues that have not been resolved in the current
work yet. First, the pairwise interaction is employed in this paper,
which will lead to the unphysical Cauchy relation, i.e., C12=C44.
Second, only limited applications of this algorithm are demonstrated.
More cases need to be explored, such as Al2O3 or PbO2. All these will
be addressed in a future work.

In closing since all the ions are assumed to be formally charged, it
will cause some inaccuracy in some properties, such as the thermal
expansion coefficient of CeO2. If a better charge determination is
developed, we may have the confidence of better results. Therefore,
these new interionic potentials may be promising in exploring and
predicting the properties of ionic crystals and this new method is
worth further refinement and extending to other ionic crystals.
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Fig. 18. Young modulus versus δ of 10GDC and 20GDC.
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