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Abstract: Considered in this paper is a special case relating to the large deflection of a thin beam. One end of the beam is fixed (i.e., clamped)
to a rigid wall, whereas the other end is placed on a flat surface of arbitrary orientation. In previous studies, unique and non-unique solutions
to the deflected shape were derived for cases in which the curvature of the beam experiences at least one change in sign. In this paper, a special
case is examined in which the curvature of the beam does not change sign. Experimental results from photographs of deflected beams are
presented to support the numerical predictions. An excellent agreement was found between the photographed and the predicted shapes. DOI:
10.1061/(ASCE)EM.1943-7889.0000321. © 2012 American Society of Civil Engineers.
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Introduction

This paper deals with the bending of thin plates (i.e., beams) into
shapes that involve large deflections. In an earlier work (Jairazbhoy
et al. 2008; Xue et al. 2003), unique and non-unique solutions to the
deflected shape are derived for cases in which the curvature of the
beam experiences at least one change in sign. This paper analyzes
the shapes for which the curvature of the beam does not change in
sign. The authors of this paper defined such a beam as “concave” if
the slope of the beam (i.e., the angle between the local tangent to
the beam and the x-axis) decreased monotonically along the length
of the beam from the point of fixture. The authors defined the beam
as “convex” if the slope of the beam conversely increased mono-
tonically along the length of the beam from the point of fixture.

The problem of bending thin plates into various controlled
shapes occurs frequently in a number of emerging technical areas
such as optical fiber packaging and the packaging of flexible cir-
cuits (Freitag et al. 2000; Isaak and Uka 2000). In many instances,
the shape and the accompanying pre-stressed state must be captured
to package the beam and to anticipate its response to vibration
while in operation (Cornil et al. 2007). Jairazbhoy et al. (2008) dis-
cuss several packaging applications that require an understanding
of how beams behave in cylindrical bending. In many such appli-
cations, the deformation can be analyzed by using thin plate (or
beam) theories.

Governing Equations

Jairazbhoy et al. (2008) and Xue et al. (2003) developed the gov-
erning equations for the large cylindrical deflection of a thin beam.
These equations form the basis for the analysis presented in this
paper. For cylindrical deformation, the boundary conditions and
loads vary only in two directions. The field quantities (e.g., deflec-
tions, stress, strain) consequently vary in two dimensions. One end
of the beam is fixed (i.e., clamped) to a rigid wall, whereas the other
end (i.e., the free end) is placed on a flat surface of arbitrary ori-
entation. Fig. 1 depicts a 2-dimensional (2-D) cantilever beam of
length L with a prescribed displacement (xA, yA) and rotation angle
(θf ) at the free end. Under certain assumptions, Jairazbhoy et al.
(2008) derived the following equation for the variation of the local
rotation angle θ of the beam along its length coordinate S:

EI
d2θ
dS2

¼ �T cosðθ� θf Þ þ FA sinðθ� θf Þ; ð1Þ

where EI is the bending rigidity of the beam, and T and FA are the
components of the concentrated force on the free end that is
perpendicular to and tangent to, respectively, the fastening surface.
Both T and FA are unknown and must be solved as part of the boun-
dary value problem.

Eq. (1) is derived by substituting Hooke’s law for linear elastic
materials into equilibrium relationships for the beam (subject to
certain assumptions) and presenting the resulting relationship in
a manner that describes the evolution of the rotation angle along
the length of the beam. Xue et al. (2003) presented a semi-
analytical solution for the special case of FA ¼ 0. Jairazbhoy et al.
(2008) presented solutions for a significant subset of the solution
space in which the curvature of the beam vanishes for at least one
value of the rotation angle θ lying between�π and π; this permits a
smooth change of sign of the curvature at that value of θ.

Beam with Either a Positive or Negative Curvature
for All θ

In this section, the authors examine the portion of the solution space
in which the curvature is either positive or negative for all θ. For
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dθ
dS

≠ 0;

the left-hand side of Eq. (1) may be rewritten by using the following
relationship:

d2θ
dS2

¼ d
dS

�
dθ
dS

�
¼ d

dθ

�
1
2

�
dθ
dS

�
2
�
: ð2Þ

Integrating with respect to θ yields

1
2

�
dθ
dS

�
2
¼ � T

EI
sinðθ� θf Þ �

FA

EI
cosðθ� θf Þ þ C0: ð3Þ

Eq. (3) effectively expresses the curvature of the beam as a func-
tion of the rotation angle, in terms of three unknowns: T , FA, and
the integration constant C0. Rearranging the equation yields

Ldθ
dS

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½C � �T sinðθ� θf Þ � �FA cosðθ� θf Þ�

q
; ð4Þ

where C is a constant,

�T ¼ TL2

EI
; ð5Þ

and

�FA ¼ FAL2

EI
: ð6Þ

The sign of the square root on the right-hand side of Eq. (4) is
determined by the curvature of the beam, and is apparent from the
coordinates of the free end of the beam. Separating the variables θ
and S in Eq. (3) and integrating over the length of the beam yields
an integral relationship among the three unknowns T , FA, and C, in
terms of the length of the beam, L, as follows:

Z
L

0
dS ¼ �

Z
θ

Ldθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½C � �T sinðθ� θf Þ � �FA cosðθ� θf Þ�

q ¼ L:

ð7Þ
To obtain the deformed configuration of the beam, it is neces-

sary to calculate the coordinates x and y of the deflection curve as
functions of S. For a beam with zero axial extension, these coor-
dinates may be expressed as follows:

dx ¼ cos θdS; dy ¼ sin θdS: ð8Þ
On the basis of Eqs. (4) and (8), the prescribed displacements at

the free end of the beam can be enforced by integrating the coor-
dinates x and y over the length of the beam, as follows:
Z

xðLÞ

0
dx ¼ �

Z
θ

L cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½C � �T sinðθ� θf Þ � �FA cosðθ� θf Þ�

q ¼ xA

ð9Þ

Z
yðLÞ

0
dy ¼ �

Z
θ

L sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½C � �T sinðθ� θf Þ � �FA cosðθ� θf Þ�

q ¼ yA

ð10Þ
In Eqs. (7), (9), and (10), the integrands are never singular when

the following relationship holds for all θ in the range (0, θf ):

C > �T sinðθ� θf Þ þ �FA cosðθ� θf Þ ð11Þ
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Fig. 1. Cantilever beam with a prescribed displacement and rotation
angle

Fig. 2. Experimental setup

Table 1. Analytical Results

Input Output

Case number �xA �yA θf (deg) L �T �FA C % error

1 0.675 0.703 86.0 219.1 �74:2 91.0 234.8 2.7

2 0.632 0.686 86.0 236.1 �14:5 20.0 49.9 3.1

3 0.662 0.640 75.6 218.4 1.6 �0:3 �0:1 4.2

4 0.680 0.657 75.6 212.6 �4:5 10.3 23.1 3.3

5 0.692 0.669 75.6 208.9 �14:0 26.0 59.3 3.9
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If this is true along the entire length of the beam, then the beam
curvature does not change sign (i.e., no “points of inflection”
exist). Therefore, θ changes monotonically with S, and the limits
of integration in Eqs. (7), (9), and (10) are (0, θf ). Jairazbhoy et al.
(2008) refer to solutions that exhibit no points of inflection as
“Type 1” (e.g., Fig. 1). Their formulation is intended to capture
Type 1 solutions that exhibit no points of inflection for θ lying
in the range (0, θf ), but do exhibit points of inflection for at most
two values of θ outside the range (0, θf ). The formulation in this
paper is intended to capture Type 1 solutions that exhibit no points
of inflection for θ lying in the range (0, θf ), regardless of the behav-
ior outside the range (0, θf ).

Given the length L and the coordinates of the free end of the
beam xA and yA, Eqs. (7), (9), and (10) are solved iteratively for
the three unknowns T , FA, and C. The quadrature is carried out
by the trapezoidal rule. If given T , FA, and C, then the quantities
S, x, and y (which represent the axial coordinate and the Cartesian
coordinates along the beam) can be calculated for incremental
values of θ.

Results and Discussion

Fig. 2 shows the experimental setup used to photograph a flexible
beam that was fastened to produce a variety of relevant beam
shapes. The material of the beam is polyethylene terephthalate

(PET). Jairazbhoy et al. (2008) used the same setup to produce
beam shapes. The beam is fastened at both ends by adjustable
clamps. The motion of the fastened ends in a plane parallel to
the desired mid-plane of the beam is used to establish the distance
and angle between the fasteners (i.e., to establish the prescribed
displacement [xA, yA] of the free end). The length of the beam
is varied by clamping down at different locations along the beam.
At the free end, the beam is fastened at an angle to the horizontal,
thus establishing the rotation angle (θf ). A digital camera photo-
graphed the shape of the beam. The leading edge of the beam is
highlighted to aid the visual comparison of the photographed
shapes against the analytical predictions.

Fig. 1 shows that if the tangent to the free end of the beam in-
tersects the positive x-axis, then a beam shape with no points of
inflection is always possible by choosing a small enough length
of the beam. If conversely the tangent to the free end of the beam
intersects the negative x-axis, then a beam shape with no points of
inflection is impossible, regardless of the length of the beam. The
experimental cases in this study are selected by picking the location
of the free end and the rotation angle of the beam so that the tangent
to the free end of the beam intersects the positive x-axis, thereby
ensuring the existence of a beam shape with no points of inflection.
Starting from a beam length that is large enough to produce at
least one point of inflection, the length is reduced until a suitable
shape with no points of inflection is attained. The beam is then
photographed.
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Fig. 4. The predicted shape versus the experimental shape in Case 2
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Fig. 3. The predicted shape versus the experimental shape in Case 1
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Results

The experimental results for cases in which the curvature of the
beam retains its sign over the length of the beam were compared
numerically with solutions generated by solving Eqs. (7), (9), and
(10). Table 1 lists the five cases studied and Figs. 3 to 7 present a
comparison of the experimental and the predicted shapes. The co-
ordinates of the free end of the beam are nondimensionalized
against the beam length. In all cases, the predicted shape well
matches the photographed shape. Cases 1 and 2 (Figs. 3 and 4,
respectively) share a similar fastener location and orientation,
but they differ in the length of the beam. The beam in Case 1 is
shorter by approximately 6%. The net effect is that the beam is

“pulled tighter,” as Fig. 3 shows. The reaction forces are larger
(see Table 1) and the beam shape is flatter in the central region.

To quantify the fit, five x-coordinate values were selected from
each pair of corresponding beam shapes (numerical and experimen-
tal). Each x-coordinate identifies an interior point on the numerical
and the experimental beam shapes, and consequently a distinct
y-coordinate value for each shape. The absolute value of the differ-
ence in the y-coordinate between the numerical and experimental
shapes (i.e., the absolute predictive error) is calculated for each
point. The average absolute “% error,” which is nondimensional-
ized against beam length, was then calculated and tabulated in
Table 1.
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Fig. 7. The predicted shape versus the experimental shape in Case 5
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Fig. 5. The predicted shape versus the experimental shape in Case 3
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Fig. 6. The predicted shape versus the experimental shape in Case 4
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Figs. 5 to 7 show that decreasing the length of the beam by a
small amount while maintaining a similar fastener location and an
identical orientation can result in a significant flattening of the
draped shape in the mid region of the beam. The shapes in Figs. 5
to 7 in conjunction with the length column in Cases 3, 4, and 5 in
Table 1 (218.4, 212.6, and 208.9 respectively) illustrate this. As the
beam shape becomes flatter in the central region, the beam is pulled
tighter and the reaction forces become progressively larger (see
Table 1).

Conclusions

This paper has considered the special case of large deflection
bending of a thin beam with no change in sign of the curva-
ture. In particular, the authors of this paper have extended the
analysis of Jairazbhoy et al. (2008). Photographs obtained from
the experiments verified the numerical predictions. An excellent

agreement was found between the predicted and the photographed
shapes.

References

Cornil, M.-B., Capolungo, L., Qu, J., and Jairazbhoy, V. A. (2007). “Free
vibration of a beam subjected to large static deflection.” J. Sound Vib.,
303(3–5), 723–740.

Freitag, L., et al. (2000). “Packaging aspects of the litebus parallel opto-
electronic module.” Proc., 50th ECTC, IEEE, Piscataway, NJ, 1259.

Isaak, H., and Uka, P. (2000). “Development of flex stackable carriers.”
Proc., 50th ECTC, IEEE, Piscataway, NJ, 378.

Jairazbhoy, V. A., Petukhov, P., and Qu, J. (2008). “Large deflection of thin
plates in cylindrical bending—Non-unique solutions.” Int. J. Solids
Struct., 45(11–12), 3203–3218.

Xue, Y., Jairazbhoy, V. A., Niu, X., and Qu, J. (2003). “Large deflection of
thin plates under certain mixed boundary conditions—Cylindrical
bending.” J. Electron. Packag., 125(1), 53–58.

234 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2012

Downloaded 11 Apr 2012 to 129.105.215.146. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org

http://dx.doi.org/10.1016/j.jsv.2007.02.016
http://dx.doi.org/10.1016/j.jsv.2007.02.016
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.029
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.029
http://dx.doi.org/10.1115/1.1527892

