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This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources
on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for
correcting measurements made with air-coupled and contact piezoelectric receivers for the aforemen-
tioned effects is provided based on analytical models and experimental considerations. A method for
extracting the nonlinearity parameter b11 is proposed based on a nonlinear least squares curve-fitting
algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to
confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effective-
ness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 spec-
imens and a b7075

11 =b2024
11 measure of 1.363 agrees well with previous literature and earlier work. The

proposed work is also applied to a set of 2205 duplex stainless steel specimens that underwent various
degrees of heat-treatment over 24 h, and the results improve upon conclusions drawn from previous
analysis.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction tances because these effects exist equally at all measurement
Nonlinear ultrasonic measurements using Rayleigh surface
waves have been successfully employed to characterize material
damage and microstructural changes due to a variety of failure
and plastic deformation mechanisms, including fatigue [1,2], cold
work [3], thermal aging [4], and creep [5]. These methods capital-
ize on the generation of a second harmonic component of ampli-
tude A2 resulting from the interrogation of a material with a
monochromatic source at a fundamental frequency of amplitude
A1. These finite amplitude Rayleigh wave components are mea-
sured at multiple locations along the central axis of the ultrasonic
beam, providing amplitude information as a function of propaga-
tion distance. In previous works, it’s been shown that the normal-
ized second harmonic amplitude ðA2=A2

1Þ exhibits an increasing
trend with propagation distance. For short ranges of propagation,
the normalized second harmonic amplitude is fit well by a linear
relationship, and the slope of this function is proportional to the
acoustic nonlinearity parameter b of the material. It has been
shown that nonlinear effects related to coupling conditions [2] or
system nonlinearity [6] do not have an experimentally significant
impact on the measurement of b when measured over short dis-
intervals. For this reason, this technique is attractive for field appli-
cation due to its simplicity and robustness.

The exploitation of nonlinear stress–strain relationships to gen-
erate auxiliary signal components from monochromatic inputs has
numerous applications in addition to the second harmonic gener-
ation (SHG) methods detailed in this work, including wave mixing
phenomena [7,8] and parametric arrays [9,10]. The primary dis-
tinction between SHG and the latter two examples is that SHG
focuses entirely on relating the harmonics generated from a mono-
chromatic input to the nonlinearity of the material, whereas wave
mixing and parametric array excitation seeks to exploit the mate-
rial nonlinearity to produce output waves at sum and/or difference
frequencies from multiple monochromatic inputs. Despite some
advantages (super-directivity of outputs and temporal isolation
from inputs), the latter techniques are experimentally challenging
for Rayleigh wave-based applications [11].

Since the source transducer used to generate the Rayleigh wave is
finite sized and directive, the radiated ultrasonic beam experiences
diffraction. This manifests as oscillatory behavior in the near field,
decreasing fundamental amplitude versus propagation distance,
and a nonlinearly increasing and subsequent decreasing in the second
harmonic amplitude in the far field. While previous literature indi-
cates a linear increase in second harmonic amplitude, this is not gen-
erally correct and exists primarily because the propagation distance is
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Fig. 1. (a) Experimental setup schematic and theoretical framework for air-coupled
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too small in these studies to see the combined effects of diffraction
and attenuation dominating second harmonic generation. This paper
attempts to rectify the calculation of the nonlinearity parameter in
Rayleigh wave experiments with more accurate accounting of the
effects of diffraction, attenuation, and source nonlinearities.

The diffraction of a low amplitude ultrasonic beam is well
understood for both three-dimensional and two-dimensional cases
[12–14], and accurate corrections for diffraction effects have been
applied to the measured apparent ultrasonic wave speed and
attenuation coefficient [12]. The diffraction of the second harmonic
wave is somewhat more complicated than that of the fundamental
since the spreading and interference of individual rays from the
source are supplemented by the spatial generation of the second
harmonic waves as the fundamental propagates through the non-
linear material. In the case of longitudinal wave nonlinear ultra-
sonic experiments, the diffraction of the nonlinear signal can
generally be neglected because the propagation distance is both
fixed in distance and small compared to the transducer width,
which leads to minimal spreading. In addition, an integral solution
has been provided for longitudinal second harmonic propagation
from a piston source [15], making this correction less difficult.

However, in Rayleigh wave nonlinear ultrasonic measurements,
it is crucial to take the diffraction effects into account because the
measurements are done as a function of propagation distance and
tend to extend into the far field, leading to an experimentally sig-
nificant reduction in amplitude. Despite the fact that bulk mea-
surements undergo more severe energy loss from these effects
(on the order of 1=r2 for bulk waves versus 1=r for Rayleigh waves),
the large propagation distances and the fact that the measurement
relies on changes in wave amplitudes versus distance means that
ignoring diffraction effects will lead to significantly different values
of calculated b the further the total measurement distance is
extended. For Rayleigh or Lamb waves, the derivation of a general
expression for the diffraction of the second harmonic wave is
intractable, however Shull et al. [16] investigated analytically and
numerically the diffraction effects in nonlinear Rayleigh waves
by employing the parabolic approximation in the spectral Hamilto-
nian formalism [17], leading to a set of partial differential equa-
tions for the fundamental and second harmonic components.
Hurley [18] compared measurements taken with a laser interfer-
ometer and a generating comb transducer, characterized as a uni-
form finite-area source, to the theoretical results based on Shull
et al. and obtained a strong match between experiment and model.

In this work, we examine the source conditions of a wedge
method Rayleigh wave generation scheme with finite area circular
transducers in order to determine the spatial distribution of the
source amplitude as well as its harmonic content. We then apply
this to a mathematical formulation based on the models proposed
by Shull et al. and calculate the nonlinearity parameter b with the
use of a nonlinear least squares curve-fitting algorithm in a process
optimized to facilitate convergence and accuracy of the calcula-
tions in this context. This process corrects for the diffraction, atten-
uation, and source nonlinearity terms to ensure accurate measures
of b from experimental data. Verification of this method is then
provided by applying it to experimental results obtained from Al
2024 and Al 7075 sample measurements and also to a set of
2205 duplex stainless steel specimens that have undergone various
durations of thermal aging.
transducer measurements and wedge-method generation of Rayleigh waves on the
sample surface. Propagation direction of the Rayleigh wave indicated by the above
arrow is positive x direction, and the transverse direction along the face of the
wedge is the y-direction, where y ¼ 0 corresponds to the center of the wedge/
transducer. z ¼ 0 refers to the surface of the sample and becomes negative with
surface depth. (b) Photograph of a contact transducer/wedge pair, noting location of
the transducer, clamping forces, coupling interfaces, and the location of the
effective line source (denoted by the red line). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
2. Background and theory

2.1. Wave propagation derivations

The following section will provide a basic overview of the der-
ivation of the useful equations used in this research to correct for
the diffraction, attenuation, and source nonlinearity of a Rayleigh
wave nonlinearity measurement setup. A more detailed accounting
of the derivation is provided in Appendix A. If we consider a Ray-
leigh wave propagating along a surface in the x-direction of a
semi-infinite half space as shown in Fig. 1(a), then we can describe
the in-plane (x-axis) and out-of-plane (z-axis) particle velocities at
z ¼ 0 with the following equations [16,17]:

vxðx; y;0; tÞ ¼ ðnt þ gÞ
X1

n¼�1
vnðx; yÞeinðk0x�x0tÞ ð1Þ

vzðx; y;0; tÞ ¼ ð1þ nlgÞ
X1

n¼�1
vnðx; yÞeinðk0x�x0tÞ ð2Þ

where the index n denotes the harmonic number, nt ¼ ð1� n2Þ1=2
;

nl ¼ ð1� n2ðc2
t Þ=ðc2

l ÞÞ
1=2
; g ¼ �2ð1� n2Þ1=2

=ð2� n2Þ; n ¼ cR=ct ; cl is
the longitudinal phase velocity, ct is the shear phase velocity, and
cR is the Rayleigh phase velocity.

Shull et al. showed that, utilizing a quasilinear assumption, the
equations of motion for the fundamental and second harmonics of
the system are [16]:
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Fig. 2. x–y Plots of the particle velocity distributions for Rayleigh waves excitation
from a Gaussian line source from Eqs. (7) and (8) on the left and right respectively.
In these plots, the propagation axis refers to x-direction and the specimen width
refers to the y-direction from Eqs. (7) and (8). The fundamental velocity decays
monotonically from the Gaussian boundary condition at x ¼ 0, while the second
harmonic velocity magnitude begins at zero and increases in magnitude from
generation effects before reaching a maximum and decreasing due to attenuation
and diffraction effects.
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where the subscripts 1 and 2 denote the fundamental and second
harmonic components respectively and an denotes the attenuation
coefficient at these frequencies.

In the above equations we see the nonlinearity parameter b11,
which is ultimately what we will be attempting to characterize
in the later parts of this work. b11 is defined by the relationship

b11 ¼
4lR11

fqc2
R

ð5Þ

where l is the shear modulus, q is the material density,
f ¼ nt þ n�1

t þ g2ðnl þ n�1
l Þ þ 4g, and R11 is calculated based on the

third order elastic constants (TEOCs) of the material and is defined
by Shull et al. elsewhere [19]. The nonlinearity parameter is theo-
retically calculable with knowledge of the material TEOCs, but these
parameters are notoriously hard to measure empirically [20] and
the parameter b11 is therefore typically calculated by fitting data
points with the appropriate mathematical model. In this work, the
models used for curve-fitting are the solutions to Eqs. (3) and (4)
using the physical parameters of the experimental setup.

If we assume that the generating transducer combined with the
acrylic wedge shown in Fig. 1(b) creates a Gaussian line source, the
solutions to Eqs. (3) and (4) simplify greatly. If the source function
has the Gaussian form

f ðy; tÞ ¼ v0;1e�ðy=a1Þ2 e�ixt ð6Þ

where v0;1 is the peak source amplitude at x, and a1 is the source
width, then the solution for the fundamental and second harmonic
components of the wave can be solved for using integral solutions
and the appropriate Green’s functions, arriving at the solutions for
v1 and v2:

v1ðx; yÞ ¼
v0;1e�a1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ix=x0

p exp
�ðy=a1Þ2

1þ ix=x0

 !
ð7Þ

v2ðx; yÞ ¼
i
ffiffiffiffi
p
p

b11v2
0;1k2

0a2
1

4cR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iða2 � 2a1Þðx0 þ ixÞ

p
� exp �a2x� 2ðy=a1Þ2

1þ ix=x0
þ iða2 � 2a1Þx0

 !

� erf
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iða2 � 2a1Þðx0 þ ixÞ
q i

� erf
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iða2 � 2a1Þx0

q i� �
ð8Þ

where x0 ¼ k0a2
1=2 is the Rayleigh distance and signifies the transi-

tion from near field to far field effects.
The magnitude of the fundamental particle velocity is a function

of propagation distance, x, and is dependent on the peak source
amplitude and the source width (v0;1 an a1 respectively), as well
as a1 (a material parameter). The magnitude of the second har-
monic velocity is more complicated and additionally depends on
the material parameters b11 and a2. The traditional definition of
the nonlinear parameter, b0 / A2=A2

1, is much more mathematically
complicated when calculated using the solutions in Eqs. (7) and (8)
than in cases where attenuation and diffraction effects are ignored
[1], and the physical intuition provided by the initial definition of b0

in these earlier works is obscured. It therefore makes more sense to
fit the data to Eqs. (7) and (8) and extract the nonlinearity param-
eter from the best fitting solution.

Plotting the functions for v1 and v2 in the x–y plane and assum-
ing an attenuation relationship of an ¼ n4a1, the result shown in
Fig. 2 generally describes the velocity profiles of the first two fre-
quency components resulting from Rayleigh wave excitation.
These plots are generated from Eq. (7) for the fundamental velocity
profile and Eq. (8) for the second harmonic velocity profile. The
fundamental particle velocity decreases monotonically from the
Gaussian boundary condition at x ¼ 0. Additionally, the second
harmonic wave increases in magnitude along the central axis and
then, at a large enough distance, diffraction and attenuation effects
gradually overcome the effects of harmonic generation and the
magnitude begins to decrease.

At x ¼ 0, the predicted amplitude of the second harmonic exci-
tation is zero, according to Fig. 2 and Eq. (8). This is because the
monochromatic source term defined in Eq. (6) naturally forces this
condition to be true. In reality, piezoelectric sources generally exhi-
bit noticeable nonlinear behavior and the nonlinearity generated
by the source itself, vT

2 (the superscript T denotes transducer), must
be factored into the physical considerations of this problem for the
calculation of b11 to be accurate. A revised source term including an
initial second harmonic excitation is now considered as an input to
the system of Eqs. (3) and (4)

f ðy; tÞ ¼ v0;1e�ðy=a1Þ2 e�ixt þ v0;2e�ðy=a2Þ2 e�2ixt ð9Þ

where v0;2 is the peak source amplitude for the second harmonic
component of the source output and a2 is the half width of the sec-
ond harmonic component.

By using this formulation of the sourcing function f ðy; tÞ, the
solution for the fundamental wave remains unchanged, and the
solution for the second harmonic wave now can be separated into
two components as follows

vTOT
2 ¼ vM

2 þ vT
2 ð10Þ

where vM
2 corresponds to the second harmonic wave generated in

the material as the fundamental wave propagates along x as
described in Eq. (8), and vT

2 corresponds to the nonlinearity of the
source, which takes the same form as a fundamental wave propa-
gating through the material at frequency 2x and with properties
corresponding to the material and source at this frequency.
Together, the sum of these terms is equal to the total v2, signified
as vTOT

2 . Mathematically, the second harmonic wave due to the
source nonlinearity is expressed in the following form:

vT
2ðx; yÞ ¼

v0;2e�a2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ix=2x0

p exp � ðy=a2Þ2

1þ ix=2x0

 !
ð11Þ



Fig. 4. Diagrammatic representation of the curve-fitting procedure used to calcu-
late the nonlinearity parameter of the measured specimen. (a) Shows the signal
from the receiving transducer (red) and the Hann window (dashed blue) used to
filter it. This is processed with an FFT and (b) shows the frequency content at the
fundamental (blue) and the second harmonic (red). The fundamental amplitude is
then fit using Eq. (7) in (c), and the fit parameters v0;1 and a1 are extracted and used
later to fit the second harmonic data. The second harmonic data without source
correction is linearly fit using the first n data points (between 5 and 10) in order to
get an initial value of v0;2 to which the curve-fitting process is sensitive. This is then
used in (e) to fit the A2 data while correcting for the source nonlinearity. The
resulting values of the fitting parameters are the desired results. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Eq. (11) differs from Eq. (7) in many ways. The attenuation of Eq.
(7), a1, is replaced in Eq. (11) by a2 because the source nonlinearity
occurs at 2x. Similarly, the x0 terms in Eq. (7) are replaced with 2x0

for the same reason. The final difference is the replacement of a1

with a2, which follows from the fact that the source has different
apparent half-widths at every frequency.

The result of decomposing the measured second harmonic sig-
nal into the framework of Eq. (10) is shown graphically in Fig. 3 for
values along the propagation axis at y ¼ 0, after converting the
Rayleigh particle velocities vTOT

2 ;vM
2 , and vT

2 into displacement
amplitudes ATOT

2 ; AM
2 , and AT

2 respectively. Note that because the
Rayleigh particle velocities and the corresponding displacement
amplitudes are directly related, they are referred to interchange-
ably in the context of this work.

2.2. Curve-fitting theory

The fitting process employed in the calculation of b11 is a
nonlinear least squares curve-fitting procedure that optimizes
according to the algorithm

minxkvnðfv0;n;an; b11g; xÞ � vMEAS
n k2

2

¼minx

X
i

vnðfv0;n;an; b11g; xiÞ � vMEAS
n;i

h i2
ð12Þ

where vn represents the velocity functions being optimized, which
in the case of the current work are v1 in Eq. (7) for the fundamental
frequency data (n ¼ 1) and vTOT

2 in (10) for the second harmonic
data (n ¼ 2). Similarly, vMEAS

n represents the measured velocities at
their respective frequencies. The arguments to vn include the values
of the fitting parameters fv0;n;an;b11g and the propagation distance
x. Note that b11 is not a relevant parameter for n ¼ 1. The subscript i
appearing on the right hand side of Eq. (12) indicates discrete data,
in this case relating to the data obtained experimentally, which
implies that minimizing the cost function in terms of the experi-
mental data solves the overall optimization problem. This method
of calculating b11 has been examined under different conditions
and with different optimization parameters in earlier works [18].

Many of the pieces of information required for calculation of
this fit are difficult to observe and quantify with the current itera-
tion of the experimental setup and available equipment. These
parameters become curve-fitting parameters themselves in order
to guarantee that they are correctly accounted for in the fitting
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Note that the material nonlinearity starts at zero while the actual recorded
amplitude of the signal does not, which is accounted for by the peak value of
transducer nonlinearity.
process, however adding additional parameters can increase the
likelihood of a false fit due to the introduction of local minima in
the optimization space. Because blind fitting to these parameters
amplifies the risk of solutions at local minima, the optimizer is
seeded with guesses for the input parameters that are based on
theoretical and experimental insight. The effect is twofold: the
optimizer converges to a solution closest to values that make phys-
ical sense, and the optimization time is reduced. The correct start-
ing guesses for the optimization parameters are either obtained
from theory, comparable literature values, or experiments. The
complete data-processing and curve-fitting procedures used in
the experiments performed in this paper are detailed in Fig. 4,
but germane to this discussion are the steps in Fig. 4(c) and (d).
In Fig. 4(c), the fundamental amplitude is used to find values of
v0;1 and a1, which is a well-defined optimization because the
amplitude is almost entirely defined by v0;1 and the shape of the
data is defined by a1. These values are used later in the fitting pro-
cess for the second harmonic data, which is first fit using a linear
approximation over the first n data points depending on the qual-
itative size of the ‘‘linear region’’ to get an initial value for v0;2 in
(d). By providing physically grounded and internally consistent
values for these optimization steps, the final fitting in step (e),
where the second harmonic information is fit using Eq. (10), can
be assured to conform to the physics of the problem.

The process until the step shown in Fig. 4(c) is nearly identical
to the results published on this topic by Thiele [6] on measure-
ments taken with air-coupled transducer setups. However, that
work measures the parameter b0 / A2=A2

1 instead of calculating
b11 as described in Shull et al. [19].
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The step shown in Fig. 4(c) provides the basic source strength
and attenuation information from the fundamental frequency
component of the filtered response, but it’s important to remember
that these values are affected by the transfer functions of all of the
components in the system (two transducers, electrical equipment,
etc.). Therefore these parameters are all relative until these trans-
fer functions are identified.

Fig. 4(d) is important because it provides an initial guess for the
curve-fitting parameters in the step shown in part (e) and is essen-
tial for ensuring convergence and solution accuracy. The result of
the nonlinear curve-fitting operation in Fig. 4(e) is the final value
of the nonlinear source strength, the second harmonic attenuation,
and ultimately b11.
3. Experimental setup and procedure

3.1. Source profile measurements

3.1.1. Experimental setup
The ultrasonic generating transducer and the wedge shown in

Fig. 1(b) combine to create an effective line source at the boundary
where the wedge and the sample meet. To measure the shape and
magnitude of this effect, a Polytec single-point laser vibrometer
was used, consisting of an OFV-551 fiber optic sensor head, an
OFV-5000 controller, and a custom-built x–y scanning system
mounted vertically. The sample under test was a piece of 2024 alu-
minum. The generating setup is shown schematically in Fig. 5,
using a half-inch Panametrics V-type transducer with a nominal
center frequency of 2.25 MHz to generate longitudinal waves in
an acrylic wedge, exciting the Rayleigh waves on the specimen sur-
face. The applied signal was generated by an Agilent 33250A signal
generator and amplified by a RITEC GA-2500A RF Amplifier, which
was used because of its exceptional linearity characteristics and
clean output.

The signal coming directly from the laser vibrometer was
amplified through a Panametrics 5072PR pulser/receiver, provid-
ing an amplification factor of 20 dB. Furthermore, the signal was
discretized using a combination of a Cleverscope CS328A and a
Tektronix TDS 5034B digital oscilloscope and later analyzed in
MATLAB.
3.1.2. Experimental procedure
The transducer was first applied to the wedge and clamped into

position using light lubrication oil as an acoustic couplant, and this
assembly was further clamped to the specimen and coupled acous-
tically with the same oil. Then, an input signal of 2.1 MHz over 20
Fig. 5. Laser measurement schematic showing the measurement of the effective
line source at the interface between the wedge and the sample.
cycles with a pulse repetition rate of 20 ms was applied to the gen-
erating transducer, which then propagated through the acrylic
wedge to the surface.

The resulting Rayleigh wave was measured by aligning the laser
vibrometer to the front surface of the wedge such that it was as
close to the contact point between the wedge and the surface as
possible. The laser was scanned in the y-direction (along the face
of the wedge), and the Cleverscope and digital oscilloscope
recorded the signal, averaging over 512 cycles and sampling with
a rate of 250 MS/s. The data was saved using a Labview script
and imported into MATLAB for data processing.

3.1.3. Data processing
To obtain the fundamental and second harmonic frequency

components of the signal, the averaged and amplified time domain
data was filtered using a Hann window in the steady state portion
of the received signal. This effectively eliminated the ringing of the
generating transducer. The signal was then processed using the
MATLAB FFT algorithm and the contributions of the fundamental
and second harmonics to the signal were extracted and assessed.
Finally, the fundamental frequency data was fit to the correspond-
ing frequency term in the Gaussian objective function represented
by equation (9), and likewise for the second harmonic data and the
corresponding term at 2x. This was performed in the optimization
toolbox in MATLAB.

3.2. Air-coupled transducer measurements

3.2.1. Experimental setup and procedure
The air-coupled transducer measurements were obtained with

the setup depicted in Fig. 1. Thiele et al. covers the measurement
procedure in detail in a previous work on this subject[6]. A basic
summary of the measurement follows here.

The generating system is again an acrylic wedge coupled with
an ultrasonic generating transducer (Panametrics V-type, center
frequency of 2.25 MHz and 12.5 mm diameter), excited by an Agi-
lent 33250A signal generator amplified by a RITEC GA-2500A RF
Amplifier. The input pulse shape was again a 2.1 MHz sine wave
modulated by a rectangular window of 20 cycles with a pulse rep-
etition rate of 20 ms. The receiver is an Ultran NCT4-D13 12.5 mm
diameter air-coupled transducer, amplified by a factor of 40 dB by
the pulser/receiver and held at a distance of 3.5 mm from the sur-
face of the specimen under test.

Propagation distances for this experiment were chosen between
xmin ¼ 30 mm and xmax ¼ 78 mm, with the starting distance chosen
primarily because of restrictions from the size of the air-coupled
transducer and the assembly that houses it. Two millimeter step
sizes provided adequate spatial resolution to see the major obser-
vable effects while maintaining a reasonable measurement time.
The measurements were conducted first by calibrating the lateral
position and angle and of the main lobe at the fundamental fre-
quency and then the scans were performed by manually adjusting
the x–y position of the air-coupled transducer to maintain this line.
This is very important for repeatability of the results [21].

The air-coupled transducer was scanned along this centerline at
a constant standoff height of 3.5 mm from the surface at an angle
of approximately 6.5� for the aluminum sample. The physical
method that the air-coupled transducer uses for detection of the
out-of-plane displacement of the Rayleigh wave is the leakage of
energy from the surface of the specimen into the air according to
the predictions and theory developed by Deighton et al. [22] and
is a consequence of Snell’s Law, which predicts the transducer
must be angled at HR, where

HR ¼ sin�1 cair

cR

� �
ð13Þ
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This out of plane displacement was then related back to the defini-
tion of the Rayleigh particle displacement by the relationship estab-
lished by Eq. (2).

The air-coupled transducer has a nominal center frequency of
4 MHz and an actual center frequency of 3.9 MHz. The second har-
monic in this measurement system (at 4.2 MHz) falls within the
bandwidth of the transducer. Amplification and averaging over
256 cycles resulted in an SNR of 54 dB for these measurements,
which is enough to resolve the second harmonic data adequately.
This data was recorded on the Tektronix oscilloscope and imported
into MATLAB for data processing.
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3.2.2. Data processing
The data processing conducted on the measurements follows

the process diagram shown in Fig. 4. First the data is Hann win-
dowed and processed with an FFT algorithm to provide the ampli-
tudes of the harmonic components. Following this process, the
fundamental frequency amplitude over propagation distance is fit
to Eq. (7) using the nonlinear least squares method described in
Eq. (12). From this we obtained values for v0;1 and a1, which prop-
agate throughout the procedure.

When the second harmonic data is examined, there tends to be a
‘‘linear’’ region, where the data looks to more or less follow a linearly
increasing trend. This region extends for an arbitrary number of
data points depending on the material and measurement conditions
and is difficult to consistently and accurately define. However, the
current method relies on only a first order approximation of the
source strength, which in this case is the y-intercept of the second
harmonic amplitude data, and for this purpose, the first 5–10 data
points served to provide the initial fitting condition for v0;2.

Finally, the data is fit to Eq. (10) with the fitting variables
v0;2; a2, and b11. The initial guess value for a2 is 16a1 based on
thermoviscous attenuation predictions of the form an ¼ n4a1

[23,18], however the final value tends to change dramatically from
the guessed value and is one of the most sensitive parameters in
the fitting process. From this final curve-fit, the value of b11 is cal-
culated and extracted.

The data fitting described here is done using a model that
assumes that all the data is being taken on the axis y ¼ 0, while
in reality the air-coupled transducer receives pressure wave sig-
nals from an area distribution on the material surface. The trans-
ducer face will serve as a weighting function based on its
response to pressure inputs, and this complicated relationship
would be important to remember for the purposes of absolute
measurements. However, the measures in this work are relative,
so this effect is temporarily ignored for ease of calculation and
the use of axial solutions to the fitting equations is sufficient for
these purposes.
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Fig. 6. The response at x ¼ 0 from the transducer at the fundamental (a) and second
harmonic (b) frequencies versus the distance from center of the wedge in the y-
direction. Also included are the prediction bounds for a 95% confidence interval
surrounding the curve fit, which is a Gaussian in profile.
4. Results and discussion

4.1. Source nonlinearity measurements

The results of the source nonlinearity measurements described
in Section 3.1.1 show that there are indeed higher harmonic com-
ponents to the signal that propagates from the contact interface
between the acrylic wedge and the sample specimen, and that
these are the only frequency components contained in the source
signal. Looking at the distribution along the y-axis at the funda-
mental and second harmonic frequencies (x ¼ 0) gives the results
shown in Fig. 6.

Fig. 6 suggests that the fundamental (a) and second harmonic
(b) data is fit accurately by a Gaussian profile, with R-squared val-
ues of .904 and .703 respectively. The R-squared value can be inter-
preted as the proportion of the variation in the data that is
accounted for by the model in question, so a perfect model will
give a value of 1. In this case, the fit of the fundamental source term
is very high, with only roughly a ten percent variation in the data
not being accounted for by a Gaussian fit, and there is high quali-
tative agreement. The second harmonic performs slightly worse
with a value of .703, but the reduction of the R-squared value
can come from many sources not related to the goodness of fit.
Some of these conditions present in this system are basic variances
in the data acquisition at low signal amplitudes approaching the
noise floor of the receiver (the second harmonic amplitudes are
very small) as well as surface conditions and slight misalignment
of the optics, which would affect the SNR of the measurement sys-
tem. Thus a high qualitative agreement, mixed with a reasonably
high R-squared value, is confirmation that a Gaussian model accu-
rately fits the second harmonic data.

Another observable effect is that the Gaussian beam width pro-
duced at the second harmonic is smaller than that produced at the
fundamental. The fundamental beam width was measured to have
a half-width, which corresponds to the radial term a in the Gauss-
ian source equation, of 6.53 mm. This is slightly larger than the
radius of the transducer, and is evidence that there is diffraction
and perhaps second harmonic effects occurring within the wedge
during generation. The second harmonic beam half-width was
2.69 mm, which makes sense according to standard acoustic
considerations [24] and the graphical results observed from
Fig. 2. Aside from confirming physical assumptions about the data,
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Fig. 7. Nonlinear ultrasound testing results for the Al 2024 and 7075 samples. (a) and (b) Show the fundamental amplitudes for the 2024 and 7075 specimens respectively. (c)
and (d) Show the second harmonic amplitudes for the 2024 and 7075 specimens respectively. Data points and best-fit lines from the optimization process outlined in Fig. 4
are shown for each case.

Table 1
Literature and current work data for nonlinearity parameter in comparable Al
specimens.

Data source Materials b7075
11 =b2024

11 (max–min)

Yost et al. [26] Al 7075 1.865 (2.03–1.70)
Al 2024

Li et al. [27] Al 7075-T551 1.125 (1.28–0.97)
Al 2024-T4

Thiele et al. [25] Al 7075-T651 1.675 (1.85–1.50)
Al 2024-T351

Current work Al 7075-T651 1.363 (1.52–1.25)
Al 2024-T351
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this information is important for numerical considerations and
determining the values of parameters in the quasilinear solutions.

For the proposed theoretical framework for analyzing b11 with
nonlinear Rayleigh waves to be valid, the source must be a line
source with Gaussian amplitude profile at all frequencies of inter-
est [16]. The preceding analysis has demonstrated all of these con-
ditions to be true, and thus the solutions determined in Eqs. (7) and
(8) are applicable to the experiments performed in this work, as
well as any nonlinear Rayleigh wave experiment that satisfies
these source conditions.

4.2. Nonlinear ultrasound measurements

The results of the aluminum 2024-T351 and 7075-T651 plate
measurements [25] are shown in Fig. 7. In these figures, the funda-
mental components (a and b) and the second harmonic compo-
nents (c and d) of the received signals in Al 2024 and 7075
respectively are shown along with the results of the curve-fitting
process. When interpreting these figures, it is again important to
understand that fitting the values of parameters that exclusively
affect the amplitude of the data will produce numerical results that
are relative to transfer functions of the measurement equipment.
Therefore, without precise calibration of these transfer functions,
the numerical results must either be normalized or compared
across specimens making sure that the source strength v0;1 is com-
parable in value (which should be the case for consistent measure-
ments regardless). In this case, the curve-fit value of v0;1 was
9.368e8 [a.u.] for Al 2024 and 9.267e8 [a.u.] for Al 7075, which is
a 1.08% difference between the two. This means that the relative
amplitudes between the two methods can be compared with
confidence.

The shapes of the figures are defined by their generation and
decay rates, and are thus dependent on the terms inside the expo-
nential, radical, and error functions of Eqs. (7) and (8). The relation-
ships between the effects these terms have on the shape of the data
versus scaling effects are quite complicated, which makes them
very sensitive to change during the curve-fitting process. While
the source strength values tend to converge very quickly, the terms
that affect the shape of the data change dramatically and have a
stronger influence on the quality of the fit. That being said, one
of the great strengths of this curve-fitting procedure is that all of
these considerations are taken care of simultaneously and auto-
matically, and the process is repeatable and stable.

In Fig. 7 noticeable oscillation of the data points about the pre-
diction curve exists due to the kinematics of the manual position-
ing stages as they are adjusted between measurements. While
these effects are worth mentioning because they appear consis-
tently in the data sets, they do not heavily influence the results
of the curve-fitting procedure.

From the process used to generate the results in Fig. 7, the cal-
culated values of b11 are shown in Table 1 along with results from
comparable works [26,27,25].

These results compare favorably to those found in literature,
although it is important to note that the literature values in the
cases of Yost and Cantrell [26] and Li et al. [27] are for specimens
of aluminum that have undergone different heat treatments and
are of different chemical compositions from those tested in Thiele
et al. [25] and the current work. However, the fact that the current
work falls within the ranges obtained by the other authors speaks



10−3 10−2 10−1 100 101 102
0.5

1

1.5

2

2.5

Normalized β11 over 24 HR Heat Treatment

Heat Treatment Time [h]

N
o

rm
al

iz
ed

 β
11

 [
a.

u
.]

Ruiz Data
Current Work

0 20 40 60 80 100 120 140
0.5

1

1.5

2

2.5

3

3.5

Propagation Distance [mm]

Measurements
Linear Fit
Nonlinear Fit

A2/A1
2 for 24 hr Heat Treated 2205 SS

A
2
/A

1
2  

[a
.u

.]

Fig. 8. (a) Shows a set of nonlinear measurements versus propagation distance for a
2205 SS sample heat treated over 24 h. The red dotted line shows a linear fit to the
‘‘linear region’’ of the data, which is identified subjectively. The black dash–dotted
line represents the results of the nonlinear fitting procedure. (b) Shows the results
of 2205 duplex stainless steel nonlinear parameter measurements as a function of
heat treatment time for both the original analysis using a linear fitting approach
(Ruiz et al.) and the nonlinear fitting approach (current work). The data point
labeled (*) represents data collected at 10 min, and the data point labeled (**)
represents data collected at 24 h. The b11 values represented by each fitting
procedure in (a) can clearly be seen as the last data point in (b). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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to the accuracy of the proposed method for the calculation of the
nonlinearity parameter.

Further results are obtained from a data set borrowed from Ruiz
et al. [4] in which heat treatment of a duplex steel sample (2205
stainless) was performed and nonlinear ultrasonic measurements
taken with a contact transducer and wedge (identical to the one
shown in Fig. 1(b)) as a receiver. This method of measuring the
nonlinearity parameter is inherently less precise than methods
using air-coupled transducers because of the additional interfaces
between the receiving wedge to the specimen and the receiving
transducer to the receiving wedge. In cases like these where the
variation of the data is large, guessing which points define the ‘‘lin-
ear region’’ of the data is highly prone to subjectivity, and avoiding
this step makes results more reliable and repeatable.

By looking at the results of Fig. 8(a), the difference in the fit-
ting of the calculated ratios of A2=A2

1 at 24 h of heat treatment
between the linear and nonlinear fitting methods is clearly shown
both quantitatively and qualitatively. The process used to calcu-
late the linear fit is difficult to automate or standardize because
the metrics that are typically used to deduce goodness-of-fit, such
as an R-squared value, can often be misleading. If the linear fit is
conducted over the entire data region, then the R-squared value
would, in this case, be higher than in all other data ranges. How-
ever, this fit clearly does not follow the qualitative trend of the
data and will become much worse with longer propagation dis-
tances in addition to demonstrating poorer accuracy in shorter
propagation ranges. A linear fit to the first n data points that col-
lectively define the ‘‘linear region’’ will be much more accurate in
short propagation ranges but will rapidly lose accuracy in the far
field. This effect was discussed briefly in Section 1 and is primar-
ily due to the smaller contributions of attenuation and diffraction
with small propagation distances. Because standard goodness-of-
fit metrics are hard to apply, the most easily conducted method of
determining the ‘‘linear region’’ is therefor by inspection, which
has obvious subjective disadvantages rooted in human error.
The quantitative disadvantages, however, become glaringly obvi-
ous in Fig. 8(a) at the propagation distance of 100 mm, where
the linear fit no longer passes through the error bars of the mea-
sured data.

The question of repeatability, consistency, and accurate
accounting of acoustic considerations in the far field versus short
range accuracy before attenuation and diffraction begin to domi-
nate is answered by the nonlinear fitting method in this work,
the results of which are shown as the black dash–dotted line in
Fig. 8(a). The nonlinear fit clearly shows strong accuracy to the
measured data points as well as the ability to accurately reflect
the trend of the data as it enters the far field. At all points in the
measurement region, the nonlinear fit passes through the error
bars of the data. These advantages are present in all of the mea-
surements conducted on every specimen in the 2205 duplex stain-
less steel data set, and because the subjectivity of the linear fitting
method is removed, the results are repeatable as well.

The calculated b11 values from both the linear (Ruiz data) and
nonlinear (current work) methods are shown in Fig. 8(b). The
agreement of the general trends between the data sets confirms
that the nonlinear fitting method of extracting the nonlinearity
parameter produces results that are comparable to those found
in the earlier work. Additionally, one source of confusion with
the results obtained from the linear fitting technique was the rise
of the nonlinear parameter value at 24 h, labeled (**) in Fig. 8(b),
back to the heat treatment levels obtained at 10 min, labeled (*)
in Fig. 8(b), of treatment time. This trend was not observed in other
material tests [28–30], and the nonlinear fitting method proposed
in the current work shows results more in line with those expected
from experience and literature [28]. The accuracy and repeatability
of the nonlinear fitting approach combined with the more realistic
measures of b11 show the strengths of this procedure for calculat-
ing material nonlinearity.
5. Conclusions and future work

In this work, it is postulated that, given a Gaussian line source
approximation for the generation of a Rayleigh wave, physically
accurate values for a relative measure of the nonlinearity parame-
ter can be extracted by fitting the data to models accounting for
diffraction, attenuation and transducer nonlinearity effects. By
showing that the source function, which is a result of the wedge
and transducer combination, can be accurately described as Gauss-
ian in shape, we validate the use of this approach. Furthermore, the
experiments show that there exists a second harmonic component
to the source function prior to generation effects from the sample
material that is also Gaussian in shape, and that this effect must be
accounted for in the model and the data. In order to fit the data
taken from the air-coupled transducer setup to the proposed
model, the use of a nonlinear least squares curve-fitting procedure
is necessary because many of the parameters required for the fit
process are either difficult to measure or directly immeasurable.
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This process is done over multiple steps, the first fitting the funda-
mental frequency data, the second estimating the nonlinear source
strength, and the third fitting the second harmonic attenuation and
the nonlinear parameter, which is the ultimate desired result. This
process is shown for Al 2024 and 7075 samples, and the results are
consistent with previous literature and physical expectations.
Additionally, a borrowed data set for heat-treated 2205 duplex
stainless steel is re-processed with the updated analytical model
and it is found that the new values for the nonlinear parameter
both match with the general trends from the previous results
and amend them to agree with past literature and physical expec-
tations of the treatment process.

While this work details a more refined process for calculating the
nonlinearity parameter from experimental results, more experi-
mental information could facilitate more accurate estimations of
the fitting parameters. Measurement of the attenuation at the fun-
damental and second harmonics could serve to either confirm or
directly substitute these values in the model, meaning fewer param-
eters to fit and thus more accuracy from the model. In addition,
directly measuring the source strengths with the laser vibrometer
before each data collection would allow for substitution of that
information into the analytical formulation, leaving just the nonlin-
ear parameter as the sole fitting variable.

Another factor that is unknown in the procedure implemented
in this work is the phase relationship between the fundamental
and harmonic components of the source. This work treats these
components as having the same phase, however phase differential
could slightly alter the value of b11 calculated from the curve fitting
procedure. While the reasonableness of the results in this paper
validate the assumption about the relative phase, an experimental
setup that could accurately and consistently calculate this quantity
would answer this question definitively.

Additionally, the relationship of the output voltage from the air-
coupled receiver to the received waveforms is more complicated
than using an axial solution to the fitting equation because the
transducer receives a signal from an area distribution about the
central measurement axis. This spatial weighting is a transducer
property and will be necessary to understand moving forward. In
theory, if the receiving transducer is accurately characterized and
the transfer function known exactly, then the results of this proce-
dure would be absolute measures of the nonlinear parameter,
which would be a very powerful tool in Rayleigh wave measure-
ments for the NDE community.
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Appendix A. Derivation of diffraction equations

The following is a more detailed derivation of Eqs. (7) and (8)
according to the steps listed primarily in Shull et al. [19]. First,
we start with the quasilinear system given by Eqs. (3) and (4):
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It is illustrative to note that these equations do not require the trav-
eling wave to be plane. The lack of this condition stems from the
derivation of the spectral equations from which the equations of
motion (A.1) and (A.2) are formulated [17]. Now consider a source
with the following conditions at x ¼ 0:

v1ð0; yÞ ¼ wðyÞ ðA:3Þ

vnð0; yÞ ¼ 0;n > 1 ðA:4Þ

This source need not be symmetric, and may be complex.
The integral solutions to Eqs. (A.1) and (A.2) are formulated by

employing a Green’s function formulation, and are expressed in the
following form:

v1ðx; yÞ ¼
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where the Green’s functions g1 and g2 are represented as:
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Note that in the formulation of the Green’s function for the
velocity at the fundamental frequency ðg1Þ the propagation is con-
sidered from ð0; y0Þ, which is the location of the source. However, in
the case of Green’s function for the second harmonic velocity ðg2Þ,
the propagation is considered from all points on the surface ðx0; y0Þ.
This is due to the harmonic generation as the wave propagates and
continually leaks energy from the fundamental frequency to its
harmonics [17].

If we perform this integration and let wðyÞ be defined as a
Gaussian source function as in Eq. (6):

wðyÞ ¼ v0e�ðy=aÞ2 ðA:9Þ

then we have the necessary information to solve Eq. (A.5). To do
this, we recast the integral into the form:Z 1

�1
e�ay02 e�2by0dy0 ¼

ffiffiffiffi
p
a

r
eðb

2=aÞ ðA:10Þ

After simplification, we arrive at the solution for v1 given in Eq.
(7). To solve for v2 in Eq. (A.6) is much more complicated, but uses
the same general approach as in the solution for v1 but with the
added complication of the second integral in x0. An observation of
solution given by Eq. (8) reveals two error functions. The first error
function is associated with the particular solution and the second
to the homogeneous solution to Eq. (4), where the particular solu-
tion describes the forced component and the homogeneous solu-
tion describes the free propagating component of the second
harmonic wave [16].
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