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Abstract
It is well known that gadolinium doped ceria (GDC), when subjected to reducing
conditions, undergoes significant volumetric expansion and changes its elastic
stiffness. In this paper, a methodology based on a semi-analytical formulation in
conjunction with molecular dynamic (MD) simulation is presented to determine
the coefficient of compositional expansion (CCE) and the complete elastic
stiffness tensor of two common forms of GDC at various levels of non-
stoichiometry and temperatures. The CCE is determined by comparing the
volumes of the MD simulation cell before and after the reduction at a given
temperature. To compute the elastic constants, MD simulations are first
conducted to determine the equilibrium (relaxed) positions of each atom. Then,
the constants are obtained through an analytical method that uses the relaxed
positions of the atoms in the simulation cell. It is found that the elastic stiffness
tensor of the non-stoichiometric structures remain cubic. The elastic constant
C11 decreases with increasing vacancy concentration, while the changes in C12

and C66 were found to be negligible. In addition, both the elastic constants and
the CCE are found to be insensitive to temperature.

1. Introduction

Gadolinium doped ceria (GDC) undergoes a significant chemical expansion [1, 2] and also
shows a decrease in its elastic stiffness [3] due to the increase in oxygen vacancies in a
reducing environment. The effect of this chemical change on the mechanical response can
be quantified by a set of material properties known as coefficient of compositional expansion
(CCE) and open system elastic constants (OSECs), if the deviation from stoichiometry is not
too large. In this case, the CCE, denoted by η, is defined as the linear strain per deviation from
stoichiometry [4], i.e.

η = ∂εL

∂ρ

∣∣∣∣
ρ=ρ0

, (1)
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where εL is the linear strain, ρ is the vacancy concentration, ρ0 is the stoichiometric
concentration of vacancies so that δ = ρ − ρ0 is the deviation from stoichiometry.

Similarly the OSEC, Cijkl(ρ) describes the dependence of elastic constants on the local
composition of the material. The term was first introduced by Larche and Cahn [5] to describe
the composition-dependent elastic constants in metallic materials.

The importance of the CCE lies in the fact that non-uniform distributions of point defects,
like vacancies [6, 7], are always present in solid electrolytes used in fuel cell applications. The
presence of such point defects causes local volumetric strains. When these inhomogeneous
strains are not accommodated through an appropriate deformation, mechanical stresses result
causing failure of the electrolyte [8]. Such effects have been modeled and studied for alloy
systems by Larche and Cahn [5, 9–14]. The work of Larche and Cahn was extended to ionic
crystals by Johnson in [15, 16]. In a recent paper the present authors have developed a theory for
coupling electrochemistry and mechanics in ionic solids [4]. In this coupled theory, the CCE
and OSEC are key material parameters that provide the coupling between electrochemistry
and mechanical stresses. Therefore, in order to utilize the coupled theory, the CCE and OSEC
need to be determined.

Determination of the CCE in ceria or doped ceria and other lanthanum-based compounds
has been studied by a number of researchers [17–21]. Most of these works involved physical
experiments to measure the stoichiometry and the volumetric expansion. On the other hand,
determining OSEC is not as straightforward. Only a few results are available [3, 22, 23]. In
these works, a simple analytical expression of the Young’s modulus was derived as a function of
the vacancy concentration. This was obtained based on a Lennard-Jones type of pair potential.
Although the analytical expressions derived in these works provide a trend in the variation of
modulus with non-stoichiometry, parameters in the formula must be determined empirically
by fitting to the experimental data.

In this paper, molecular dynamics (MD) is used directly to compute CCE. MD is also
used to determine the equilibrium positions of all the atoms in a MD simulation cell at various
temperatures. This information is then used in an analytical formulation to compute OSEC.
Although results are presented here only for two common forms of GDC under various states
of non-stoichiometry and temperatures, the methodology itself can be easily applied to other
ionic solids of interest. In addition to reporting the data on CCE and the full set of OSEC, we
will also examine how the long (coulombic) and short-range parts of the interatomic potential
contribute to the OSEC as the vacancy concentration increases.

As a numerical simulation tool, MD has been used to study ceria and doped ceria for
several purposes including determining the coefficient of thermal expansion (CTE) [24] and
studying the effect of various dopants on its properties [25]. It has, however, not been used
to determine the CCE and OSEC for the ionic compound. In the next section we first briefly
describe the interatomic potential used, analyze non-stoichiometry in GDC and specify the MD
simulation parameters. In the subsequent section detailed results are presented for the CCE.
Then, explicit expressions are shown and used to calculate the OSEC contributions. Finally,
the paper is concluded with a summary.

2. Molecular dynamic simulations

2.1. Interatomic potentials and simulation conditions

In this work, we use DL-POLY to perform the MD simulations [26]. Buckingham potential is
used where the energy due to short-range interaction is given by

U(n) = A exp

(
− rmn

ρ

)
− C

(rmn)6
, (2)
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Table 1. Interatomic potential parameters for the Buckingham potential.

Ionic pairs A (eV) ρ (Å) C (eV Å6)

O2−–O2− 9547.96a 9533.421b 0.2192a 0.234b 32.0a 224.88b

Ce4+–O2− 1809.68a 755.1311b 0.3547a 0.0b 20.40a 0.0b

Ce3+–O2− 2010.18a 1140.193b 0.3449a 0.386b 23.11a 0.0b

Gd3+–O2− 1885.75c 0.3399c 20.34c

a Parameters from [27].
b Parameters from [28].
c Parameters from [29].

where rmn is the scalar distance between atom m and atom n. The parameters A, ρ and C

are listed in table 1, where two sets of potential parameters for the ionic pairs Ce4+–O2, O2−–
O2− and Ce3+–O2− are also listed. The first set of parameters of pure ceria taken from [27]
are known to predict the lattice parameters, lattice energies, static relative permittivity and
high frequency dielectric constant of pure ceria with good accuracy. Although this set of
parameters predicts the CCE accurately, they overestimate the elastic constants by as much
as 50% for pure ceria at its stoichiometric state, when compared with existing experimental
data in the literature. The second set of potential parameters taken from [28] were obtained by
fitting the elastic properties of ceria. Therefore, they tend to predict good results for OSEC,
but not for CCE. For the above reasons, results for CCE and OSEC are computed using the
first [28] and second [29] set of potential parameters, respectively. The potential parameters
for the Gd3+–O2− pair were taken from [29] where they were used to study defect clusters in
doped ceria.

The cut off radius for the short-range forces was set to 16.0 Å in all simulations. Further,
all the electrostatic interactions were computed using Ewald’s sum with complete charges
being assigned to the specific ions i.e. +4 or +3 for Ce (depending on whether it is Ce4+ or
Ce3+), +3 for Gd and −2 for O.

In simulations involving point defects in ionic solids it is important to consider the
core–shell interactions to capture the possible polarization of the ions (see e.g. [29]). In
the current work the core–shell interaction was not considered on account of the following
three observations.

(1) MD calculations of elastic constants of pure ceria, for which experimental data exist, show
negligible error when the core–shell potentials were neglected.

(2) CCE and OSEC computed in this work for the two forms of GDC are also shown in later
sections to match experimental data with reasonable accuracy even when the core–shell
interaction was neglected.

(3) Implementation of the core–shell interactions is computationally intensive for the small
improvement in the numerical estimate it is going to contribute in this particular case.

All simulations were performed in an NST (constant stress) ensemble so as to allow for
variation in MD cell shape, which may take place due to non-stoichiometry. Further, the total
period of equilibration was 3 ps and the production run was carried out for 5 ps with a time
step of 0.1 fs. The total simulation time was found to be sufficiently long by checking the
thermodynamic parameters of the system for convergence. Further, to ensure that the atoms
have reached their equilibrium positions a simple test was performed. Since, it is well known
that the oxygen atoms have the highest diffusion coefficient in the defective GDC lattice, their
positions were continuously monitored during the simulation. It was found that, at the end of
5 ps the oxygen atoms showed no significant displacement from their lattice sites, indicating
that they had reached their equilibrium positions in the lattice.

3



Modelling Simul. Mater. Sci. Eng. 17 (2009) 045006 N Swaminathan and J Qu

Finally, it is important to point out that the main purpose of the MD simulation is to
compute the cell volume (needed for computing CCE) and the atom position (needed for
computing OSEC). These quantities were obtained by averaging the cell volumes and atom
positions, respectively, over time during the production run of the MD simulations. In essence
the MD simulation is to provide a self-equilibrium state of the cell at a given temperature
(this could have been done by a molecular static simulation if the thermal expansion of the
cell is known). Such equilibrium state at each given temperature is then used in an analytical
formulation to compute the OSEC. This semi-analytical method has proven to be accurate for
computing elastic properties of FCC metals [30]. We also found that it predicts the elastic
constants of pure ceria accurately.

2.2. Non-stoichiometric GDC MD simulation cell

Oxygen ion conductors like GDC are obtained by doping the parent compound (e.g. Ceria,
CeO2)with aliovalent compounds like gadolinia (Gd2O3). Such a doping process is represented
using the following reaction:

Gd2O3
CeO2←→ 2Gd′

Ce + V••
O + 3OX

O . (3)

The charge compensating vacancy concentration (1 oxygen vacancy for every 2 Ce4+ ions
replaced by Gd3+ ions) created as a process of this doping is referred to as the stoichiometric
vacancy concentration in the compound. 10GDC and 20GDC are stoichiometric, where
gadolinium atoms replace 10% and 20% of the cerium sites in ceria, respectively. Their
chemical formulae are written as Ce0.9Gd0.1O2−0.05(10GDC) and Ce0.8Gd0.2O2−0.1 (20GDC).
Note that the subscripts in the formula are in the units of moles per mole of ceria.

Additional vacancy concentration can be created in stoichiomteric GDC when it is exposed
to a low partial pressure of oxygen. Such a reducing environment is often encountered in the
anodes of SOFC. This reduction is represented using the defect reaction as

OX
O ↔ V••

O + 2e′ + 1
2 O2. (4)

The above process creates a non-stoichiometric 10/20GDC vacancies, in excess of the
stoichiometric compound, and the charges are compensated by reduction of Ce4+ to Ce3+.
While constructing the MD simulation cell it is important to consider the vacancy concentration
created from both the doping and the reduction. This is briefly described below.

To analyze non-stoichiometry in the GDC MD simulation cell, let us suppose that there
are x number of Ce4+ sites and 2x numbers of O2− sites (this corresponds to pure ceria) in the
MD cell. We want to generate a structure corresponding to the formula Ce0.9Gd0.1O2−0.05−y .
Firstly, we recognize that, this compound is non-stoichiometric 10GDC with y mole fraction of
vacancy concentration in excess of the stoichiometric compound (Ce0.9Gd0.1O2−0.05). Hence,
the total number of oxygen atoms to be removed to create the Nv number of vacancies is

Nv = (0.05 + y) x. (5)

The total number of Ce4+ positions to be replaced by Gd3+ is given by

NGd3+ = 0.1x. (6)

Further, owing to the reduction we need to replace NCe3+ of the Ce4+ atoms with Ce3+ atoms
such that the system is electrically neutral; in this case it is

NCe3+ = 2yx. (7)

This exercise of removing and replacing atoms has to be done within the MD simulation
cell to computationally simulate the required level of non-stoichiometry and reduced structure.

4



Modelling Simul. Mater. Sci. Eng. 17 (2009) 045006 N Swaminathan and J Qu

However, the manner in which it can be done depends on the physical quantity under
consideration. The details of this construction procedure are given in sections 3.1 and 4.1
for the determination of CCE and OSEC, respectively.

To this end, for the determination of both CCE and OSEC, the simulations were all
carried out for four different temperatures 100, 900, 1173 and 1273 K for both 10 and 20GDC.
The levels of non-stoichiometry examined were δ = 0, 0.05, 0.1, 0.15, 0.2 and 0.25 for
Ce0.9Gd0.1O1.95−δ(10GDC) and Ce0.8Gd0.2O1.9−δ (20GDC).

In closing this section we would like to point out that we have used two references to
compare our MD simulation results of the CCE [3] and the elastic constants [31]. In both
these references the physical quantity is either plotted or tabulated for various oxygen partial
pressures rather than the deviation in vacancy concentration δ. Therefore, in comparing our
results with the experiments performed in the appropriate references, we have converted the
partial pressure to the deviation values using expression 11 in [3].

3. Coefficient of compositional expansion

3.1. Building the non-stoichiometric MD cell

For the determination of CCE, the MD simulation box reflecting the appropriate level of
non-stoichiometry and chemical reduction was generated randomly. First a pure ceria system
comprising of 12 000 atomic sites (x = 4000) was considered. From this structure the required
numbers of oxygen atoms were removed and cerium atoms were replaced according to the
procedure given in section 2.2 randomly within the entire MD cell. To this defective MD cell,
periodic boundary conditions were imposed to simulate the bulk material.

3.2. CCE-MD simulation results

The MD simulation cell was relaxed in a NST (constant stress) ensemble to allow for any
variation in cell shape. After relaxation, the MD cell vectors were examined and it was
concluded that the strains induced as a result of non-stoichiometry was purely volumetric. This
is in accordance with experimental evidence [32]. Since the deformation is purely volumetric,
the linear strain

εL = [V (δ) − V (0)]

3V (0)
(8)

can be obtained by comparing the volumes of the relaxed MD simulation cells between
the non-stoichiometric and stoichiometric states at the same temperature. The results are
presented in figure 1 for a range of δ and temperature. The linear dependence between the
strain and non-stoichiometry is clearly observed. Thus, it follows from equation (1) that the
CCE is obtained from the slopes of these lines, i.e. η = εL/δ. The results are shown in
table 2.

It is seen that the CCEs are slightly higher for lower temperatures suggesting that the effect
of temperature on the CCE is to decrease it. Also, the CCE values are higher for 10GDC than
for 20GDC concluding that a higher doping concentration reduces the CCE values. Further, it
seems that the CCE for GDC may be approximately considered to be in the range of 0.069–0.079
for a wide range of temperatures.

The value of CCE predicted here compare very well with experimentally measured data
for these materials [3], particularly at low vacancy concentrations (figure 1(c)). For higher
concentrations, the maximum difference between our predictions and the experimental data
is less than 10% which is possibly due to the differences in the temperatures between the
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(a)

(b)

(c)

Figure 1. (a) Compositional strain versus δ for 10GDC. (b) Compositional strain versus δ

for 20GDC. (c) Comparing MD and experimental results for the variation of linear strain with
stoichiometry.
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Table 2. Average CCE values for 10 and 20GDC at various temperatures.

CCE

Temperature (K) 10GDC 20GDC

100 0.0791 0.0764
900 0.0729 0.0709

1173 0.0729 0.0694
1273 0.0729 0.069

Figure 2. The placement of five unit cells of pure ceria.

MD and the experimental runs. But as pointed out in table 2 the values of the CCEs are not
sensitive to temperature and hence the comparison is a good indication of the validity of the
results.

4. Open system elastic constants

4.1. Building the non-stoichiometric MD cell

As done for the determination of CCE the removal and replacement of atoms may be done at
random within the MD simulation cell. But by doing so, information regarding the kind or the
number of sub-lattices present in the system is lost (disorder [33]). Every atom in the system
becomes a sub-lattice on its own. As will be explained in the next section, if each atom in
the system is considered a sub-lattice, the determination of inner-elastic constants becomes
computationally prohibitive.

To address this problem, a hierarchical approach was used in this work. First, a super
cell with a given amount of non-stoichiometry was created. To this end, we started with
M number of unit cells of pure ceria. Depending on the given level of non-stoichiometry,
appropriate number of oxygen atoms are removed, and Ce4+ are replaced with Ce3+or Gd3+

in this M-cell ceria assembly according to the procedure in section 2.2. The removal and
replacement was done randomly within the M-cell ceria assembly. This creates a defective
structure with desired level of non-stoichiometry, and will be referred to as the super cell, see
figure 2. Clearly, because of the random removal and replacement, there is no periodicity and
each atom in the super cell may act as a sub-lattice. In our numerical computations, M = 5
was used, which corresponds to 60 atoms or sub-lattices in a super cell. This allows us to
create a wide range of non-stoichiometry exactly.

In the second step, super cells are stacked repeatedly in the X, Y and Z directions,
respectively, to construct the MD simulation cell. In this work, we used two super cells in
the [1 0 0], ten in each of the [0 1 0] and [0 0 1] directions so the MD simulation cell consists
of 12 000 atomic spots including vacancies. Periodic boundary conditions are imposed on all
three directions of the MD simulation cell to obtain bulk properties.
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It should be pointed out that the MD simulation cell constructed above is not unique for
several reasons. Firstly, the size of the super cell can vary. We have used M = 5. This is
large enough for us to study a wide range of non-stoichiometry. Secondly, the structure of the
super cell is random. It can be shown that there are literally thousands of ways to create the
super cell even for M = 5. Further we hasten to add that, if the preferred locations of the
vacancies with respect to the dopant atoms are known, the number of possible variants of the
super cell can be dramatically reduced. Nevertheless, we assume in this work that any position
of vacancy relative to the position of the dopant atom is equally likely. Finally, although some
of the atoms in a super cell may not form distinct sub-lattices, they can be treated as if they
were, without affecting the results.

4.2. OSEC-simulation results

The determination of OSEC is not as straightforward as the CCE. In this paper, the method of
homogenous strains is used to obtain analytical expression for the elastic constants from the
interatomic potential [34]. This approach typically neglects the kinetic energy of the atoms,
thus gives the elastic constants of the material at 0 K. As discussed below, a modification of
this approach is taken in this paper to account for the temperature effect.

The elastic constants of a crystalline solid are given by [35, 36],

Cijmn = Ĉijmn + C̃ijmn, (9)

where

Ĉ=
ijkl

1

2�

N∑
p=1

N∑
q = 1
p �= q

[
1

(rpq)2

{
∂2e (rpq)

∂ (rpq)2 − 1

(rpq)

∂e (rpq)

∂rpq

}∣∣∣∣
r=r0

]
r

0[pq]
i r

0[pq]
j r

0[pq]
k r

0[pq]
l

(10)

is the average homogeneous part of the elastic constants which describes the elastic response
of the crystalline solid when all the atoms are displaced homogeneously upon the application
of the strain. In equation (10), e(rpq) is the interaction energy between atoms p and q and
contains both short-range and the coulombic contributions, N is the total number of atoms in
the simulation cell, and � is the volume of the MD cell. The j th component of the interatomic
distance vector, r

0[pq]
j , between atoms p and q is measured after the system has fully relaxed

at the given temperature of interest. At different temperature, r
0[pq]
j is different. Thus, the

elastic constants are temperature-dependent.
The second term, C̃ijkl , on the right hand side of equation (9) represents the inhomogeneous

part of the elastic constants and relates to the internal relaxation which takes place due to the fact
that a minimum energy configuration is attained only when non-equivalent atoms are further
displaced relative to each other after the application of the displacement on the boundary of the
MD cell corresponding to a uniform strain. This part vanishes for centro-symmetric structures
such as monatomic Bravais lattices. For the defective GDC system considered here it is not
obvious that this inhomogeneous part is zero and must be considered.

According to [35, 36],

C̃ijmn = −Dk
ijαgkr

αβDr
βmn, (11)
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where the superscripts refer to the sub-lattice and the subscripts refer to tensor components:

Db
uvα = 1

2�

N∑
p=1

N∑
q = 1
q �= p

1

(rpq)2

[
∂2e(rpq)

∂ (rpq)2 − 1

(rpq)

∂e(rpq)

∂rpq

]
ro[pq]
u ro[pq]

v ro[pq]
α

[
δpb − δqb

]
,

(12)

Bbc
αβ = 1

2�

N∑
p=1

N∑
q = 1
p �= q

1

(rpq)2

[
∂2e(rpq)

∂ (rpq)2 − 1

(rpq)

∂e(rpq)

∂rpq

] [
δpb − δqb

] [
δpc − δqc

]
ro[pq]
α r

o[pq]
β

+
1

rpq

∂e(rpq)

∂rpq
δαβ

[
δpb − δqb

] [
δpc − δqc

]
(13)

and gth
κλ is the inverse of Bhl

λβ , i.e.

gth
κλB

hl
λβ = δκβδtl . (14)

In the above, δab = δab is the Kronecker delta.
It can be seen that the matrix B is a 3 × 3 matrix for every pair of sub-lattices under

consideration. In the manner we have constructed, the super cell has at the most 60 sub-
lattices and B will be of dimensions 180 × 180 at the most. In fact for the defective structures
it will be even smaller. If all the atoms are considered a sub-lattice, then it is not difficult to
imagine the increase in the size of B, making the super cell approach computationally more
tangible.

4.3. OSEC for single crystal GDC

The single crystal stiffness tensor for the range of non-stoichiometry and temperatures
considered are plotted in figure 3. These were calculated based on equation (9). Although
the GDC structures were all constructed from ceria which has a cubic symmetry, the GDC
crystal no longer has the cubic symmetry structure-wise. Nevertheless, we found that the
deviation from cubic response is negligibly small. Therefore, only the three elastic constants
C11, C12 and C66 representing cubic symmetry are reported here, and their variations with
non-stoichiometry are plotted in figure 3 for various temperatures.

Figure 3(a) shows how C11 varies with δ at 100, 900, 1173 and 1273 K for 10GDC. The
same is shown in figure 3(b) for 20GDC. Similarly, data for C66 are shown in figures 3(c) and
(d), and C12 in figures 3(e) and (f ) for 10GDC and 20GDC, respectively. The trend obtained
in the variation of the elastic constants with non-stoichiometry clearly indicates one important
point. The variation is higher for C11 than for C12 or C66. The C11 decreases with an average
slope of 400 while the others increase with a slope of 45. The former components fall by about
75–100 GPa over the entire range of non-stoichiometry examined here while the latter ones
do not increase more than 10–12 GPa. Possible reasons for this behavior will be analyzed in
the section below, where the contributions of the short-range and the long-range terms to the
elastic tensor will be examined.

4.4. OSEC for polycrystalline GDC

The elastic constants obtained using the above approach is valid for a single crystal. In general
it is well known that the GDC used in electrolytes has a polycrystalline nature. Hence in this
section we obtain the polycrystalline properties using a homogenization method. Consider a
polycrystalline solid comprising numerous randomly oriented defective single crystal GDC

9
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(a) (b)

(c) (d)

(f)(e)

Figure 3. (a) and (b) Variation of C11 with δ for 10GDC and 20GDC, respectively, (c) and (d)
variation of C66 with δ for 10 and 20GDC, respectively, (e) and (f ) variation of C12 with δ for 10
and 20GDC, respectively.

(grains) as analyzed above. The effective elastic constants for the polycrystalline solid can be
obtained by a weighted average of the elastic constants of the individual grains [37]:

C̄=
pqrs

1

8π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 2π

0
f (ϕ, θ, ψ)αipαjqαkrαlsCijkl dϕ, (15)

where θ , ϕ and ψ are the Euler angles representing the grain orientation and f (ϕ, θ, ψ) is the
probability distribution of the grain orientation. For random orientation, f (ϕ, θ, ψ) = 1.

Due to the random nature of the grain orientation, the effective elastic constants of the
polycrystalline solid are isotropic. Therefore, they can be more conveniently represented by the
two more familiar engineering elastic constants, Young’s modulus and Poisson’s ratio [3, 37].

10
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(a)

(b)

Figure 4. (a) Variation of Young’s modulus with non-stoichiometry for 10GDC. (b) Variation of
Young’s modulus with non-stoichiometry for 20GDC.

Results for the Young’s modulus are plotted in figures 4(a) and (b), for 10GDC and 20GDC,
respectively.

It is again seen that the trend predicted is well approximated by a linear function with a
negative slope. Further, it appears from these figures that the Young’s modulus by itself and
its variation with stoichiometry are not strong functions of temperature.

Although not shown in this paper, it was found that Poisson’s ratio is about 0.26 and does
not change by more than 4% over the range of temperature and non-stoichiometry considered
here.

To verify the accuracy of the numerical estimate, we compare our computed Young’s
modulus with the experimental data reported in [31] for 10GDC. This is shown in figure 5.
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Figure 5. Variation of Young’s modulus with non-stoichiometry.

Clearly, both experimental data and our numerical computation indicate the near linear variation
of Young’s modulus versus non-stoichiometry. Our numerical results tend to slightly over-
predict the modulus at higher vacancy concentrations by about 13%. We also speculate that
the interatomic potential used here was fit for stoichiometric GDC. It may not predict the
elastic properties of non-stoichiometric compound very accurately, especially at higher vacancy
concentrations.

4.5. Contribution of inner-elastic constants

Intuitively, one would think that the defective GDC structure far from being centro-symmetric,
or monoatomic Bravais lattices would not deform homogeneously even under a homogeneous
overall deformation. Thus, the inhomogeneous part of the elastic constants C̃ijkl would not
be negligible. However, our numerical results show that for the ranges of non-stoichiometry
and temperature considered here, the contribution from C̃ijkl is only about 2% for both 10 and
20GDC.

Some authors [38–40] have suggested that defective fluorite structures may be built from
fluorite type modules by different arrangements. In particular 22 different basic fluorite
type modules were suggested in [38, 39] which could be used to build defective fluorite
based oxides that form a homologous series of the form AnO2n−2m (A—cation, O—Oxygen).
These structures built from fluorite type modules are non-primitive and show inner-elastic
contribution. The results obtained here seem to indicate that defective ceria structures with
several kinds of dopants may not be simply modeled using fluorite type modules. The relaxation
of atoms around the vacancies is significant and alters the structure so that the inner-elastic
contribution becomes negligibly small.

To test this hypothesis, we also computed the elastic constants of the unrelaxed defective
GDC structure. By ‘unrelaxed’ we mean the structure as built (before the MD run was
performed) where all cations are in the Ce4+ positions while all the oxygen ions and vacancies
are in the O2− position of a perfect fluorite structure. Essentially, the unrelaxed structure
comprises of only fluorite modules suggested in [38, 39]. We found that for 20GDC at δ = 0.15
and 1173 K, contributions from C̃ijkl to the total elastic constants can be as much as over 70%
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Table 3. Elastic constant calculations for four trials.

Elastic constants in 100 GPa % Variation from the average

Components Trial 1 Trial 2 Trial 3 Trial 4 Average Trial 1 Trial 2 Trial 3 Trial 4

C11 3.02 2.92 3.09 3.10 3.03 0.41 0.11 −0.06 −0.07
C22 3.19 3.24 3.14 3.12 3.17 −0.62 −0.06 0.03 0.05
C33 3.20 3.18 3.28 3.12 3.19 −0.20 0.02 −0.09 0.08
C12 1.07 1.08 1.06 1.08 1.08 0.30 −0.01 0.01 −0.01
C13 1.07 1.07 1.06 1.08 1.07 0.20 0.00 0.01 −0.01
C23 1.08 1.06 1.07 1.09 1.07 −0.26 0.01 0.01 −0.01
C44 1.04 1.01 1.00 1.09 1.03 −0.23 0.03 0.03 −0.05
C55 1.00 1.00 0.96 1.08 1.01 0.98 0.01 0.05 −0.07
C66 1.01 0.98 0.97 1.08 1.01 0.27 0.03 0.04 −0.07

for some of the components. Under the same conditions, C̃ijkl in the relaxed state contributes
only a few percent to the overall elastic constants.

Thus, as a conclusion, we believe that the defective ceria structures may not be properly
modeled by using fluorite type modules. The relaxed positions that the atoms take are
significantly different from the unrelaxed ones in defective structures and must be accounted for
to study the material response. Furthermore, ceria based defective structures (10 and 20GDC)
with the vacancy concentrations and dopants examined in the current work behave more like a
cubic structure with all the atoms at positions, which are either close to or at inversion centers.
Therefore there is very little contribution from inner elasticity.

4.6. Dependence of elastic constants on initial configuration

Another point worth mentioning is whether the initial structure created will lead to the global
minimum energy state after relaxation. Because of the complex composition of the material,
its energy landscape may have a local minima. An arbitrarily generated initial structure would
fall into a local minimum after relaxation, which may then give very different elastic constants
each time a new initial structure is used. To verify if this is the case, we generated three
different initial structures with M = 5 for one specific stoichiometry level and temperature
for 10GDC. The OSEC computed from these three initial structures are shown in table 3 in
the columns labeled Trial 1–3. It is seen that the results from these three very different initial
structures differ by less than 1%. This seems to indicate that the computed OSECs are relatively
independent of the initial structure of the simulation cell.

A further verification of the above conclusion is conducted by building an initial MD
simulation cell in such a way that all vacancies and the replacement of the ions were carried
out completely randomly within the entire MD cell itself (i.e. no super cells were constructed)
and no inner elasticity was accounted for. The results are shown in table 3 under the column
Trial 4. It is seen that the results differ from those under Trials 1–3 by less than 1%. Recall
that the results under the columns Trial 1–3 were obtained using different initial structures
within a super cell and accounted for inner elasticity. Data shown in table 3 indicate that the
OSEC in the materials considered are independent of both the initial structure and the internal
relaxation between different sub-lattices.

4.7. Short-range and coulombic contributions to elastic constants

In this section we investigate the relative contributions of the short-range and the long-range
force fields (coulombic interactions) to the total elastic constants of the compound. All the
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(a)

(b)

Figure 6. (a) Contribution from long-range and short-range parts of the interatomic potential
towards C11. (b) Contribution from long-range and short-range parts of the interatomic potential
towards C12.

analyses performed showed a similar trend for the entire range of non-stoichiometry and
temperature. Hence, we report the behavior for 1273 K, 20GDC only. In figure 6(a) we
show the relative contributions from the coulombic and the short-range forces to the elastic
constant C11. It can be seen that the contribution of the long-range coulombic sum to the
elastic constants is relatively small when compared to the contributions from the short-range
part. Moreover, both contributions decreased with non-stoichiometry.

The same type of data is shown in figure 6(b) for C12. From the figure it is clear that the
relative magnitudes of the contributions are comparable. Further, with increasing vacancy
concentration, the short-range contribution decreases while the coulombic contribution
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increases. From this we can infer that the variation of total C12 (coulombic + short-range
contributions) with the vacancy concentration is small and this explains the results in figure 3.
A similar trend was observed for C66 as well (not shown).

5. Summary and conclusions

By using a semi-analytical approach in conjunction with MD simulations, the CCE and elastic
constants of reduced 10 and 20GDC were determined over a range of non-stoichiometry and
temperatures. The MD simulations were conducted on periodic simulation cells of defective
10 and 20GDC that were constructed using a new approach to allow for the calculation of
inner-elastic constants. It was shown that the relaxed structure obtained after the simulations
was such that the atoms were on, or close to locations which were a center of inversion. Thus
the contribution from the inner-elastic constants was negligible. This study seems to indicate
that the internal relaxation in defective 10 and 20GDC significantly altered the structure to
an extent that defective fluorite modules as in [38, 39] may not be used to construct reduced
non-stoichiometric ceria.

Our numerical results show that the compositional strain can be approximated as a linear
function of non-stoichiometry following Vegard’s law, and the corresponding CCE was found
to be in the range of 0.069–0.079.

Over the range of non-stoichiometry examined, the elastic constant C11 was found to
decrease significantly while C12 and C66 did not vary as much. Reasons for this behavior
were partially given by examining the contributions from the short range and the coulombic
portions to the elastic constants. It was observed that the variations of the contributions to
C12 and C66 occurred with opposite slopes of almost equal magnitudes and thus did not cause
a significant variation in C12 or C66 with vacancy concentration. Thus for single crystalline
defective GDCs it is sufficient to consider only the variation of C11 to study the elastic response
at varying levels of non-stoichiometry.

The averaged polycrystalline elastic constants were determined by considering an
assembly of single crystals with random orientations. The corresponding Young’s modulus
and Poisson’s ratio were calculated. It was found that for defective GDC structures made of
polycrystalline material it is sufficient to consider only the variation of Young’s modulus while
modeling the interactions between defect transport and mechanics in GDC as the variation in
Poisson’s ratio was negligibly small.

Finally, it is found that neither CCE nor elastic modulus is sensitive to temperature.
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