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The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic,

homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and

experimental approaches. The analytical investigations show that while the horizontal velocity com-

ponent can form a shock wave, the vertical velocity component can form a pulse independent of the

specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model

is then used to simulate the development of the fundamentals, second harmonics, and the sum and

difference frequency components over the propagation distance. The analytical model is further

extended to include diffraction effects in the parabolic approximation. Finally, the frequency and

amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the sec-

ond harmonics as well as of the sum and difference frequency components, to help guide effective

material characterization; this approach should make it possible to measure the acoustic nonlinearity

of a solid not only with the second harmonics, but also with the sum and difference frequency com-

ponents. Results of the analytical investigations are then confirmed using the finite element method

and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4904535]
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I. INTRODUCTION

Nonlinear acoustic techniques have proven to be very

useful in detecting microstructural changes within a solid for

which linear techniques are not sensitive enough.1,2 These

nonlinear techniques are often based on the measurement of

a second harmonic contribution in order to determine the

acoustic nonlinearity of a material—when an initially mono-

chromatic sinusoidal wave propagates through a nonlinear

solid, higher harmonic wave components are generated. As

an alternative, recent experiments3,4 successfully used wave

mixing techniques for bulk waves to generate new waves

according to the theory of Jones and Kobett from 1963.5 As

the use of Rayleigh waves has demonstrated several advan-

tages in nonlinear ultrasonic experiments with a single fun-

damental wave,6,7 the idea of the present paper is to mix two

such waves. The current research considers the utility of

wave mixing of two Rayleigh waves propagating in the

same direction, denoted as co-directional. Here, one not only

obtains higher harmonics of each fundamental wave, but

also the sums and differences of all the harmonic frequencies

(combination frequencies); these additional frequency com-

ponents provide alternative ways to measure the acoustic

nonlinearity of a material which can be beneficial. For exam-

ple, with similar fundamental frequencies, a small difference

frequency is obtained which is less attenuated than the corre-

sponding second harmonics. Also, such wave mixing techni-

ques are relatively immune to the instrumentation

nonlinearity that can dominate second harmonic generation

measurements which typically use a single, fundamental

input frequency which corresponds to the center frequency

of the exciting transducer.

In 1981 Kalyanasundaram published results8 on the non-

linear theory of the mixing of two co-directional Rayleigh

waves. The current research considers an analytical model

similar to Kalyanasundaram by building on Jones and

Kobett,5 plus the nonlinear theory of a single fundamental

Rayleigh wave provided by Zabolotskaya.9,10 Zabolotskaya

proposed a unique approach based on the Hamiltonian for-

malism to derive the differential equations for the amplitudes

of the included frequency components. An advantage of

this energy based approach is the use of a variable number

of frequency components as opposed to the results of

Kalyanasundaram8 where only six frequency components

are considered. This flexibility is crucial to easily incorpo-

rate a large number of frequency components, which enables

the representation of highly nonlinear phenomena such as

shock formations. In contrast to related literature,8–11 the

current research develops a model without the need for the

slowly varying envelope approximation (SVEA), which

results in more accurate calculations. Next, the inclusion of

diffraction effects in the parabolic approximation gives an

analytical model similar to that of Shull et al.12 but for the

case of two co-directional Rayleigh waves which has not

been published yet in this form. In addition, the effects of
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different amplitudes and frequencies of the fundamental

waves and of the corresponding ratios are discussed.

Formulas are derived to calculate the acoustic nonlinearity

of a material similar to the case of a single fundamental

Rayleigh wave investigated by Herrmann et al.,6 but not

only based on the second harmonics but also on the sum and

difference frequency components. Finally, results from the

analytical model are compared to results from a finite ele-

ment model for validation purposes.

The overall objective of this research is to provide mod-

els that support experiments and enable the interpretation of

the measured data and the selection of the amplitudes and

frequencies of the two fundamental waves, in order to maxi-

mize the amplitudes of the second harmonics, as well as

those of the sum and difference frequency components. This

can help to enhance measurements by providing an

improved signal-to-noise ratio (SNR), which enables a more

accurate determination of the acoustic nonlinearity of a ma-

terial; this research demonstrates the feasibility and potential

of co-directional Rayleigh wave mixing in order to experi-

mentally quantify the acoustic nonlinearity of a solid, analo-

gously to longitudinal waves, in multiple ways within a

single measurement.

II. ANALYTICAL MODEL

A. Modeling

Consider an isotropic, homogeneous, elastic and weakly

nonlinear material. In order to determine significant solu-

tions to the nonlinear Rayleigh wave equation, it is a good

approximation to only take frequency components into

account for which resonance is fulfilled. It is assumed in the

following that the resonance condition of Jones and Kobett5

holds similarly for Rayleigh waves which can be written as

xa6xbð Þp
c

¼ ka6kb !
jpj¼1 jxa6xbj

c
¼ jka6kbj: (1)

Here, c is the wave speed, p the propagation direction,

jxa6xbj the angular frequency, and jka6kbj the wavenum-

ber of the generated and significant wave. Moreover, ka and

kb as well as xa and xb are the wave vectors and angular fre-

quencies of the two fundamental waves that are mixed. The

absolute values jkaj ¼ ka and jkbj ¼ kb are the correspond-

ing wavenumbers. As we are interested in nonlinear ultra-

sonic measurements where fundamental Rayleigh waves are

compared to nonlinearly generated Rayleigh waves, we want

this generation to be directly out of the interaction of the fun-

damentals to obtain larger amplitudes and a better SNR.

Consequently, the wave speed c of the generated wave

within Eq. (1) is set to the Rayleigh wave speed cr which

results in

ðxa6xbÞ2 ¼ x2
a þ x2

b 6 2xaxb cosðHÞ; (2)

where H is the angle between the fundamental wave vectors.

This leads to cosðHÞ ¼ 1 and confirms that the resonance

condition is only fulfilled for co-directional mixing.

As the individual fundamentals also fulfill the resonance

condition which leads to second harmonics, it can be con-

cluded that both of the second harmonics as well as the sum

and difference frequency components are directly generated

from the fundamentals, and are therefore of critical interest

for experiments. By generalizing the co-directional mixing

of the two fundamentals, it follows that the generated waves

interact again with all other waves leading to the formation

of all kinds of higher harmonics and combination frequen-

cies. They can be written as nxa, mxb, and jnxa6mxbj for

n¼ 1, 2, 3, and m¼ 1, 2, 3. Moreover, it is assumed that the

solution of the nonlinear problem is close to the solution of

the corresponding linear problem.9 Consequently, the solu-

tion form for the displacements in the x- and z-directions for

co-directional Rayleigh wave mixing in a semi-infinite solid

in the z< 0 half-space with the surface at z¼ 0 can be writ-

ten as

ux ¼
X

n

bne�inxat|fflfflfflfflffl{zfflfflfflfflffl}
an

i
n

jnj n1ejnjkan1z þ gejnjkan2z
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uxn

einkax;

(3a)

uz ¼
X

n

bne�inxat|fflfflfflfflffl{zfflfflfflfflffl}
an

ðejnjkan1z þ gn2ejnjkan2zÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uzn

einkax: (3b)

The material dependent constants g, n1, and n2 are defined

elsewhere.9 The imaginary unit is denoted by i and all waves

propagate in the positive x-direction. The variable bn repre-

sents the displacement amplitudes of the different frequency

components that are in demand. Moreover, each n describes

a distinct frequency component, and negative n are the corre-

sponding complex conjugates resulting in a�n ¼ a�n and

b�n ¼ b�n.

One thing that distinguishes Eqs. (3a) and (3b) from the

work of Kalyanasundaram8 is that all frequency components

are pulled into only one summation for each displacement

direction. This leads to a special definition of the control

variable n. With the frequency mixing ratio (FMR) /
¼ xb=xa and 0 < / < 1 without loss of generality, n takes

the values

61;62;…;6/;62/;…;616/;626/;6162/;

6262/;…;617/;627/;6172/;6272/; ::: :

(4)

Integers and multiples of / represent harmonics, whereas

the other terms denote combination frequency components.

The zero frequency is not considered.

As Eqs. (3a) and (3b) are analogous to the solution form

Zabolotskaya postulated,9 we can take advantage of the cor-

responding derivation to solve for the unknown and varying

bn. To follow the approach of Zabolotskaya in obtaining the

kinetic and elastic energy, one needs to integrate over a dis-

tance in the x-direction that contains full periods of all fre-

quencies involved. If xa and xb are decimals with a finite

number of decimal places, fractions of such decimals or if

numbers with infinite decimal places cancel out in the FMR,
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then one can always find such a distance. When such a gen-

eral case is considered, the kinetic energy T as well as the

elastic energies V and W can be written analogously to

Zabolotskaya9 but with n given in Eq. (4). The energies are

then used for the Lagrange equations of the second kind for

the so far conservative system. The Lagrangian follows as

L ¼ T � V �W and the different a�n are chosen as gener-

alized coordinates. Based on the expressions used by

Zabolotskaya,9 the generalized momenta @L=@ _a�n are equal

to @T =@ _a�n ¼ M _an=ð2jnjÞ. The other necessary term for the

equations of motion is given by @L=@a�n ¼ �@V=@a�n

�@W=@a�n. Here, @V=@a�n ¼ Mx2
ajnjan=2 holds, where M

depends on material properties and contains the wavenumber

ka. In order to calculate the partial derivative of W with

respect to a�n,

W ¼ lk2
a

X
n¼mþl

wnlma�namal (5)

is utilized, where n has been replaced by �n within the

summation when compared to Zabolotskaya.9 Note that

wnlm stays unchanged as it only contains absolute values of

n and the condition n¼mþ l needs to be fulfilled. This

yields

@W
@a�n

¼ �jnjlk2
a

X
n¼mþl

mlSmlbmble
�i mþlð Þxat: (6)

The variables wnlm as well as Sml, given by Zabolotskaya,9

solely depend on material properties and l denotes the

shear modulus of the solid. Also, m and l are control varia-

bles like n. This leads to the Lagrange equations of the sec-

ond kind of

M

2jnj
€bn � 2inxa

_bn � n2x2
abn

� �
e�inxat

¼ �Mx2
a

2
jnjbne�inxat þ jnjlk2

a

�
X

n¼mþl

mlSmlbmble
�i mþlð Þxat: (7)

Making the assumption of periodic steady-state waves,9

i.e., @bn=@t ¼ @2bn=@t2 ¼ 0, one can evaluate the total

derivative _bn ¼ @bn=@tþ cr@bn=@x ¼ cr@bn=@x. Similarly, €bn

¼ c2
r@

2bn=@x2. Based on these expressions, a multiplication of

Eq. (7) with einxat gives

� 1

2inka

@2bn

@x2
þ @bn

@x
¼ inlxa

Mc3
r

X
n¼mþl

mlSmlbmbl � an2bn:

(8)

Here, an attenuation term has been implemented analogously

to the literature9,13 with the attenuation coefficient a. The

first term on the right-hand side describes wave interactions

caused by both geometric and material nonlinearities that

lead to the generation of higher harmonics and combination

frequency components. Equation (8) represents a system of

coupled second order ordinary differential equations with

quadratic terms, since the incorporated elastic energy is of

cubic order.

As a next step, the time derivatives of the displacements

need to be established to investigate particle velocities later

on. They are similar to Zabolotskaya9 given by

_ux ¼ vx ¼
X

n

vne�inxatuxneinkax; (9a)

_uz ¼ vz ¼
X

n

vne�inxatuzneinkax; (9b)

with the particle velocity amplitude of the different fre-

quency components vn ¼ cr@bn=@x� inxabn.

In a case where the amplitudes of the frequency

components under consideration change slowly, it is com-

mon to use the SVEA.8–11 This means that if j@2bn=@x2j
� j2nka@bn=@xj holds the highest order derivative @2bn=@x2

can be neglected14 within Eq. (8). The result is equivalent to

Zabolotskaya’s formula for a single fundamental wave,9 but

with a different definition of n and the equation is formulated

with bn instead of vn. With the SVEA these amplitudes are

related by9

vn ¼ �inxabn: (10)

B. Simulation

A characteristic quantity in wave propagation is the dis-

continuity distance which will be used for numerical analy-

ses. At this distance, the slope of the waveform of the

particle velocity becomes infinitely large for a hypothetical

lossless nonlinear material.15 Based on the discontinuity dis-

tances for a single fundamental bulk wave13 and a single

fundamental Rayleigh wave,16 the empirical formula for the

discontinuity distance of two co-directionally mixed

Rayleigh waves can be written as

xd ¼
Mc3

r

8ljS11jxa jbICaj þ /jbICbjð Þ ; (11)

where S11 denotes Sml for m¼ l¼ 1. This equation is related

to the expression for a single fundamental bulk wave by

Eq. (21) and to the expression for a single fundamental

Rayleigh wave by Eq. (10). The quantities bICa and bICb

denote the initial values of b1 and b/ and the ratio bICb /bICa

is called the amplitude mixing ratio (AMR).

To reduce the computational complexity at highly non-

linear effects such as shocks, the SVEA will be utilized for

the simulation of Eq. (8) in the following. Here, the behavior

of the waveforms and the development of the displacement

amplitudes in the case of low attenuation will be simulated

numerically with MATHEMATICA 9.0.

1. Waveforms

For an easier comparison to the behavior of a single fun-

damental Rayleigh wave, assume the same steel material

properties as in the literature9 which are given in Table I. The

amplitudes bICa and bICb are chosen of the same dimension as

the fundamentals of longitudinal waves.17 The initial ampli-

tudes of all other frequency components are set to zero.

Moreover, it is crucial to select low values for the attenuation
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coefficient to be able to observe effects such as shock forma-

tions before the waves decay. However, a simulation with a

very small attenuation coefficient can be numerically difficult

to handle and consequently a balance should be found.

The waveforms of the particle velocities are illustrated

in Fig. 1 for two different FMRs. Here, all plots are normal-

ized to vx0 which denotes the initial amplitude of vx. The hor-

izontal axis represents the dimensionless variable

s ¼ xaðt� x=crÞ=2p. In plots (a1) and (b1) the horizontal

velocity component forms a shock while in plots (a2) and

(b2) a pulse arises in the vertical velocity component with an

increasing propagation distance x. This behavior has been

similarly shown by Zabolotskaya9 but not for the case of co-

directional Rayleigh wave mixing as presented here.

Moreover, these effects occur independently of the FMR.

The increased peaks indicate that the energy is shifted to the

surface when higher frequencies are generated since they

have lower penetration depths.9,10 Additionally, the largest

peaks get larger for a higher FMR. In contrast, very different

fundamental frequencies lead to less sharp peaks as they

have different energy transfer characteristics and do not

form a shock and pulse at similar propagation distances in

the case of comparable initial fundamental displacement

amplitudes. Therefore, the amplitudes in plots (b1) and (b2)

will decline until the smaller fundamental frequency gener-

ates a second shock and pulse, at propagation distances that

are larger than the illustrated ones.

In addition, a shock and pulse can be formed independ-

ently of the AMR and for large FMRs as in (a1) and (a2) a

beat can occur.

2. Displacement amplitudes

In the following, the development over the propagation

distance of the displacement amplitudes bn of the fundamen-

tals, second harmonics as well as of the sum and difference

frequency components is discussed. They are typically the

largest, and therefore the most attractive components in

TABLE I. Material properties.

Material Young’s modulus E Poisson’s ratio r Mass density q Third order elastic constants A, B, C

Steel 2� 1011 N/m2 0.27 7850 kg/m3 �7.6� 1011 N/m2 �2.5� 1011 N/m2 �9� 1010 N/m2

Fused quartz 7.17� 1010 N/m2 0.17 2203 kg/m3 �5.28� 1010 N/m2 5.4� 1010 N/m2 2.15� 1011 N/m2

Aluminum 7.09� 1010 N/m2 0.34 2700 kg/m3 �3.5� 1011 N/m2 �1.5� 1011 N/m2 �1.03� 1011N/m2

FIG. 1. (Color online) Normalized waveforms of the horizontal (a1), (b1) and the vertical (a2), (b2) particle velocity component at z¼ 0. The attenuation coef-

ficient is set to a¼ 6� 10�4 Np/m and the fundamental frequency xa¼ 5p� 106 rad/s is fixed while xb¼ 4p� 106 rad/s (a1), (a2) as well as xb¼p� 106 rad/s

(b1), (b2). The initial conditions are chosen as bICa¼ bICb¼ i7.5� 10�10 m. All frequencies up to the 120th harmonic of each fundamental wave and all com-

bination frequencies up to 60xa 6 60xb are included.
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nonlinear ultrasonic measurements. Simulations are per-

formed for fused quartz given in Table I to facilitate compar-

isons to Kalyanasundaram.8 The results for two different

FMRs are illustrated in Fig. 2. As purely imaginary values

for bICa and bICb are utilized, the different bn also remain as

imaginary—this is analogous to the findings of

Kalyanasundaram.8 The reason for this behavior is that the

change of the displacement amplitudes @bn/@x within the

simulated equations equals an imaginary quantity.

The plots show that the energy transfer is larger for

higher frequencies. On the one hand this means that the

attenuation is obviously larger for higher frequencies, which

can be observed, among others, for the difference frequency

component at large propagation distances. On the other

hand, the absolute value of the slope for small propagation

distances tends to be larger if the frequency under considera-

tion is higher (and the corresponding fundamental frequen-

cies in the case that a non-fundamental component is

investigated). Thus, the initial slopes of the 2xb and the sum

frequency components are larger in plot (a), since these and

the corresponding fundamental xb component have higher

frequencies.

A more complicated behavior is present within the ini-

tial development of the difference frequency component—as

a high FMR results in a small difference frequency, and vice

versa, the development of the difference frequency compo-

nent depends on a balance of its own frequency and the fun-

damental frequencies. Therefore, the negative rise within

plots (a) and (b) appears to be pretty much the same for

small propagation distances.

These results are partially in line with the work of

Kalyanasundaram.8 The xb component changes more slowly

for small FMRs in both models. For the sum and difference

frequency components, the signs and the dependence of the

initial slope on the FMR match relatively well. However,

Kalyanasundaram states that for larger FMRs, the fundamen-

tals as well as the sum and difference frequency components

reach their first minima or maxima faster. This is not the

case for the xa and the difference frequency components in

the plots presented here. Also note that the overall behavior

of the xa component is quite different. These discrepancies

could be due to differing simulation parameters and model-

ing approaches. Especially, the number of included fre-

quency components can be important if the propagation

distances are large enough. Investigations have shown that

for the utilized setups and considered propagation distance,

more frequency components than only the fundamentals,

second harmonics as well as the sum and difference frequen-

cies as included by Kalyanasundaram are necessary to obtain

an accurate development of these six components.

C. Implementation of diffraction effects

In addition to the nonlinear interaction and attenuation,

diffraction effects can also be important to account for in

nonlinear Rayleigh wave experiments, since they are often

conducted in the far field where these effects might have a

significant influence. Consequently, the model derived is

extended to include these diffraction effects. Additionally,

the SVEA is applied again to simplify the modeling and the

computations as a system of coupled partial differential

equations will be obtained and numerically solved.

The starting point of the derivation is the assumption of

narrow angle diffraction which can be described using a para-

bolic approximation.12,18 Suppose that the wave vector of dif-

fracted Rayleigh waves can be written as nka ¼ nðkx; ky; 0ÞT .

Then the introduction of the small angle d between the wave

propagation direction and the x axis yields nkx ¼ nka cosðdÞ
and nky ¼ nka sinðdÞ. These wavenumbers can be approxi-

mated with a Taylor series around d¼ 0 as nkx � nkað1
�d2=2Þ and nky � nkad. The solution form of Eqs. (3a) and

(3b) follows now as

ux ¼
X

n

bneinkað�d2x=2þdyÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
bdn

uxneinðkax�xatÞ; (12a)

uz ¼
X

n

bneinkað�d2x=2þdyÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
bdn

uzneinðkax�xatÞ; (12b)

FIG. 2. (Color online) Normalized displacement amplitudes of selected frequency components over the propagation distance. The attenuation coefficient is set

to a¼ 6� 10�4 Np/m and the fundamental frequency xa¼ 5p� 106 rad/s is fixed while xb¼ 4p� 106 rad/s (a) as well as xb¼p� 106 rad/s (b). The initial

conditions are chosen as bICa¼ bICb¼ i7.5� 10�10m. All frequencies up to the 120th harmonic of each fundamental wave and all combination frequencies up

to 60xa 6 60xb are included.
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where bdn denotes the diffracted displacement amplitudes

and is a function of x and y. Eventually, one can calculate

the partial derivatives

@bdn

@x
¼ � inka

2
d2bneinka �d2x=2þdyð Þ þ @bn

@x
einka �d2x=2þdyð Þ

(13)

and

i

2nka

@2bdn

@y2
¼ � inka

2
d2bneinka �d2x=2þdyð Þ: (14)

Now, Eqs. (13) and (14) are combined and @bn/@x is substi-

tuted by the expression of Eq. (8) after applying the SVEA.

This leads to

1

2inka

@2bdn

@y2
þ @bdn

@x

¼ inlxa

Mc3
r

X
n¼mþl

mlSmlbdmbdl � an2bdn: (15)

The model obtained is very similar to the case of a single

fundamental wave.12 The main differences are again that n
takes different values, and the formulation presented is writ-

ten for the displacement amplitudes instead of the particle

velocity amplitudes.

D. Simplified analytical model

1. General approach

In nonlinear ultrasonic experiments, having sufficiently

large amplitudes of the frequency components under consid-

eration is crucial to facilitate measurements with an

improved SNR. In order to find combinations of initial fun-

damental amplitudes and frequencies that maximize the

amplitudes of the second harmonics, and the sum and the

difference frequency components, a general approach with a

simplified model will be discussed as an alternative to a

case-by-case investigation. The SVEA is applied and attenu-

ation as well as diffraction effects are assumed to be negligi-

ble which is often a good approximation for small

propagation distances. Additionally, for such distances the

fundamentals are almost unaffected by other frequency com-

ponents and they represent the only significant impact on the

second harmonics, as well as on the sum and difference fre-

quency components.

Based on these assumptions as well as based on Eqs. (8)

and (15), the displacement amplitudes of the fundamentals

become

@b1

@x
¼ 0! b1 ¼ bICa ¼ constant; (16a)

@b/

@x
¼ 0! b/ ¼ bICb ¼ constant: (16b)

The displacement amplitudes of the second harmonics as

well as of the sum and difference frequency components are

given by

bn ¼
inlxax

Mc3
r

X
n¼mþl

mlSmlbmbl; (17)

where bm and bl solely represent fundamental displacement

amplitudes. Thus, the second harmonics depend on the

square of the corresponding fundamental displacement am-

plitude, whereas the sum and difference frequency compo-

nents depend on the product of both fundamental

displacement amplitudes. Consequently, the choice of the

initial fundamental displacement amplitudes is evident—the

product jbmblj should be maximized for the component of in-

terest within the given experimental constraints, for exam-

ple, by choosing an appropriate AMR.

Now, Eq. (17) is simulated in order to obtain recommen-

dations on the choice of the fundamental frequencies for a

specific setup with 7075-T651 aluminum19 given in Table I.

The results are depicted in Fig. 3. Here, it can be seen that

the normalized slope of the 2xb and the sum frequency com-

ponents is larger for an increasing FMR, which is in line

with Fig. 2. Moreover, as discussed in Sec. II B 2, a large dif-

ference frequency component is obtained when its own fre-

quency and the fundamental frequencies are appropriately

balanced. The illustrated curve of the difference frequency

component within Fig. 3 is also in accordance with Fig. 2.

2. Sum and difference frequencies

In the following, two interesting effects are discussed.

First, in Fig. 2(a), the sum frequency component has a

steeper initial rise than the faster oscillating 2xa component.

The specific FMRs and AMRs for which the sum frequency

component grows faster than the 2xa component can be

investigated with Eq. (17) which yields

b1þ/

b2

¼ / 1þ /ð Þ S1/ þ S/1ð Þ
2S11

b/

b1

: (18)

With b/ ¼ b1, the left curve in Fig. 4 is obtained for the alu-

minum given in Table I. Consequently, for a high enough

FMR, it might be advantageous to consider the sum fre-

quency component in an experiment.

Second, co-directional Rayleigh wave mixing can be

attractive as it is possible to generate a difference frequency

FIG. 3. (Color online) Slope @bn/@x normalized to the maxima and minima,

respectively, of the corresponding frequency components. The frequency xa

is kept constant while xb varies.
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component b1�/ which grows much faster than a second har-

monic ~b2 of a single fundamental wave at the same fre-

quency. By making use of Eq. (17) and by selecting the

initial fundamental displacement amplitudes b1 and b�/ of

the mixing case as half the initial fundamental displacement

amplitude of the single wave case, the ratio

b1�/

~b2

¼ �/
1� /ð Þ

S1;�/ þ S�/1ð Þ
2S11

(19)

can be found. Note that a comma is introduced in S1;�/ to

clearly show that two different indices are involved. A simu-

lation result is given in Fig. 4 for aluminum of Table I. It can

be seen that for high FMRs the mixing method is clearly

beneficial. The reason is that a high FMR in the mixing case

implies much larger fundamental frequencies when com-

pared to the case of a single fundamental wave. As a conse-

quence, the energy transfer from the fundamentals is much

higher in the former case, which finally leads to a larger ratio

b1�/=~b2.

E. Acoustic nonlinearity parameter

1. Modeling

One of the major objectives in nonlinear ultrasonic

experiments is the measurement of the acoustic nonlinearity

parameter (ANP) of a material. Therefore, the existing defi-

nition of the ANP within the literature6,12 is extended to the

case of co-directional Rayleigh wave mixing. By using the

expression of the ANP for longitudinal waves analogously

for Rayleigh waves, the definition

b ¼ 8b2

k2
ab2

1x
(20)

in terms of the higher fundamental frequency is obtained

which is based on and proportional to the definition by

Herrmann et al.6 As the ANP is a material property, a formu-

lation can be specified which only depends on the solid

under consideration. This is realized by inserting the dis-

placement amplitudes b1 and b2 of a Rayleigh wave model

into Eq. (20), at which the model is based on the same

assumptions that led to this equation. These assumptions

neglect both attenuation and diffraction effects, as well as

assume a constant fundamental and a linearly changing sec-

ond harmonic amplitude over the propagation distance.13,20

Since all these points are incorporated within the simplified

analytical model of Sec. II D, the corresponding displace-

ment amplitudes are used to express the ANP only with ma-

terial constants as

bmat ¼
16ilS11

Mc2
r ka

; (21)

which is given in a similar way by Shull et al.12 Note that

the wavenumber cancels out.

Now, for co-directional Rayleigh wave mixing, it might

be desirable to calculate a similar ANP with both second har-

monics as well as with the sum and difference frequency

components. This results in a high flexibility in choosing the

most attractive frequency component for a specific problem

and the possibility to compare the results. In a fashion analo-

gous to Eq. (20), the general expression for the four different

ANPs is defined as

bml ¼
16sgn mlð Þbmþl

mþ lð Þkjmjkjljbmblx
: (22)

Here, m and l are either 1 or 6/ and mþ l is 2; 2/; 1þ /;
or 1� /. Moreover, k1¼ ka as well as k/ ¼ kb and sgn

denotes the sign function. Thus, b11 equals b of Eq. (20).

Subsequently, bml is related to b. With Eq. (17), the general

relationship between the different ANPs can be stated as

b ¼ bml

S11X
mþl¼iþj

Sij

: (23)

The variable Sij corresponds to Sml with new control varia-

bles at which i and j are either 1 or 6/.

2. Simulation

Next, the variation of the ANP b calculated in four dif-

ferent ways according to Eq. (23) is investigated when

including the interaction, attenuation and diffraction effects.

Therefore, Eq. (15) is simulated and Gaussian sources16 of

saðyÞ ¼ bICae�ðy=rÞ2 and sbðyÞ ¼ bICbe�ðy=rÞ2 are used for the

corresponding fundamental waves. Here, a value of

r¼ 6.35 mm is chosen which represents the radius of the

wedge transducer utilized in Sec. IV for the experiments. At

the limits in the y-direction, all the bn’s are set to zero.

The results of a simulation with the aluminum of

Table I are presented in Fig. 5. Here, all curves are normal-

ized to bmat. Consequently, the four formulations of the ANP

b yield indeed approximately the same absolute value of

jbmatj at small propagation distances and deviate for larger

propagation distances because of the interaction, attenuation,

and diffraction effects. This confirms, on the one hand, the

assumptions made in the simplified analytical model and, on

the other hand, Eqs. (21) and (23) for small propagation dis-

tances which have been derived based on these assumptions.

Thus, for such distances and measurements of absolute dis-

placements, it might be possible to approximately obtain

bmat in four ways within an experiment.

FIG. 4. (Color online) Amplitude ratios over the FMR.
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In addition, in Fig. 5, the ANP formulations related to

the second harmonics and the sum frequency component rise

in the beginning as the diffraction effects are higher for

lower frequencies. Consequently, the fundamentals are more

reduced than the second harmonics and the sum frequency

component. In contrast, as the difference frequency is much

smaller than both of the fundamental frequencies, the corre-

sponding ANP formulation initially drops. At larger distan-

ces attenuation becomes the dominant effect on the different

curves.

III. FINITE ELEMENT MODEL

A. Modeling

As a next step, a simplified model using the finite ele-

ment method (FEM) is set up with COMSOL MULTIPHYSICS 4.3a

in order to validate a basic version of an analytical mixing

model of Sec. II.

As the FEM is restricted by mesh resolution and time

step sizes of the solver, it is not feasible to compare the ana-

lytical and finite element (FE) model in a case where high-

frequency components have an essential influence on the

results. Because of this and the fact that in an experiment,

we are usually only interested in the fundamentals, the sec-

ond harmonics as well as the sum and difference frequency

components, the FE model is only used for propagation dis-

tances where other frequency components have insignificant

amplitudes. Additionally, attenuation and diffraction effects

are neglected. Consequently, a two dimensional FE model

without attenuation is set up which resolves waves only up

to the frequency 2xa. Accordingly, the FE model is com-

pared to Eq. (8) for a¼ 0, in which only the fundamentals,

second harmonics, as well as the sum and difference fre-

quency components are included.

A sketch of the FE model is illustrated in Fig. 6. Here,

the generation of Rayleigh waves with the wedge technique

is applied which allows for mixing of the fundamentals

already within the excitation signal. This signal consists of

two sine waves with constant frequencies and amplitudes,

which are added to obtain two co-directionally mixed longi-

tudinal waves in the wedge and to eventually generate two

co-directionally mixed Rayleigh waves in the specimen.

As the nonlinear effects we are interested in are small, it

has proven of value to multiply the third order elastic con-

stants (TOECs) by a relatively large positive factor in both

the analytical and the FE model. Thus, one obtains signifi-

cant amplitudes of the second harmonics as well as of the

sum and difference frequency components at smaller propa-

gation distances, which saves computational costs. The large

amplitudes are important to obtain reasonable data within a

discrete Fourier transform (DFT) of the measured time do-

main signal of the FE simulations. However, if the TOECs

are increased too much, this will result in wave components

other than the fundamentals, second harmonics, as well as

the sum and difference frequency components, with ampli-

tudes that are no longer negligible. A numerical analysis

based on the analytical model led to a desired performance

for a multiplication of the TOECs by a factor of 150 for the

case of a propagation distance of around 20 mm, and the set-

ups of the simulations of Sec. III B. Note that changing the

TOECs is only possible because the objective of this study is

to compare the behavior of both models, and not necessarily

to use realistic material parameters. Also, the strains stay

small. Moreover, the hyperelastic material model based on

Murnaghan is used which is predefined in the nonlinear

structural materials module of COMSOL.

Quadratic elements are selected, and the mesh size is

chosen around five times smaller than the smallest wave-

length under consideration, which is based on xa for the

wedge and 2xa for the specimen.

B. Simulation

For the simulation, a time dependent study is chosen

using the Pardiso solver as well as a Courant–Friedrichs–

Lewy number of around 0.2.

In order to compare the analytical and the FE model, the

time domain signal of the vertical displacements is extracted

within COMSOL at 32 points on the stress free surface of the

specimen. Note that the horizontal displacements lead to the

same qualitative results. As a next step, a Hann window is

applied to a steady-state portion of the measured time do-

main signal and a DFT is utilized. Eventually, the amplitudes

at the six frequencies considered in the frequency domain

are used to calculate the corresponding amplitudes in the

time domain, with the empirical formula

FIG. 5. (Color online) Absolute values of the normalized formulations of

the ANP b at y¼ 0 calculated with an attenuation coefficient of a¼ 0.71 Np/

m and included diffraction effects. The fundamental frequencies are set to

xa¼ 4.666666p� 106 rad/s and xb¼ 3.733334p� 106 rad/s, whereas

bICa¼ bICb¼ 7.5� 10�10 m are chosen for the Gaussian sources. All fre-

quencies up to the fourth harmonic of each fundamental wave and all combi-

nation frequencies up to 2xa 6 2xb are included.

FIG. 6. (Color online) Sketch of the geometry, the material and the physics

of the FE model.

288 J. Acoust. Soc. Am., Vol. 137, No. 1, January 2015 Morlock et al.: Mixing of Rayleigh surface waves

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.105.215.146 On: Tue, 03 Mar 2015 20:37:55



time domain amplitude

¼ 4� frequency domain amplitude

number of data points used for Hann window

(24)

similar to the literature.21 This equation holds for the com-

mon DFT convention for signal processing which can be

found, for example, in the MATHEMATICA 9 documentation.

Subsequently, the amplitudes of the fundamentals of the ana-

lytical model are fitted to the data of the FEM simulation by

adjusting the initial fundamental displacement amplitudes.

Nevertheless, the second harmonics as well as the sum and

difference frequency components are solely calculated by

solving the differential equations of the analytical model.

The results of two comparisons between both models

are shown in Fig. 7. Here, the scale on the left-hand side

holds for the fundamentals, while the scale on the right-hand

side holds for the other components. The amplitudes of the

sine waves for the excitation within the wedge are selected

in order to obtain fundamental Rayleigh wave displacements

which are of the same dimension as experimental data for

longitudinal waves.17 Moreover, roughly the point where the

center of the excited longitudinal wave beam hits the speci-

men is chosen as the origin of the Rayleigh wave to obtain a

meaningful fit.

From Fig. 7, one can infer that both models match rela-

tively well for various FMRs and AMRs within the propaga-

tion distances examined. However, differences can be seen

which are caused among others by the following

discrepancies.

(1) Rayleigh wave generation with the wedge technique in

the FE model, versus source displacement amplitudes

for Rayleigh waves in the analytical model.

(2) Signal transformation with a DFT for the FE model ver-

sus no transformation for the analytical model.

(3) Finite domains with low reflections in the FE model ver-

sus a semi-infinite solid without reflections in the analyt-

ical model.

In addition, a comparison between plots (a) and (b)

clearly shows that the amplitude of the xb component tends

to increase for higher frequencies, although the excitation

amplitudes within the wedge do not change. This effect is

possibly related to the fact that the energy of a Rayleigh

wave with a higher frequency is shifted more closely to the

surface.9

Finally, there is still some potential to obtain more accu-

rate data from the FEM. For example, larger domains could

weaken the effects from reflections in order to reduce the

oscillations of the fundamentals within Fig. 7. Nevertheless,

the objective of a basic comparison between the two models

is accomplished, and the analytical results are qualitatively

validated with the FEM for the propagation distances under

consideration.

IV. EXPERIMENTS

A. Experimental setup and procedure

Now, the mixing technique for two co-directional

Rayleigh waves is implemented experimentally. The setup

and utilized instruments of the conducted experiments are

almost identical to that of Thiele et al.22 with the difference

that two signal sources (80 MHz 33250A function generators

from Agilent) instead of one are used. In this research, the

signal sources generate two sine waves with individual fre-

quencies and amplitudes which are added in the signal to a

contact transducer on a wedge with a nominal center fre-

quency of 2.25 MHz. This launches two co-directionally

mixed Rayleigh waves in the specimen under consideration,

analogous to the situation described in Sec. III. The speci-

men is made of the aluminum given in Table I. The receiver

is a non-contact, air-coupled transducer (Ultran NCT4-D13)

with a nominal center frequency of 4 MHz. Details about the

experimental setup and the utilized instruments such as the

transducers are given by Thiele et al.22

The experiments performed investigate the fundamen-

tals, second harmonics as well as the sum and difference fre-

quency components. To obtain information about the

development of these frequency components, measurements

are conducted at different propagation distances.

B. Experimental results

1. Experimental feasibility

With the single narrow band exciting transducer utilized,

it is usually recommended to select a high FMR and funda-

mental frequencies close to the transducer center frequency.

FIG. 7. (Color online) Vertical displacements related to different frequen-

cies of the analytical (curves) and the FE model (markers) at the stress free

surface. The fundamental frequencies are chosen as xa¼ 5p� 106 rad/s and

xb¼ 2p� 106 rad/s (a) as well as xb¼ 4p� 106 rad/s (b). The excitation of

the mixed longitudinal wave in the wedge is conducted with two sine signals

at amplitudes of 15� 10�10 m.
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Nevertheless, the FMR should not be too close to a value of

one in order to avoid overlaps between the frequency

components considered in the DFT. Thus, the fundamental

frequencies of Sec. II E 2 which are fa¼ 2.333333 MHz and

fb¼ 1.866667 MHz are used for all following experiments

[with f¼x/(2p)]. In addition, as it was not possible to mea-

sure meaningful data for the difference frequency component

with the present setup due to bandwidth limitations of the

receiving transducer, the experiments focus solely on the fun-

damentals, second harmonics and the sum frequency

component.

The procedure for the data processing is similar to Thiele

et al.22 Initially, a time domain signal is measured at the cen-

ter of the wave beam. Based on this, a Hann window and the

DFT lead to a frequency domain representation such as in

Fig. 8, where the amplitudes have been back calculated to the

time domain with Eq. (24). Note that the utilized air-coupled

transducer measures the amplitude of the leaked longitudinal

wave in the air in volts which is approximately proportional

to the particle displacements in the material and will therefore

be used in the same sense throughout this section. In addition,

the maxima of the frequency components considered in Fig. 8

cannot be directly compared to each other because of the fre-

quency response of the receiving transducer.

As a next step, these maxima are determined at propaga-

tion distances from 30 to 78 mm in 1 mm increments, which

yields Fig. 9. Here, some typical characteristics can be

observed—the fundamentals transfer their energy to the

other frequency components and get attenuated as well as

diffracted leading to a decrease in amplitude. In contrast, the

second harmonics and the sum frequency component rise

essentially. However, as the measurements are conducted in

the far field, attenuation as well as diffraction effects tend to

significantly decrease the wave generation of these compo-

nents at larger propagation distances.

Subsequently, in Fig. 10 the ANP formulas of Eq. (22)

multiplied by x are used. At this, the measured amplitudes in

volts are representatively used for the displacement ampli-

tudes, which only gives relative ANPs. In addition, the scale

on the right-hand side solely holds for b11 and for the quali-

tative investigations of this research, only one set of meas-

urements is conducted because of the high repeatability.22

Thiele et al.22 used the same propagation distances and

a similar fundamental frequency to examine second har-

monic generation with a single fundamental, where they

observed a relatively constant behavior for the ANP. Also, it

can be inferred from the simulations of Fig. 5, where the

attenuation coefficient of the xa component and the frequen-

cies of the experiment have been used, that the behavior of

the three considered ANPs should also be approximately

constant for the propagation distances under consideration.

Note that as the initial fundamental amplitudes in the analyt-

ical investigations could be relatively different from the

experiments, the simulations are supposed to be only utilized

as an orientation. Nevertheless, useful measurements should

allow for acceptable linear fits with the different ANPs as

FIG. 8. (Color online) DFT of the time domain signal measured at 78 mm

propagation distance with a Hann window applied to a steady state portion.

Both function generator outputs are set to 700 mVpp. [Note, for example,

that fa¼xa /(2p), etc.]

FIG. 9. (Color online) Amplitudes of different frequency components over

the propagation distance normalized to their value at 30 mm. Both function

generator outputs are set to 700 mVpp.

FIG. 10. (Color online) Different ANPs times propagation distance x for ex-

perimental data (markers). The slopes of the corresponding linear fits (lines)

and the standard errors (SE) in m2/(Vmm) are specified. Both function gen-

erator outputs are set to 700 mVpp.
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corresponding slopes. In fact, the linear fits within Fig. 10

are reasonable.

Thus, it can be concluded that co-directional Rayleigh

wave mixing is experimentally feasible in order to obtain a

meaningful relative measure of the acoustic nonlinearity of a

material in at least three different ways.

2. Variation of initial fundamental amplitudes

Finally, a set of ultrasonic measurements is performed to

determine if the theory is in accordance with the behavior of

the experimental setup for variations of the output voltage of

the function generators. A range from 300 to 700 mVpp is

selected for which the overall setup behaves relatively

linearly. Thus, the initial fundamental amplitudes are approxi-

mately proportional to the output voltage of the corresponding

function generator. One set of measurements is conducted for

each combination of output voltages for propagation distances

from 30 to 78 mm at increments of 4 mm.

In Fig. 11 the results of the average amplitudes over the

propagation distance of the second harmonics and the sum

frequency component are shown. The second harmonics

scale approximately with the square of the corresponding

initial fundamental amplitude, and function generator output

voltage, respectively. The sum frequency component

increases nearly linearly, but in both axis directions.

The experimental dependence of the second harmonics

and the sum frequency component on the initial fundamental

amplitudes is similarly predicted by theoretical investiga-

tions—for example, by the quasilinear theory for a Gaussian

source of Shull et al.12 when applied to the problem under

consideration, or by Eq. (17) for small propagation distances.

V. CONCLUSION

This paper demonstrates a variety of effects and possi-

bilities concerning the mixing of two co-directional

Rayleigh waves in a weakly nonlinear solid by using analyti-

cal models, FEM simulations and experiments.

First, the existing nonlinear theory for a single funda-

mental Rayleigh wave9,12 is extended to the case of co-

directional mixing of two Rayleigh waves. Simulation mod-

els are developed which incorporate interaction as well as

attenuation and diffraction effects. Shock plus pulse forma-

tions in the waveforms of the particle velocities and the de-

velopment of the displacement amplitudes of the

fundamentals, second harmonics, as well as of the sum and

difference frequency components as a function of the propa-

gation distance are investigated. General recommendations

on the choice of the mixing parameters (FMR and AMR) in

order to maximize the second harmonics as well as the sum

and difference frequency components are given. Also, an im-

portant advantage of the difference frequency component

when compared to the second harmonic of a single funda-

mental wave is discussed. Furthermore, ANPs for the second

harmonics as well as for the sum and difference frequency

components are formulated, and related to each other in

order to specify the same ANP in four different ways.

Moreover, a basic version of the analytical model is

validated with a FEM simulation. In the end, experiments

show that meaningful data for the ANPs related to the sec-

ond harmonics and the sum frequency component can be

measured for co-directional Rayleigh wave mixing. This

allows the monitoring of the material state in different ways

which can be beneficial.

A next step is to confirm the proposed experimental

mixing technique with a study using different materials and

specimens.
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