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Recent studies by multiple authors show contradictory results concerning the symmetry properties

of second harmonic Lamb waves. This research experimentally investigates this symmetry issue by

examining both symmetric (s1-s2) and anti-symmetric (a1-a2 and a2-a4) mode pairs in aluminum

plates under the same experimental conditions. The wedge technique is used to generate and detect

ultrasonic Lamb wave signals of a specific mode, and the Morlet wavelet is applied to extract the

fundamental and second harmonic amplitudes. The measured normalized second harmonic

amplitudes of the three different mode pairs all show a linear increase with propagation distance.

However, the slopes of the two anti-symmetric mode pairs are smaller by two to three orders of

magnitude than that of the symmetric mode pair considered. Further investigations of these two

anti-symmetric mode pairs for plates with different levels of material nonlinearity reveal

consistently small slopes that are independent of the level of material nonlinearity. Therefore, this

research experimentally demonstrates that the second harmonic generation in anti-symmetric Lamb

wave modes is extremely inefficient; this result is consistent with some recent theoretical

predictions and thus shows that the use of these anti-symmetric modes is not favorable for the

experimental characterization of material nonlinearity. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3691225]

I. INTRODUCTION

Previous research has shown that nonlinear Lamb wave

techniques can be used to characterize acoustic nonlinearity,

which in turn can be an indicator of damage due to fatigue or

thermal aging.1–5 These techniques rely on the measurement

of the second harmonic Lamb waves generated by the intrin-

sic material nonlinearity which is related to the lattice anhar-

monicity and/or microstructural defects such as dislocations

or precipitates. Compared to nondispersive longitudinal and

Rayleigh waves,6–8 Lamb waves have the potential to be uti-

lized to efficiently monitor damage in large plate-like struc-

tures because they can propagate relatively long distances

and interrogate the entire thickness of a structure. However,

their inherently dispersive and multi-modal nature introduces

difficulties in measurements, making a careful theoretical

analysis necessary for their application to assess material

damage. One important issue is the selection of a mode pair

that can efficiently generate a second harmonic wave and

thus reliably characterize material nonlinearity.

Recent theoretical studies9–12 on nonlinear Lamb waves

demonstrate that only specific mode pairs that satisfy certain

conditions exhibit cumulative second harmonic generation,

i.e., a linear growth of the second harmonic amplitude with

propagation distance. Although both phase and group veloc-

ity matching have been established as necessary conditions

for cumulative second harmonic generation, there are contra-

dictory arguments related to the symmetry properties of sec-

ond harmonic Lamb waves. Deng,9,10 Müller et al.,11 and

Srivastava et al.12 theoretically conclude that cumulative

second harmonic generation can occur only in the symmetric

second harmonic modes. Symmetric mode pairs at the mate-

rial’s longitudinal wave velocity13,14 (s1-s2, s2-s4) and an

anti-symmetric-symmetric mode pair at the crossing points15

(a2-s4) in the phase velocity dispersion plot have been exper-

imentally shown to be useful in measuring material nonli-

nearity. In contrast, de Lima and Hamilton16 argue that only

second harmonic modes of the same symmetry as the pri-

mary modes can be generated, which implies the possibility

of anti-symmetric second harmonic mode generation by an

anti-symmetric primary mode. Furthermore, Lee et al.17

reported experimental results on the cumulative propagation

of an anti-symmetric second harmonic mode. Most recently,

Matsuda and Biwa18 analyzed the Lamb wave mode pairs

that simultaneously satisfy the phase and group velocity

matching conditions. By not taking the excitability condition

into account, their analysis implicitly allows for the possibil-

ity of anti-symmetric second harmonic generation. There-

fore, further investigation is needed in order to unravel these

contradictions and provide guidance for mode selection in

the applications of nonlinear Lamb waves.

a)Author to whom correspondence should be addressed. Electronic mail:

jinyeon.kim@me.gatech.edu.
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The objective of this research is to experimentally inves-

tigate the symmetry properties of second harmonic Lamb

waves by measuring the modal responses of symmetric and

anti-symmetric second harmonic Lamb wave modes. The

selected mode pairs are examined for their efficiency in char-

acterizing the inherent material nonlinearity of undamaged

aluminum plates under the same experimental conditions.

By carefully comparing the results for these mode pairs and

then examining the anti-symmetric mode pairs in two materi-

als with different levels of material nonlinearity, a conclu-

sion on the symmetry properties of the second harmonic

Lamb modes is reached.

II. CUMULATIVE SECOND HARMONIC GENERATION
OF LAMB WAVES

This section briefly summarizes the theoretical condi-

tions for the cumulative second harmonic generation of

Lamb waves. Following the work by Müller et al.,11 consider

the propagation of plane time-harmonic Lamb waves in an

isotropic, homogeneous, nonlinear elastic plate with stress-

free boundary conditions. It is assumed that the wave motions

are in the y-z plane and the wave propagation occurs in the

z-direction. The total displacement field can be assumed

to be the sum of a primary wave uð1Þ (at frequency x) and

a second harmonic wave uð2Þ (at frequency 2x) based on the

perturbation condition juð2Þj � juð1Þj. The perturbation

method is applicable and well supported by experimental

results, which show that the amplitude of the second har-

monic wave is much smaller than that of the primary

wave.7,8,13,14 The solution for the second harmonic wave uð2Þ

can be written in the normal mode expansion form9,11

uð2Þðy; z; tÞ ¼
X

n

AnðzÞ~uð2Þn ðyÞe�2ixt; (1)

where AnðzÞ is the amplitude or spatial dependence of the nth

second harmonic mode ~uð2Þn ðyÞ. Clearly, AnðzÞ should not

vanish in order for the second harmonic wave to be gener-

ated. Its expression is given as

AnðzÞ ¼
f vol
n þ f surf

n

4Pnn

( i

j�n � 2j
ðe2ijz � eij�nzÞ if j�n 6¼ 2j

ze2ijz if j�n ¼ 2j
;

(2)

where j and j�n (with * denoting the complex conjugate) are

wave numbers of the primary mode and the nth second har-

monic mode, respectively; Pnn is the power carried by the

nth second harmonic mode; f vol
n and f surf

n are power fluxes

from the primary mode to the second harmonic mode

through the volume and surface of the plate, respectively.

Detailed expressions for these terms can be found in the

work of Müller et al.11 Note that f vol
n and f surf

n act as the

modal driving forces of the second harmonic mode due to

the material nonlinearity.

It is seen from Eq. (2) that the second harmonic wave

can be excited ðAnðzÞ 6¼ 0Þ only if the total power flux is non-

zero (i.e., f vol
n þ f surf

n 6¼ 0), which is referred to as the excit-

ability condition for the second harmonic Lamb waves. A

careful examination11 shows that f vol
n þ f surf

n 6¼ 0 generally

holds for a symmetric second harmonic mode, whereas f vol
n þ

f surf
n ¼ 0 for an anti-symmetric second harmonic mode,

which means that only symmetric second harmonic Lamb

wave modes can be excited. Furthermore, when j�n ¼ 2j is

satisfied in Eq. (2), i.e., the phase velocity of the primary

wave is equal to that of the second harmonic wave (phase

velocity matching), the amplitude of the second harmonic

wave grows linearly as it propagates. An additional condition,

namely, group velocity matching,1,11 is required for cumula-

tive second harmonic generation when the primary wave is a

pulse of a finite number of cycles, as is the case in most prac-

tical experiments. This means that the primary and secondary

harmonic waves travel at the same group velocity; thus the

energy that leaks out of the primary wave can be accumulated

in the second harmonic wave. To conclude, three condi-

tions—the nonzero power flux, phase velocity matching, and

group velocity matching—should be simultaneously satisfied

in order for the cumulative generation of the second harmonic

Lamb waves to occur.

As mentioned in the above, the group velocity matching

condition is required only due to the dispersion effect that

occurs when the fundamental wave is a pulse of finite dura-

tion. The experimental technique used in this paper measures

the amplitude of the naturally cumulative second harmonic

mode and thus requires that the group velocity matching condi-

tion be satisfied. However, the experimental technique of Deng

et al.19 does not require group velocity matching. Their tech-

nique integrates the dispersed (noncumulative) second har-

monic signal; the integrating operation works as an artificial

accumulation of naturally noncumulative second harmonic sig-

nals, which enables the observation of an effect equivalent to

the cumulative second harmonic propagation that can be

observed in the naturally cumulative second harmonic mode.

III. EXPERIMENTS

A. Mode pairs investigated

This work considers three different mode pairs: a sym-

metric mode pair s1-s2 and two anti-symmetric mode pairs

a1-a2 and a2-a4, as shown in Fig. 1 (the dispersion curves

for phase and group velocities in an Al 6061 T6 plate). The

s1-s2 mode pair with a phase velocity equal to the longitudi-

nal velocity (cL ¼ 6320 m/s) satisfies all three conditions for

the cumulative second harmonic generation. The two anti-

symmetric mode pairs have a phase velocity cp ¼
ffiffiffi
2
p

cT and

a group velocity cg ¼
ffiffiffi
2
p

=2cT (in which cT is the shear ve-

locity of the plate) and are known as Lamé modes.18,20 These

modes have only out-of-plane displacement (and zero in-

plane displacement) components and thus are experimentally

advantageous, especially for the liquid-coupled wedge trans-

ducers used in this research. However, all Lamé modes satisfy

the phase and group velocity matching conditions, but not the

excitability condition.11,20 The fundamental and second har-

monic frequencies, in terms of frequency times the plate

thickness h, are fh ¼ 3.63 MHz mm and 7.26 MHz mm for

the s1-s2 mode pair, fh ¼ 4.43 MHz mm and 8.86 MHz mm

for the a1-a2 mode pair, and fh ¼ 8.86 MHz mm and 17.72

MHz mm for the a2-a4 mode pair, as shown in Fig. 1.
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The mode pairs selected are examined for their effi-

ciency in characterizing the inherent material nonlinearity of

undamaged aluminum plates. Previous investigations1,3,7,8

on the nonlinear characteristics of longitudinal and Rayleigh

waves used a normalized second harmonic amplitude A2=A2
1

versus the propagation distance (often called b0) as a relative

or uncorrected acoustic nonlinearity parameter, in which A1

and A2 are the amplitudes of the fundamental and second

harmonic waves, respectively. Note that A2=A2
1 is propor-

tional to the absolute acoustic nonlinearity parameter b
and contains all the essential information needed to measure

material nonlinearity. In order to compare the efficiency of

the second harmonic generation of Lamb wave mode pairs

at different frequencies and phase velocities (Fig. 1), the

influences of the frequency and phase velocity on the non-

linearity parameter must be taken into account. Because

there is no explicit expression available for the absolute non-

linearity parameter b in terms of surface displacements

for Lamb waves, this research hypothesizes the following

proportionality:

b / 1

z

c2
p

x2

A2

A2
1

; (3)

where the right-hand side term is taken as the uncorrected (or

relative) nonlinearity parameter b0 for Lamb waves. This work

then measures the normalized second harmonic amplitude

c2
pA2=A2

1x
2 as a function of the propagation distance z. Thus,

the slope in the plot of c2
pA2=A2

1x
2 versus z is the relative non-

linearity parameter b0.

B. Measurement setup

A schematic of the measurement setup is shown in

Fig. 2. Four aluminum plates, two Al 6061 T6 plates and two

Al 1100 H14 plates with a thickness h of either 1.6 mm or

3.175 mm, are used in the experiments. Lamb waves are gen-

erated and detected using variable-angle Plexiglas wedge

transducers in the pitch-catch mode as shown in Fig. 2. The

incident angle h used to excite a specific Lamb mode is

determined by Snell’s law. A tone burst signal of 30 cycles

at the fundamental frequency is generated by a high power

gated amplifier (RITEC RAM-5000 Mark IV) and fed into

the transmitter (KB-Aerotech Gamma C07416, with a center

frequency of 2.25 MHz) for excitation of the targeted funda-

mental Lamb mode. The receiver (Panametrics A405S, with

a center frequency of 5 MHz) simultaneously detects both

fundamental and second harmonic waves. The wedge trans-

ducer assemblies are coupled to the specimen with light

lubrication oil that produces a low level of variability in the

second harmonic signals.14 The measured time-domain sig-

nals are sampled at 100 MHz by an oscilloscope, averaged

1000 times to improve the signal-to-noise ratio, and then

transferred to a computer for signal processing. All of the

measurements are taken in the far field of the transducer21

with a propagation distance of 22.5 cm to 45 cm in incre-

ments of 2.5 cm. At each propagation distance, three dif-

ferent measurements are taken in order to evaluate the

experimental consistency. For each of these three measure-

ments, the receiving wedge transducer assembly is com-

pletely removed and then reattached, whereas the transmitter

remains unchanged. Care should be taken to ensure experi-

mental consistency, including the same clamping force on

the wedges for consistent coupling, the same instrumentation

including transducers, and consistent signal processing pa-

rameters for all four different specimens. This is especially

important when making an objective comparison of results

from different mode pairs.

C. Signal processing of nonlinear Lamb waves

An accurate determination of both fundamental and sec-

ond harmonic amplitudes from a measured time-domain

FIG. 1. (Color online) Dispersion curves for (a) phase velocity and (b)

group velocity of an aluminum 6061 T6 plate.

FIG. 2. Schematic of the experimental setup.
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signal can be difficult when multiple modes are excited;

other unwanted modes can contribute to the amplitudes of

the fundamental and second harmonic amplitudes. In addi-

tion, the amplitude of the second harmonic wave is usually

much smaller than that of the fundamental wave.7,8,13,14

Therefore, a consistent and robust signal processing proce-

dure is needed in order to correctly identify the amplitudes

of the fundamental and second harmonics. Some researchers

have used a method based on the short-time Fourier trans-

form1,7,14,17 to extract these amplitudes. However, the accu-

racy of this approach can be dependent on the user’s

experience in determining critical parameters such as the

type, length, and overlap percentage of the window function.

A set of inappropriate parameters can cause inaccurate

results in the fundamental and second harmonic amplitudes,

thus providing an unreliable prediction of the nonlinearity

parameter.14,22 This work employs the Morlet wavelet,

which has shown to be robust in extracting these amplitude

features from dispersive and multimode guided wave

signals.23–25 An advantage of this approach is that the ampli-

tudes at the fundamental and second harmonic frequencies

can be extracted (with the Morlet wavelet) without any

user’s optimization of the signal processing parameters.

The application of the Morlet wavelet relies on the fact

that the peak magnitude of the wavelet coefficient at a fre-

quency x, W(x), represents the wave component that propa-

gates with a group velocity cg at this frequency. This peak

magnitude is proportional to the amplitude of the raw signal

AðxÞ,23

WðxÞ ¼ CðxÞAðxÞ; (4)

where CðxÞ is a frequency-dependent factor. In order to

accurately compare the responses of the three mode pairs

with different excitation frequencies, the amplitudes at both

the fundamental (x) and second harmonic (2x) frequencies

must be calibrated from their wavelet coefficients, i.e., A1

¼ WðxÞ=CðxÞ and A2¼Wð2xÞ=Cð2xÞ.
Typical time-domain signals of the symmetric (s1-s2)

and anti-symmetric (a1-a2) mode pairs measured at a propa-

gation distance z ¼ 35 cm in a 1.6-mm-thick Al 6061 plate

and the associated wavelet coefficients at the fundamental

and second harmonic frequencies are shown in Fig. 3 and

Fig. 4. As both the s1 (at x) and s2 (at 2x) modes have the

fastest group velocity (as seen in Fig. 1) in the excited fre-

quency band, they correspond to the first peaks in the

extracted components (Fig. 3(b)). It is seen that both s1 and

s2 modes are well separated from the other simultaneously

excited modes; thus their amplitudes can be accurately

extracted. For the a1-a2 mode pair, it is clear in Fig. 4(a) that

the a1 mode is dominant in the time domain signal relative

to the other modes possibly excited. This is because the

Lamé modes have only an out-of-plane displacement compo-

nent and thus can easily be excited and detected with fluid-

coupled wedge transducers. For this reason, the amplitudes

of the harmonic components can be accurately extracted

from the Morlet wavelet coefficients at the fundamental and

second harmonic frequencies (Fig. 4(b)), even though their

group velocity is not the fastest.

IV. RESULTS AND DISCUSSION

The normalized second harmonic amplitudes, c2
pA2=

A2
1x

2 for the three mode pairs measured at ten propagation

distances in the Al 6061 plates are shown in Fig. 5. Note that

the initial value of c2
pA2=A2

1x
2 measured at the first distance,

z0 ¼ 22.5 cm, has been subtracted from the rest of the results

of each mode pair for comparison purposes. This initial

value represents the nonlinearity of the measurement setup

(electronics and transducers) and is constant for a given ex-

perimental setup; however, its value can vary with coupling

conditions. The error bars indicate the standard deviation of

the three different measurements that are repeated at each

propagation distance, and this deviation is mainly attributed

to coupling variability. The measured c2
pA2=A2

1x
2 for the s1-

s2 mode pair shows a linear increase with propagation dis-

tance, and previous experimental work1,13,14 has shown that

this increase is due to material nonlinearity. Thus the experi-

mental procedure used in this research appears to be reliable

for characterizing second harmonic generation. It is surpris-

ing to observe in Fig. 5 that the normalized second harmonic

amplitude of the anti-symmetric mode pairs (a1-a2 and a2-

a4) also shows a linear increase with propagation distance.

However, the slopes of these modes are significantly smaller

than that of the s1-s2 mode pair (so that their fit lines look

flat in Fig. 5): the slope of the a1-a2 mode pair is 71.7 times

smaller than that of the s1-s2 mode pair, and the slope of the

a2-a4 mode pair is 209.1 times smaller than that of the s1-s2

FIG. 3. (Color online) Representative results of (a) a typical time-domain

signal of an s1-s2 mode pair measured at a propagation distance of

z¼ 35 cm and (b) amplitude components of the fundamental and second

harmonic frequencies extracted by the Morlet wavelet.
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mode pair. Due to their negligibly small slopes (as compared

to the s1-s2 mode pair), the anti-symmetric mode pairs will

be very inefficient in experimentally characterizing material

nonlinearity.

Whereas the theory of Ref. 11 predicts a zero slope for

an anti-symmetric second harmonic Lamb mode due to the

vanishing power flux, the experimental results in Fig. 5 show

small but linear increases in the normalized second harmonic

amplitude for the anti-symmetric mode pairs. Thus questions

arise as to what contributes to these small linear increases,

and whether they are due to cumulative second harmonic

generation caused by the material nonlinearity. In order to

investigate this, further measurements for both the a1-a2 and

a2-a4 mode pairs are conducted on two aluminum plates (Al

6061 T6 and Al 1100 H14) that have different levels of ma-

terial nonlinearity, again under the same experimental condi-

tions. The ratio between the absolute nonlinearity parameters

of these two materials measured with longitudinal waves26 is

bAl 100=bAl 6061 ¼ 2:12, and the ratio between the relative

nonlinearity parameters measured on these two plates with

the s1-s2 Lamb mode pair13 is b0Al 100=b
0
Al 6061 ¼ 2:77. There-

fore, the small linear increases for the anti-symmetric mode

pairs can be attributed to the material nonlinearity only if the

ratio between the slopes measured from these two different

materials is close to 2.12. First, the ratio is calculated from

the slopes measured with the a1-a2 mode pair for these two

materials, and then, to double-check this measured ratio,

measurements are performed with the a2-a4 mode pair.

Figure 6 shows the normalized second harmonic amplitude

for the a1-a2 and a2-a4 mode pairs in these two materials. It

is interesting to note that both ratios are quite close to unity

(1.12 for the a1-a2 mode pair and 1.05 for the a2-a4 mode

pair). More interesting is the fact that these two ratios are

very close to each other. The consistency in these results

indicates that the linear increases with small slopes in the

results for the a1-a2 and a2-a4 mode pairs are not due to the

cumulative propagation of second harmonic waves. One pos-

sible cause for these small but measureable slopes is a
FIG. 4. (Color online) Representative results of (a) a typical time-domain

signal of an a1-a2 mode pair measured at a propagation distance of

z¼ 35 cm and (b) amplitude components of the fundamental and second

harmonic frequencies extracted by the Morlet wavelet.

FIG. 5. (Color online) Comparison of the measured c2
pA2=A2

1x
2 vs the

propagation distance for the s1-s2, a1-a2, and a2-a4 mode pairs in Al

6061-T6 plates.

FIG. 6. (Color online) Comparison of the measured c2
pA2=A2

1x
2 vs the prop-

agation distance for the (a) a1-a2 mode pair and (b) a2-a4 mode pair in an

Al 6061-T6 plate and an Al 1100-H14 plate.
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violation of the assumption of plane waves in the theory; this

experimental setup generates wave fronts that are closer to

cylindrical, as opposed to perfect plane waves. Clearly, fur-

ther investigation is needed in order to completely under-

stand the exact causes of these small slopes, but this is out of

the scope of the present research.

V. CONCLUSIONS

This research experimentally investigates the symmetry

properties of second harmonic Lamb waves by examining

two anti-symmetric Lamé mode pairs (a1-a2 and a2-a4) and

a symmetric mode pair (s1-s2) under the same experimental

conditions. The s1-s2 mode pair with the longitudinal veloc-

ity theoretically satisfies all three conditions for cumulative

second harmonic generation, whereas the a1-a2 and a2-a4

mode pairs satisfy only the phase and group velocity match-

ing conditions. The three mode pairs are first examined in Al

6061 plates, and the experimentally measured normalized

second harmonic amplitudes of all three mode pairs increase

linearly with propagation distance. However, the slopes of

the anti-symmetric mode pairs (a1-a2 and a2-a4) are two to

three orders of magnitude smaller than that of the s1-s2

mode pair. Because the theory of Ref. 11 predicts a zero

slope for the anti-symmetric mode pairs, further research

investigates whether these small slopes are due to material

nonlinearity. The same measurements are repeated on two

plates with different levels of material nonlinearity, and the

results show that the slopes of the two anti-symmetric mode

pairs in two different materials are the same, which indicates

that the measured slopes are not due to the material nonli-

nearity (or the cumulative second harmonic propagation).

This research, therefore, experimentally proves that second

harmonic generation does not occur in anti-symmetric Lamb

wave modes, which is consistent with the theoretical predic-

tion of the nonexistence of a second harmonic anti-

symmetric Lamb wave mode.

ACKNOWLEDGMENTS

Yu Liu was financially supported by the China Scholar-

ship Council (No. 2010601198) during her visit at the Geor-

gia Institute of Technology.

1C. Pruell, J.-Y. Kim, J. Qu, and L. J. Jacobs, Appl. Phys. Lett. 91, 231911

(2007).
2M. Deng and J. Pei, Appl. Phys. Lett. 90, 121902 (2007).
3C. Pruell, J.-Y. Kim, J. Qu, and L. J. Jacobs, Smart Mater. Struct. 18,

035003 (2009).
4Y. Xiang, M. Deng, F.-Z. Xuan, and C.-J. Liu, Ultrasonics 51, 974 (2011).
5A. I. Korobov and M. Y. Izosimova, Acoust. Phys. 52, 683 (2005).
6J. H. Cantrell and W. T. Yost, Int. J. Fatigue 23, S487 (2001).
7J.-Y. Kim, L. J. Jacobs, J. Qu, and J. W. Littles, J. Acoust. Soc. Am. 120,

1266 (2006).
8J. Herrmann, J.-Y. Kim, L. J. Jacobs, J. Qu, J. W. Littles, and M. F. Svage,

J. Appl. Phys. 99, 124913 (2006); M. Liu, J.-Y. Kim, J. Qu, and L. J.

Jacobs, NDT & E Int. 44, 67 (2011).
9M. Deng, J. Appl. Phys. 94, 4152 (2003).

10M. Deng, J. Appl. Phys. 85, 3051 (1999).
11M. F. Müller, J.-Y. Kim, J. Qu, and L. J. Jacobs, J. Acoust. Soc. Am. 127,

2141 (2011).
12A. Srivastava and F. L. di Scalea, J. Sound Vib. 323, 932 (2009).
13C. Bermes, J.-Y. Kim, J. Qu, and L. J. Jacobs, Appl. Phys. Lett. 90,

021901 (2007).
14K. H. Matlack, J.-Y. Kim, L. J. Jacobs, and J. Qu, J. Appl. Phys. 109,

014905 (2011).
15M. Deng, P. Wang, and X. Lv, J. Phys. D: Appl. Phys. 38, 344 (2005).
16W. J. de Lima and M. F. Hamilton, J. Sound Vib. 265, 819 (2003).
17T.-H. Lee, I.-H. Choi, and K.-Y. Jhang, Mod. Phys. Lett. 22B, 1135

(2008).
18N. Matsuda and S. Biwa, J. Appl. Phys. 109, 094903 (2011).
19M. Deng, Y. Xiang, and L. Liu, J. Appl. Phys. 109, 113525 (2011).
20K. F. Graff, Wave Motion in Elastic Solids (Oxford University Press,

London, 1975).
21A. Ruiz and P. B. Nagy, J. Acoust. Soc. Am. 112, 835 (2002).
22C. Pruell, J.-Y. Kim, J. Qu, and L. J. Jacobs, NDT & E Int. 42, 199

(2009).
23Y. Liu, Z. Li, and W. Zhang, Nondestr. Test. Eval. 25, 25 (2010).
24J. Lin and L. S. Qu, J. Sound Vib. 234, 135 (2000).
25K. Kishimoto, H. Inoue, and M. Hamada, J. Appl. Mech. 62, 841 (1995).
26W. T. Yost and J. H. Cantrell, in Review of Progress in Quantitative Non-

destructive Evaluation, edited by D. O. Thompson and D. E. Chimenti

(Plenum, New York, 1993), pp. 2067-2073.

053511-6 Liu et al. J. Appl. Phys. 111, 053511 (2012)

http://dx.doi.org/10.1063/1.2811954
http://dx.doi.org/10.1063/1.2714333
http://dx.doi.org/10.1088/0964-1726/18/3/035003
http://dx.doi.org/10.1016/j.ultras.2011.05.013
http://dx.doi.org/10.1016/S0142-1123(01)00162-1
http://dx.doi.org/10.1121/1.2221557
http://dx.doi.org/10.1063/1.2204807
http://dx.doi.org/10.1016/j.ndteint.2010.09.008
http://dx.doi.org/10.1063/1.1601312
http://dx.doi.org/10.1063/1.369642
http://dx.doi.org/10.1121/1.3294714
http://dx.doi.org/10.1016/j.jsv.2009.01.027
http://dx.doi.org/10.1063/1.2431467
http://dx.doi.org/10.1063/1.3527959
http://dx.doi.org/10.1088/0022-3727/38/2/020
http://dx.doi.org/10.1016/S0022-460X(02)01260-9
http://dx.doi.org/10.1063/1.3569864
http://dx.doi.org/10.1063/1.3592672
http://dx.doi.org/10.1121/1.1497368
http://dx.doi.org/10.1016/j.ndteint.2008.09.009
http://dx.doi.org/10.1080/10589750902744992
http://dx.doi.org/10.1006/jsvi.2000.2864
http://dx.doi.org/10.1115/1.2896009

