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This letter demonstrates that an eigenstrain is induced when a wave propagates through an elastic

solid with quadratic nonlinearity. It is shown that this eigenstrain is intrinsic to the material, but the

mean stress and the total mean strain are not. Instead, the mean stress and total means strain also

depend on the boundary conditions, so care must be taken when using the static deformation to

measure the acoustic nonlinearity parameter of a solid.
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I. INTRODUCTION

When a wave propagates through an elastic solid with

quadratic nonlinearity, static strain or mean strain may be gen-

erated. Such mean strain is called acoustic-radiation-induced

strain. Several recent studies have used the acoustic-radiation-

induced strain to measure the acoustic nonlinearity parame-

ter.1–6 It is well known that the acoustic-radiation-induced

strain is related directly to the static term in the displacement.

However, there has been some confusion in the literature

regarding the magnitude of the static term in the displacement

solution to the nonlinear equation.7–10 The purposes of this

note are (1) to clarify these confusions and (2) to re-interpret

the concepts of acoustic-radiation-induced strain and stress.

To begin, let us consider a half-space defined by x � 0,

where x is the Lagrangian (or material) coordinate describing

the location of the material particle in the initial (t¼ 0) state.

At any given time t, the displacement of the particle x from the

initial configuration is denoted by u(x, t). Deformation of the

elastic body can then be described by the Lagrangian strain

e ¼ @u

@x
þ 1

2

@u

@x

� �2

: (1)

We assume that the half-space is made of an elastic solid

with quadratic nonlinearity, i.e., the normal (first Piola–

Kirchhoff) stress is related to the Lagrangian strain=displace-

ment gradient in the x-direction through

r ¼ qc2 e� bþ 1

2
e2

� �
¼ qc2 @u

@x
� b

2

@u

@x

� �2
" #

; (2)

where q is the mass density, c is the longitudinal phase ve-

locity, and b is the acoustic nonlinearity parameter, all for

the elastic solid in the undeformed (initial) state.

For isotropic elastic solids, the acoustic nonlinearity pa-

rameter is a dimensionless number given by11

b ¼ � 3þ gð Þ; g ¼ 2 lþ 2mð Þ
kþ 2l

; (3)

where k and l are the Lamé constants, and l and m are the

Murnaghan third order elastic constants. If the material is

linearly elastic, i.e., l¼m¼ 0, then b¼�3. In other words,

b¼�3 is purely due to the geometrical nonlinearity intro-

duced in the Lagrangian finite strain [see Eq. (1)]. The mate-

rial nonlinearity is represented by g.

Substituting Eq. (2) into the equation of motion

@r=@x ¼ q@2u=@t2 leads to the displacement equation of

motion governing longitudinal wave propagation in the x-

direction,

1

c2

@2u

@t2
� @

2u

@x2
¼ �b

@u

@x

@2u

@x2
: (4)

We first consider the case where a harmonic displacement is

prescribed on the boundary, for example,

u 0; tð Þ ¼ U sin xtð Þ; (5)

where x¼ kc is the circular frequency and k is the wavenum-

ber. It can be easily shown by a straightforward perturbation

technique that, for bUk2x
�� ��� 1; the solution to the boundary

value problem given by Eqs. (4) and (5) can be written as

u x; tð Þ ¼ U sin x t� x

c

� �h i
þ Abxþ bU2x2

8c2
x cos 2x t� x

c

� �h i
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where A is an arbitrary constant. Note that, unlike the corre-

sponding linear problem where A must be zero because the

solution must be bounded as x !1, the constant A in Eq.

(6) does not have to be zero because Eq. (6) is valid only for

finite x.

The corresponding stress follows from substitution of

Eq. (6) into Eq. (4),

r x; tð Þ
qc2

¼�Uk cos x t� x

c

� �h i
�b AþU2k2

4

� �

�bU2k2

8
cos 2x t� x

c

� �h i
þbU2k3

4
xcos 2x t� x

c

� �h i
:

(7)

In deriving Eq. (7), we have neglected terms higher ordered

than bU2k2

Note that Eq. (6) satisfies both the governing Eq. (4) and

the boundary condition (5), at least to the order of bU2k.2 Yet

it contains an arbitrary constant A. To overcome this non-

uniqueness of the solution, most authors simply set A¼ 0.

Others,8 for example, argued, based on physical grounds, that

the static part of the stress must vanish. This leads to

A ¼ �U2k2

4
: (8)

Another approach was taken by Cantrell,12 who has shown

that in addition to the governing equation, a forward propa-

gating wave in quadratic nonlinear materials must also sat-

isfy the consistency condition,

@u

@t
¼ 2c

3b
1� b

@u

@x

� �3=2

� 1

" #
: (9)

This is valid for any b and is independent of the boundary

conditions. It can be easily shown that in the limit of b!0,

the preceding reduces to the well-known equation,13

@u

@t
¼ �c

@u

@x
: (10)

The consistency condition (9) provides an additional equa-

tion to uniquely determine the constant A. By substituting

Eq. (6) into Eq. (9), we arrive at

A ¼ �U2k2

8
:

This leads to the following solution,

uD

U
¼ sin x t� x

c

� �h i
þ bUk2

8
x 1þ cos 2x t� x

c

� �h i� �
; (11)

rD

qc2
¼�Uk cos x t� x

c

� �h i
� bU2k2

8
1þ cos 2x t� x

c

� �h ih
þ 2kx cos 2x t� x

c

� �h ii
: (12)

In the rest of this paper, our discussions will be based on sol-

utions that satisfy the consistency condition (9). The sub-

script D in the preceding expressions is to indicate that the

solutions are for the displacement-prescribed boundary con-

dition (5).

Before proceeding with the traction boundary condition,

we mention that Eq. (11) implies that the static displacement

pulse should be “flat-topped” for a sinusoidal displacement

boundary condition as noted by Narasimha et al. (6). For

example, the static portion of the displacement given in (11)

is (bUk2=8)x. If the sample length is L, then the static portion

of the displacement pulse in the time domain at the receiver

end will be (bUk2=8)L, which is obviously constant and is

hence flat topped.

Next, we consider the case where, instead of displace-

ment, a traction is prescribed on the boundary,

r 0; tð Þ ¼ �qcxU cos xtð Þ: (13)

The solution that satisfies the governing Eq. (4), the traction

boundary condition (13), and the consistency condition (9) is

given by

uT

U
¼ sin x t� x

c

� �h i
�bUk2

8
t�2x

c

� �
�bUk

16
sin 2x t� x

c

� �h ih
�2kxcos 2x t� x

c

� �h ii
; (14)

rT

qc2
¼ �Uk cos x t� x

c

� �h i
þ bU2k3

4
x sin 2x t� x

c

� �h i
; (15)

where the subscript T denotes that the solutions are for the

traction-prescribed boundary condition (13)

As a longitudinal wave propagates through a medium, it

causes cyclic compression and tension in the material. For

most cases in linear elastic media, the magnitude of com-

pressive and tensile strains is typically the same over each

period. Thus the mean strain (or strain time-averaged over

each period) vanishes. However, we note that the solution

given in Eq. (14) leads to a non-zero mean strain,

eTh i ¼
x
2p

ð2p=x

0

eTdt ¼ x
2p

ð2p=x

0

@ur

@x
þ 1

2

@ur

@x

� �2
" #

dt

¼ U2k2

4
1þ bð Þ: (16)

In the literature, this is called the acoustic-radiation-induced

strain. It is a consequence of the material and geometrical

nonlinearities. We note also that, according to Eq. (15), the

corresponding mean stress is zero, i.e.,

rTh i �
x
2p

ð2p=x

0

rTdt ¼ 0: (17)

Equations (16) and (17) seem to be at odds with each other

in that a non-zero mean strain in an elastic body produces no

mean stress. However, this can be explained if the non-zero

mean strain heTi is viewed as an eigenstrain.14 Such an
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eigenstrain is inelastic because it by itself produces no stress.

In other words, when a time-harmonic displacement wave of

amplitude U and frequency x propagates through an elastic

medium with quadratic nonlinearity, a static eigenstrain

e� ¼ U2k2

4
1þ bð Þ ¼ U2x2

4c2
1þ bð Þ ¼ �U2x2

4c2
2þ gð Þ (18)

is generated in the solid. For many engineering materials,

b> 0, so that e*> 0 leading to volumetric expansion.

This eigenstrain generated by an acoustic wave is analo-

gous to the thermal strain generated by temperature change

in a solid. In fact, the physical mechanisms of these two phe-

nomena are indeed the same. They both are due to the lattice

anharmonicity of the solid. This physical connection has

been studied by Cantrell in the 1980s.15–17 It was shown that

the coefficient of thermal expansion is indeed related to the

acoustic nonlinearity parameter b in a rather simple linear

fashion. We note here that the thermodynamic driving force

for thermal strain is temperature, and the thermodynamic

driving force for acoustic-radiation-induced strain is the

wave motion. It would be an interesting and useful endeavor

to establish the relationship between these two different ther-

modynamic driving forces, thus the relationship between the

thermal strain and the acoustic-radiation-induced strain.

Note that the total strain is the sum of the eigenstrain

and the elastic strain ee (Ref. 14), i.e.,

eh i ¼ eeh i þ e�: (19)

It then follows from Eqs. (16) and (19) that when the traction

is prescribed on the boundary, the elastic mean strain is zero,

i.e., ee
T

	 

¼ 0. This is consistent with Eq. (17) because only

elastic mean strain causes mean stress.

Let us now consider the case when the displacement is

prescribed on the boundary. By time-averaging Eq. (11), we

have

eDh i ¼
U2k2

8
2þ bð Þ: (20)

It then follows that the elastic mean strain in this case is

ee
D

	 

¼ eDh i � e� ¼ � bU2k2

8
: (21)

This elastic mean strain would generate mean stress accord-

ing to Eq. (2) with the total strain being replaced by the elas-

tic strain. To the leading order of bU2k2, Eq. (2) gives

rDh i ¼ qc2 ee
D

	 

þ b

2
ee

D

� �2
D E� �

¼ qc2 ee
D

	 

¼ �qc2 bU2k2

8
: (22)

This mean stress is called the acoustic-radiation-induced

stress in the literature, which can also be obtained directly

by carrying out the time average of Eq. (12).

The preceding analysis shows that the mean stress and

the total mean strain are not intrinsic to the nonlinear behav-

ior of the medium. Instead they are due to a combined effect

of both the nonlinearity and boundary constraints. The mate-

rial and geometrical nonlinearities only produce the eigen-

strain, which by itself would not generate any stress.

However, if the boundary is constrained so the medium can-

not deform freely, an elastic mean strain must arise to

accommodate the boundary condition. It is this elastic mean

strain that generates the mean stress. When the boundary is

not constrained, such as the case when the traction is pre-

scribed on the boundary, the medium is free to shrink or

expand in response to the eigenstrain e*, and no elastic mean

strain is needed. Consequently, there will be no mean stress.

To further illustrate the preceding concept, let us con-

sider another example, where the boundary condition is

given by

u 0; tð Þ ¼ Vctþ U sin xtð Þ; (23)

where V is a given dimensionless constant on the order of

bU2k.2 The solution to Eq. (4) that satisfies the preceding

boundary condition and the consistency condition (9) is

given by

uv ¼ U sin x t� x

c

� �h i
þ Vct� V � bU2k2

8

� �
x

þ bUk2

8
x cos 2x t� x

c

� �h i
; (24)

rv

qc2
¼� Uk cos x t� x

c

� �h i
� bU2k2

8
þ V

� �

� bU2k2

8
cos 2x t� x

c

� �h i
�2kx cos 2x t� x

c

� �h ih i
:

(25)

The total mean strain is obtained by time-averaging Eq. (24)

eVh i ¼
U2k2

8
2þ bð Þ � V: (26)

The elastic mean strain follows from Eqs. (18) and (19),

ee
V

	 

¼ eVh i � e� ¼ �bU2k2

8
� V: (27)

Substituting Eq. (27) into Eq. (22) yields the mean stress

rVh i ¼ �qc2 bU2k2

8
þ V

� �
: (28)

Again, Eq. (28) can also be obtained by directly time-averag-

ing Eq. (25)

Clearly, when V¼ 0, the preceding reduces to the

case of displacement-prescribed boundary condition (5).

When V¼�bU2k2=8, it is seen from Eqs. (26) to (28) that

eVh i ¼ e�; ee
V

	 

¼ 0, and rVh i ¼ 0, similar to the case of

traction-prescribed boundary condition. In other words, even

under displacement-prescribed boundary conditions, the
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mean stress can still be zero if the boundary moves with a

constant velocity of V¼�bU2k2=8.

It can be easily shown that for any V between

� bU2k2=8 � V � 0 (assuming b> 0), the mean strain and

mean stress would vary between (bU2k2=4)(1þb=2) � heVi
� (bU2k2=4) (1þ b)¼ e* and �bU2k2=8 � hrVi=qc2 � 0.

However, the eigenstrain e*¼ (U2x2=4c2)(1þ b) remains

the same for all these cases because the fundamental dis-

placement waves have the same frequency x and the same

amplitude U.

One could also create a situation where V¼ (U2k2=
8)(2þ b)¼�(U2k2=8)(1þ g), so that eVh i¼ 0. Thus

ee
V

	 

¼�e� and rVh i¼�qc2e�. The positive V means that

the boundary is being moved forward in the positive x direc-

tion at a constant velocity V in addition to the oscillatory

motion. This particular static motion happens to balance the

eigenstrain induced expansion, so there is no net mean

strain.

In summary, as a fundamental wave of frequency x and

amplitude U passes through an elastic solid with quadratic

nonlinearity, a tensile (b>�1) or a compressive (b< 1)

eigenstrain e*¼ (U2x2=4c2)(1þ b) is generated by the mate-

rial and geometrical nonlinearities, causing a mean expan-

sion=shrinkage of the region where the wave occupies. If the

medium is not constrained (i.e., free to expand=shrink), the

total mean strain is equal to the eigenstrain, and no mean

stress (or radiation-induced stress) will be generated. This is

the case when traction is prescribed on the boundary. When

the medium is constrained, elastic mean strain will be gener-

ated, and the total mean strain is the sum of elastic mean

strain and the eigenstrain. Because of the elastic mean strain,

mean stress (or radiation-induced stress) is also generated in

the medium.

Because only the eigenstrain is intrinsic to the deforma-

tion induced by the acoustic nonlinearity, and the total mean

strain and the mean stress are functions of the boundary

conditions, it is preferable that only the eigenstrain

e*¼ (U2x2=4c2)(1þb) is called the acoustic-radiation-

induced strain.

A number of authors, e.g., Refs. 1–6, have attempted to

measure the acoustic nonlinearity parameter b by measuring

the total mean strain. As shown here, the total mean strain

depends not only on b but also on the boundary conditions.

Because the ultrasonically measured mean strain is typically

the total mean strain, to correctly interpret the data, bound-

ary conditions for the ultrasonic test must be known; this

is usually very difficult. For example, it is likely that a

piezoelectric transducer attached to the sample imposes a

boundary condition, that is, somewhere between the

traction-prescribed and displacement-prescribed boundary

conditions. However, the exact nature of the boundary con-

straints would depend on a number of factors including the

acoustic impedance mismatch between the transducer and

the material under measurement; this means that the precise

boundary constraints will need to be calibrated for each ma-

terial tested.
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