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This letter examines the propagation of an acoustic pulse in an elastic medium with weak

quadratic nonlinearity. Both a displacement pulse and a stress pulse of arbitrary shapes are used

to generate the wave motion in the solid. By obtaining the explicit solutions for arbitrary pulse

shapes, it is shown that for a sinusoidal tone-burst, in addition to a second order harmonic field, a

radiation induced static strain field is also generated. These results help clarify some confusion in

the recent literature regarding the shape of the propagating static displacement pulse.
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This letter examines the propagation of an acoustic

pulse in an elastic medium with weak quadratic nonlinearity.

To begin, consider a half-space defined by x� 0, where x is

the Lagrangian (or material) coordinate describing the loca-

tion of the material particle in the initial (t¼ 0) state. At any

given time t, the displacement of the particle x from its initial

position is denoted by u(x,t). Deformation of the elastic body

can then be described by the Lagrangian strain

e ¼ @u

@x
þ 1

2

@u

@x

� �2

: (1)

We assume that the half-space is made of an elastic solid

with quadratic nonlinearity, i.e., the normal (first Piola–

Kirchhoff) stress is related to the Lagrangian strain/displace-

ment gradient in the x-direction through

r ¼ qc2 e� bþ 1

2
e2

� �
¼ qc2 @u

@x
� b

2
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@x

� �2
" #

; (2)

where q is the mass density, c is the longitudinal phase

velocity, and b is the acoustic nonlinearity parameter, all for

the elastic solid in the undeformed (initial) state.

The displacement equation of motion governing the

wave propagation in the x-direction is
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@u

@x

@2u

@x2
: (3)

By a standard perturbation procedure, one may write the so-

lution to Eq. (3) as

u x; tð Þ ¼ u1 x; tð Þ þ u2 x; tð Þ; (4)

where u1 x; tð Þj j � u2 x; tð Þj j; or u2 ¼ O u2
1

� �
; and
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@x2
: (5)

The solution to the first expression of Eq. (5) that represents

a forward propagating wave can be written as

u1 x; tð Þ ¼ f t� x=cð Þ: (6)

It then follows that the second expression of Eq. (5) can be

written as

1

c2

@2u2

@t2
� @

2u2

@x2
¼ g t� x=cð Þ; (7)
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where

g sð Þ ¼ b
c3

f 0 sð Þf 00 sð Þ; (8)

and the prime denotes the derivative with respect to the argu-

ment of the function. By a direct substitution, one can show

that the solution to Eq. (7) is given by

u2 x; tð Þ ¼ bx

2c2

ðt�x=c

0þ
f 0 sð Þf 00 sð Þdsþ Dxþ B t� x=cð Þ; (9)

where B(y) is an arbitrary function of y and D is an integra-

tion constant, both need to be determined by the boundary

conditions and/or the consistency condition1,2

@u

@t
¼ 2c

3b
1� b

@u

@x

� �3=2

�1

" #
: (10)

If f(s) is a smooth function for s 2 0; t� x=cð Þ, the integral

in Eq. (9) can be carried out,

u2 x; tð Þ ¼ bx

4c2
f 0 t� x=cð Þ½ �2� f 0 0þð Þ½ �2

� 	
þ Dxþ B t� x=cð Þ: (11)

This is the general solution to the second order governing

Eq. (5).

Now, we determine B(y) and D under different boundary

conditions. First, consider the case where the displacement is

prescribed on the boundary, i.e.,

u 0; tð Þ ¼ u0 tð Þ: (12)

Consequently,

u 0; tð Þ ¼ u0 tð Þ; u2 0; tð Þ ¼ 0: (13)

It is then easy to show that

u1 x; tð Þ ¼ f t� x=cð Þ ¼ u0 t� x=cð Þ: (14)

The second order solution thus follows from Eq. (9) that

u2 ¼
bx

4c2
f 0 t� x=cð Þ½ �2� f 0 0þð Þ½ �2

� 	
; (15)

where we have chosen B(t)¼ 0 in order to satisfy the bound-

ary condition (13), and D ¼ b f 0 0ð Þ½ �2= 4c2ð Þ to satisfy the

consistency condition (10). Combining Eqs. (14) and (16)

gives the solution under displacement boundary condition

(12)

uD x; tð Þ ¼ u0 t� x=cð Þ þ bx

4c2
f 0 t� x=cð Þ½ �2� f 0 0þð Þ½ �2

� 	
;

(16)

where the subscript D is to indicate that the solution is for

the displacement prescribed boundary condition. Equation

(16) was derived by Lamb3 using a different method.

Next, consider the case where a traction is prescribed on

the boundary,

r 0; tð Þ ¼ r0 tð Þ: (17)

Making use of the constitutive law (2), one may expand the

stress into

r x; tð Þ ¼ r1 x; tð Þ þ r2 x; tð Þ; (18)

where r1 x; tð Þj j � r2 x; tð Þj j and

r1 x; tð Þ ¼ qc2 @u1

@x
; r2 x; tð Þ ¼ qc2 @u2

@x
� b

2

@u1

@x

� �2
" #

:

(19)

The corresponding boundary conditions for r1(x,t) and

r2(x,t) follow directly from Eqs. (17) and (18),

r1 0; tð Þ ¼ r0 tð Þ; r2 x; tð Þ ¼ 0: (20)

Substituting Eq. (19) into Eq. (20) leads to

@u1 x; tð Þ
@x






x¼0 ¼
r0 tð Þ
qc2

;
@u2

@x






x¼0 ¼
b
2

@u1

@x
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x¼0

¼ b
2

r0 tð Þ
qc2

� �2

: (21)

In this case, it is straightforward to show that

u1 x; tð Þ ¼ f t� x=cð Þ ¼ 1

qc

ðt�x=c

0

r0 sð Þds: (22)

Substituting Eq. (22) into Eq. (11) in conjunction with the

second expression of Eq. (21) leads to

D ¼ b
4q2c4

r0 0þð Þ½ �2; B0 tð Þ ¼ �b r0 tð Þ½ �2

4q2c3
: (23)

Integrating the second expression of Eq. (23) yields

B tð Þ ¼ � b
4q2c3

ðt

0þ
r0 sð Þ½ �2ds; (24)

where we had ignored the integration constant, since a con-

stant in the displacement is irrelevant for traction-prescribed

problems.

Finally, combining Eqs. (22)–(24) and (11) gives the so-

lution under the traction-prescribed boundary condition

uT x; tð Þ ¼ 1

qc

ðt�x=c

0

r0 sð Þdsþ bx

4q2c4
r0 t� x=cð Þ½ �2

� b
4q2c3

ðt�x=c

0þ
r0 sð Þ½ �2ds: (25)
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To elucidate some physical features of the solution obtained

above, consider the propagation of a sinusoidal pulse of

angular frequency x. For convenience, define a rectangular

pulse

P tð Þ ¼ H tð ÞH s� tð Þ; (26)

where H(t) is the Heaviside step function, and s ¼ 2np=x
with n being a positive integer.

Now, let us begin with the displacement-prescribed

boundary condition

u0 tð Þ ¼ UP tð Þ sin xt: (27)

Substituting Eq. (27) into Eq. (16) gives

uD x; tð Þ ¼ U sin x t� x

c

� 	
þ bU2x2x

8c2
cos 2x t� x

c

� 	�

þbU2x2x

8c2

�
P t� x

c

� 	
: (28)

We note that the first term on the right hand side of Eq. (28)

is the original propagating pulse of frequency x. The second

term represents a propagating pulse of frequency 2x with lin-

early growing amplitude. The third term, bU2x2x=8c2ð Þ
P t� x=cð Þ is the static portion of the displacement. It repre-

sents a propagating static pulse in that (1) at any fixed location

x, the displacement is a rectangular pulse in the time domain,

thus the term pulse, (2) at any fixed time t, the medium

between x ¼ c t� sð Þ and x¼ ct under goes a positive

uniform strain, i.e., the displacement increases linearly from

x ¼ c t� sð Þ to x¼ ct, thus the term “static,” and (3) this

region of uniform strain moves in the positive x-direction

with velocity c, thus the term propagating.

Further, we note that the amplitude of the static dis-

placement at a given point is proportional to the distance

between this point and the boundary, and the proportional

constant is bU2x2=8c2. If the signal for the static portion of

the displacement is recorded by a receiver at location x0, the

recorded signal plotted as a function of time will be a “flat

topped” rectangle of height bU2x2=8c2ð Þx0. The length of

the rectangle will be s. This is consistent with the experi-

mental observations of Refs. 4 and 5 and the numerical anal-

ysis based on the finite difference method.6 We note that the

numerical analysis in Ref. 6 is indeed for displacement-

prescribed boundary condition.

Also, for the time-harmonic case where s!1, one

may reduce Eq. (28) to the time-harmonic solution obtained

in Ref. 1,

uD x; tð Þ ¼ U sin x t� x

c

� 	
þ bU2x2x

8c2
cos 2x t� x

c

� 	�

þ bU2x2x

8c2

�
H t� x

c

� 	
: (29)

Next, consider the traction-prescribed boundary condition

r0 tð Þ ¼ �qcxUP tð Þ cos xt: (30)

Substituting Eq. (30) into (25) yields

uT x; tð Þ ¼ U sin x t� x

c

� 	h i
P t� x=cð Þ � bU2x2x

8c2
2x� ctð ÞP t� x=cð Þ

þ bU2x
16c

2xx

c
cos 2x t� x=cð Þ � sin 2x t� x=cð Þ

� �
P t� x=cð Þ: (31)

Clearly, the second term on the right hand side of Eq. (31)

represents the static displacement. As in the case of

displacement-prescribed boundary condition, the static

displacement is also a propagating pulse with its amplitude

growing with propagation distance. However, if the signal

for the static portion of the displacement is recorded by a

receiver at location x0, the recorded signal plotted as a

function of time will not be “flat” topped. Instead, the top

of the pulse will linearly decrease from bU2x2=8c2ð Þx0 at

the front edge to bU2x2=8c2ð Þ x0 � scð Þ at the trailing

edge of the pulse. In other words, if the signal for the

static portion of the displacement is recorded by a receiver

at location x0, the recorded signal plotted as a function of

time will not be a “flat topped” rectangle. Instead, it will

be a “slant topped” trapezoid. Our results are in sharp con-

tradiction with the original predictions of Yost and Can-

trell7,8 who correctly predicted that the static strain is a

flat topped pulse of magnitude bU2x2= 8c2ð Þ, but then

incorrectly suggested that the static displacement is a

right-angle triangle with a peak value of bU2x2= 8c2ð ÞL,
where L ¼ cs is the spatial length of the pulse. In fact,

causality would dictate that the pulse shape cannot be a

right-angle triangle predicted in Refs. 7 and 8. Information

about the length of the pulse generated at x¼ 0, t ¼ s can-

not propagate faster than the velocity of sound, therefore it

cannot influence the initial peak value of the quasi-static

pulse. Further, the amplitude of the static pulse must

increase with propagation distance for a given pulse length

since the nonlinear propagating part of the effect is

cumulative.
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