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This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous

nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the

inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are

obtained in terms of the Green’s function of the surrounding medium. It is found that the second

harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order

elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are

given as spatially random functions. An inverse procedure is developed to obtain the statistics of

these two random functions from the measured forward and backscattered second harmonic fields.
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I. INTRODUCTION

As a monochromatic ultrasonic wave propagates

through a nonlinear elastic solid, higher order harmonics are

generated by the material nonlinearity. This phenomena has

been observed experimentally in solids since the early 1960s

(Breazeale and Thompson, 1963; Cantrell et al., 1987), and

analytical solutions have been reported in several studies

(Lamb, 1925; Keck and Beyer, 1960; Jones and Korbett,

1963; Hikata et al., 1965; Thurston and Shapiro, 1967;

Zverev and Kalachev, 1968; Thompson et al., 1976; Thomp-

son and Tiersten, 1977; Sokolov and Sutin, 1983; Cantrell,

1984; Donskoi and Sutin, 1984; Nazarov et al., 1988; Zhou

and Shui, 1992; Ostrovsky et al., 2003). A rather comprehen-

sive review of the literature in this subject is given by Can-

trell (Cantrell, 2004a).

One of the recent applications of second harmonic gen-

eration is nondestructive evaluation of fatigue damage in

polycrystalline solids (Herrmann et al., 2006; Kim et al.,
2006a; Kim et al., 2006b; Bermes et al., 2007; Pruell et al.,
2007; Bermes et al., 2008). Under cyclic loading, disloca-

tion are generated and multiplied. It is postulated that these

dislocations give rise to material nonlinearity that generates

the second harmonics in the propagating ultrasonic wave

(Suzuki et al., 1964; Hikata et al., 1965; Hikata and

Elbaum, 1966). Because monitoring individual dislocation

is extremely difficult due to their small size and

large quantity, fatigue damage is usually characterized by

plastic deformation in polycrystalline solids. Since plastic

strain, in essence, is a collective manifestation of numerous

dislocations, the magnitude of the second harmonics can be

related to the dislocation density via the plastic strain (Kim

et al., 2006b). In most ultrasonic tests, the measurable pa-

rameter that characterizes the dislocation density or plastic

strain is the ultrasonic nonlinearity parameter b. Numerous

experimental data have demonstrated the correlation

between the magnitude of b and the degree of fatigue

induced damage, e.g., Herrmann et al. (2006); Kim et al.
(2006a); Kim et al. (2006b); Bermes et al. (2007); Pruell

et al. (2007); Bermes et al. (2008).

A polycrystalline solid is an assembly of numerous sin-

gle crystals (grains) with different orientations. When sub-

jected to cyclic loading, certain grains will become

plastically deformed because of their preferentially oriented

slip planes. As the number of loading cycles increases, more

and more grains will become plastically deformed. Eventu-

ally, plastic deformation may occur uniformly in all grains

and the material fails by gross plasticity. A more likely sce-

nario, however, is that grains near certain regions will

become more and more plastically deformed to form local-

ized damage zones such as slip bands and microcracks. The

nature of such localized failure is dictated by the particular

distribution of the plastic strain field, which, among other

things, depends on the stress distribution, the microstructure

of the polycrystalline assembly, and the initial distribution of

defects. Recent advances in fatigue analysis have shown the

potential to estimate the remaining fatigue life based on the

plastic strain distributions. It would thus be extremely useful

to develop nondestructive techniques to evaluate the plastic
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strain distribution in structural components subjected to

cyclic loading. Since the acoustic nonlinearity parameter b is

intimately related to the plastic strain (Kim et al., 2006b),

measurements of the spatial distribution of b can provide in-

formation on the distribution of plastic strain.

Most of the existing studies in the literature, either

experimental, numerical, or analytical, have assumed that

the nonlinear parameter b is a constant over the entire path

of the wave propagation. Since b is directly related to the

plastic strain field, such an assumption implies that the plas-

tic strain field developed under cyclic loading is also uni-

form. To account for the non-uniformity or heterogeneity in

the plastic strain fields, solutions are needed for the wave

equation when b is spatially dependent.

In this paper, we consider the case of a plane time-

harmonic wave propagating in a three-dimensional medium

with heterogeneous quadratic nonlinearity, i.e., the acoustic

nonlinearity parameter(s) are not spatially uniform. To sim-

plify the algebra, we assume that the linear properties of the

medium such as the mass density and second order elastic

constants are uniform. This assumption is reasonable when

the medium is a polycrystalline solid, because, in this case, all

the grains are made of the same crystal. They are simply ori-

ented differently in the polycrystalline assembly. Therefore,

the mass density of each grain is the same. The second order

elastic constants, although anisotropic, differ among the

grains only by a coordinate rotation. When the wavelength is

much greater than the grain size, the polycrystalline solid can

be viewed as an isotropic and homogeneous solid for linear

elastic waves. Heterogeneity of the acoustic nonlinearity

parameters only affects the second harmonic of the wave

fields.

We note that non-uniform b in liquids have been treated

extensively in the literature, e.g., Donskoi and Sutin (1980);

Sokolov and Sutin (1983); Donskoi and Sutin (1984); Naza-

rov et al. (1988). Obviously, the major distinction between

solids and fluids is the complexity arising from the shear

wave and its interactions with the longitudinal waves in sol-

ids. As shown in this paper, two independent acoustic nonli-

nearity parameters are needed to describe the second

harmonic in an isotropic solid.

II. GOVERNING EQUATIONS IN NONLINEAR MEDIA

To describe the wave motion, a Cartesian coordinate sys-

tem xi i ¼ 1; 2; 3ð Þ is affixed to the continuum elastic body of

interest, where the coordinate xi is also used to label the mate-

rial particle that was located at xi in the initial (undeformed)

configuration. This way of describing the wave motion is called

the Lagrangian description and xi is called the Lagrangian coor-

dinate. At any given time t, the displacement of the particle xi

from its initial location is denoted by ui ¼ uiðx; tÞ. The dis-

placement equations of motion is given by (Norris, 1997)

q0

@2ui

@t2
� @

@xj
Cijkl

@uk

@xl

� �
¼ Lijklmn

@um

@xn

@2uk

@xj@xl

þ 1

2

@Lijklmn

@xj

@uk

@xl

@um

@xn
; (1)

where q0 is the mass density of the undeformed solid, Cijkl is

the second order elastic stiffness tensor, and Lijklmn is a linear

combination of Cijkl and the third order elastic stiffness

Cijklmn. For isotropic solids,

Cijkl ¼ kdijdkl þ 2lIijkl; (2)

Cijklmn ¼ ð2l� 2mþ nÞdijdkldmn þ ð2m� nÞ
� ðdijIklmn þ dklImnij þ dmnIijklÞ

þ n

2
ðdikIjlmn þ dilIjkmn þ djkIilmn þ djlIikmnÞ; (3)

Lijklmn ¼ Cijklmnþ kðdijdlndkm þ djldmndik þ djndkldimÞ
þ 2lðIijlndkm þ Ijlmndik þ IjnkldimÞ; (4)

where k and l are the Lamé constants, l, m, and n are the

Murnaghan third order elastic (TOE) constants, dij is the

Kronecker delta, and Iijkl ¼ ðdikdjl þ dildjkÞ
�

2 is the fourth

order identity tensor.

Furthermore, we assume that the Lamé constants are

spatially homogeneous (independent of spatial coordinates),

while the TOE is spatially inhomogeneous. Thus, making

use of Eqs. (2)–(4) in Eq. (1) leads to the equations of

motion for isotropic material

1

c2
L

@2ui

@t2
� 1� 1

j2

� �
@2uj

@xj@xi
� 1

j2

@2ui

@xj@xj
¼ fi; (5)

where j ¼ cL=cT , cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q0

p
, cT ¼ cS ¼

ffiffiffiffiffiffiffiffiffiffi
l=q0

p
,

and

fi ¼
1

kþ 2l
Lijklmn

@um

@xn

@2uk

@xj@xl
þ 1

2

@Cijklmn

@xj

@uk

@xl

@um

@xn

� �
: (6)

Equations (5) and (6) are the equations governing wave motions

in a hyperelastic material with quadratic nonlinearity. Using the

vector notation, Eq. (5) can be written symbolically as

L ½u� ¼ f½u�; (7)

where the differential operator is linear and given by

L ½u� ¼ 1

c2
L

@2u

@t2
� 1� 1

j2

� �
r r � uð Þ � 1

j2
r2u; (8)

and the function f[u] contains all the nonlinear terms given

in Eq. (6).

III. SCATTERED FIELDS

Consider a homogeneous elastic solid of infinite extent.

Let a large plastic strain field be distributed over a finite domain

V inside this homogeneous elastic solid. As discussed below,

due to the large plastic strain field, the acoustic nonlinearity in

V is much larger than that in the surrounding matrix, so that the

latter can be assumed to be zero. Such a domain V is called an

inclusion in the literature (Qu and Cherkaoui, 2006).

Without loss of generality, let the incident wave be a

time-harmonic plane wave
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u
ð1Þ
i ¼ di1U cosðxt� kLx1Þ; (9)

where kL¼x/cL is the longitudinal wavenumber in the elas-

tic solids. For future reference, kT ¼ x=cT ¼ kS is reserved

for the transverse wavenumber. Since the inclusion and the sur-

rounding medium have identical second order elastic properties,

the scattered field will not contain the fundamental frequency

(Fig. 1). Only higher order waves are generated by the nonli-

nearity of the inclusion. In this paper, we are only interested in

the second order waves in the scattered field u
ð2Þ
i , so that the

total wave field (incident plus the scattered) is given by

u ¼ uð1Þþuð2Þ: (10)

Since the nonlinearity is weak, it may be assumed that

uð2Þ
�� ��� uð1Þ

�� ��. Consequently, following a standard perturba-

tion procedure by keeping terms up to the second harmonic,

one may rewrite the equations of motion (7) as

L ½uð2Þ� ¼ 0 x 62 V
f½uð1Þ� x 2 V;

	
(11)

where

f½uð1Þ� ¼ sðxÞ þ RefhðxÞ expð�2ixtÞg: (12)

The notation Ref*g means the real part of f*g, and

sjðxÞ ¼ �
U2x2

4c2
L

@bL

@xj
� @bS

@xj
þ @bS

@x1

dj1

� �
; (13)

hjðxÞ ¼
U2x2

4c2
L

expð2ikLx1Þ

� @bL

@xj
� @bS

@xj
þ 2ikLbL þ

@bS

@x1

� �
dj1

� �
; (14)

with

bL ¼ � 3þ 4mþ 2l

kþ 2l

� �
; bS ¼ �2

kþ 3l
kþ 2l

þ 2m

kþ 2l

� �
;

(15)

where bL and bS are the acoustic nonlinearity parameters

related to both geometrical and elastic nonlinearity. Typical

values of the acoustic nonlinearity parameters are

6 < bL < 11, 4 < bS < 8 for steels, and 8 < bL < 24,

5 < bS < 17 for aluminum alloys (Smith et al., 1966).

We note that bL and bS defined above are independent of

each other in that they depend on different TOE constants.

The bL given in Eq. (15) is the same as the acoustic nonlinear-

ity parameter associated with a one-dimensional longitudinal

wave. The bS given in Eq. (15), however, is not the same as

the acoustic nonlinearity parameter bT ¼ ðkþ 2lþ mÞ=l.

This bT is associated with the interaction between a longitudi-

nal wave and a transverse wave when they are propagating in

the same direction. The bS given in Eq. (15), however, is asso-

ciated with the second harmonic shear wave induced by the

mode conversion (from the fundamental longitudinal to shear)

at an interface (Zhou and Shui, 1992).

Another important consideration is that, for simplicity,

only the geometrical and elastic nonlinearities are included

in Eq. (15). For example, in bL, the term �3 is from the geo-

metrical nonlinearity, and the term �(4mþ 2l)=(kþ 2l) is

from the elastic nonlinearity. In addition to the geometrical

and elastic nonlinearities, it has been shown, e.g., Cantrell

(2004b); Kim et al. (2006b), that plastic deformation (which

is a consequence of dislocation dynamics) also contributes to

bL. For most metallic materials, geometrical and elastic non-

linearities do not change with fatigue damage, while plastic

strains accumulate with increasing fatigue cycles. Extensive

experimental data (Herrmann et al., 2006; Kim et al., 2006a;

Kim et al., 2006b; Bermes et al., 2007; Pruell et al., 2007;

Bermes et al., 2008) have shown that plastic deformation

induced acoustic nonlinearity due to fatigue damage is often

much larger than geometrical and elastic nonlinearities. This

justifies the earlier assumption that, in comparison with the

large acoustic nonlinearity in V due to fatigue damage, the

acoustic nonlinearity in the matrix is negligible.

In the rest of this paper, bL and bS will be used symboli-

cally to represent the acoustic nonlinearity in V, so that all

the results are valid irrespective of the specific expressions

of bL and bS such as those given in Eq. (15). Therefore, con-

clusions obtained in this paper are also valid when the contri-

butions to bL and bS due to fatigue damage are considered.

Clearly, sj(x) represents a static body force and hj(x) is a

harmonic body force in Eq. (11). Since the differential oper-

ator L ½uð2Þ� is linear, the solution to Eq. (11) is a superposi-

tion of the solutions corresponding to sj(x) and hj(x),

respectively.

Let us first consider the solution corresponding to hj(x).

The linearity of Eq. (11) allows us to drop the time-

harmonic factor expð�2ixtÞ so the solution can be written as

uh
j ðxÞ ¼

ð
Vþ

Gjkðx; yÞhkðyÞdy; for x 62 V; (16)

where Gjkðx; yÞ is the steady state Green’s function of Eq.

(11),

Gjkðx; yÞ ¼
j2

4p
e2ikT r

r
djk þ

c2
T

ð2xÞ2
@2

@xj@xk

e2ikT r

r
� e2ikLr

r

� �" #
;

r ¼ x� yk k: (17)

FIG. 1. An incident longitudinal wave with circular frequency x impinges

upon a nonlinear inclusion embedded in a linear medium. Since the linear

properties of the medium are uniform, the scattered field will not contain the

fundamental frequency. Only second harmonic 2x will be scattered.
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The notation Vþ is to emphasize that the integral is over the

closed region occupied by V. Since bL ¼ bS ¼ 0 is outside

of V, one may substitute Eq. (14) into Eq. (16) and carry out

integration by parts to remove the derivatives on bL and bS,

uh
j ðxÞ ¼ �

U2x2

4c2
L

ð
V

½bLðyÞ � bSðyÞ�
@Gjkðx; yÞ

@yk
expð2ikLy1Þdy

� U2x2

4c2
L

ð
V

bSðyÞ
@Gj1ðx; yÞ

@y1

expð2ikLy1Þdy: (18)

Note that the first term on the right-hand side of Eq. (18) is

purely irrotational, representing a dilatational longitudinal wave

radiating from the inclusion. In other words, when bSðyÞ ¼ 0,

the scattered second harmonic wave is a longitudinal wave.

In a similar manner, the static solution corresponding to

s can be written as

us
j ðxÞ ¼

ð
Vþ

Ĝjkðx; yÞskðyÞdy; for x 62 V; (19)

where the static Green’s function is given by

Ĝjkðx; yÞ ¼ lim
x!0

Gjkðx; yÞ

¼ j2

8pr
1þ 1

j2

� �
djk þ 1� 1

j2

� ��

�ðxj � yjÞðxk � ykÞ
r2

�
: (20)

Removing the derivatives on bL and bS in Eq. (19) leads to

us
j ðxÞ ¼

U2x2

4c2
L

ð
V

½bLðyÞ � bSðyÞ�
@Ĝjkðx; yÞ

@yk
dy

þ U2x2

4c2
L

ð
V

bSðyÞ
@Ĝj1ðx; yÞ

@y1

dy: (21)

This static displacement gives rise to the radiation-induced

eigenstrain (Qu et al., 2011). Since the integrands decay

with r�2 in the far field, one can conclude that the static dis-

placement vanishes far away from the inclusion.

Finally, the total scattered field is given by

u
ð2Þ
j ðx;tÞ¼us

j ðxÞþRefuh
j ðxÞexpð�2ixtÞg; for x 62V: (22)

IV. FAR-FIELD APPROXIMATIONS

For many applications in nondestructive evaluation, it is

useful to derive the far-field approximations under the condi-

tion x=cLð Þ x� yk k � 1 for y 2 V. In this case, the Green’s

function is approximately given by (Achenbach et al., 1982)

Gjk � GL
jk þ GS

jk; (23)

where

Ga
jk ¼ ga

jkðx̂Þ
exp 2ika xk kð Þ

4p xk k exp �2ikay � x̂ð Þ;

x̂ ¼ x

xk k ; a ¼ L; S;
(24)

gL
jkðx̂Þ ¼ x̂jx̂k; gS

jkðx̂Þ ¼ j2ðdjk � x̂jx̂kÞ: (25)

It can be shown that GL
jk and GS

jk in Eq. (23) represent a lon-

gitudinal and a transverse wave, respectively, with propaga-

tion direction defined by x̂i.

Substituting Eqs. (23)–(25) into Eq. (16) yields

uh
j ¼

AL
j ðx̂Þ expð2ikL xk kÞ

4p xk k þ
AS

j ðx̂Þ expð2ikT xk kÞ
4p xk k ; (26)

where

Aa
j ðx̂Þ ¼ ga

jk x̂ð Þ
ð

Vþ
exp �2ikay � x̂ð ÞhkðyÞdy;

a ¼ L ; S: (27)

Clearly, Eq. (26) represents two spherical waves, one is a

longitudinal wave with amplitude AL
j and the other is a shear

wave with amplitude AS
j . Similar to deriving Eq. (18), the

derivatives on bL and bS in Eq. (27) can be removed by car-

rying out integration by parts. Thus, making use of Eq. (25)

leads to

AL
j ðx̂Þ ¼

iU2k3
L

2
½/Lðx̂Þ � ð1� x̂2

1ÞwLðx̂Þ�x̂j; (28)

AS
j ðx̂Þ ¼

iU2k3
T

2
ðdj1 � x̂jx̂1Þx̂1wSðx̂Þ; (29)

where

/aðx̂Þ ¼
ð

V

bLðyÞ exp �2ikay � x̂þ 2ikLy1ð Þdy; (30)

waðx̂Þ ¼
ð

V

bSðyÞ exp �2ikay � x̂þ 2ikLy1ð Þdy; (31)

Again, if bSðyÞ ¼ 0, then waðx̂Þ ¼ 0. Consequently, Eq. (29)

is equal to zero, i.e., there is no shear wave.

It follows from Eqs. (28) and (29) that the magnitude of

these spherical waves can be written as

ALðx̂Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AL

j ðx̂ÞAL

j ðx̂Þ

q
¼ U2k3

L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/Lðx̂Þj j2�2ð1� x̂2

1ÞRefw
Lðx̂Þ/Lðx̂Þg þ ð1� x̂2
1Þ

2 wLðx̂Þ
�� ��2q

; (32)
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ASðx̂Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AS

j ðx̂ÞAS

j ðx̂Þ

q
¼ U2k3

T

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x̂2

1Þ
q

x̂1wSðx̂Þj j: (33)

As an example, we chose bS ¼ 0:7bL ¼ constant in Eqs.

(28)–(31), and V as a sphere with radius R. The directional

dependences of Eqs. (32) and (33) in the plane crossing the

center of the sphere V normalized by U2k3
LVbL=2 are plotted

in Figs. 2(a) and 2(b), respectively. It is seen from Fig. 2(a)

that at very low frequencies (kLR¼ 0.01) the spherical inclu-

sion acts like a dipole that scatters the second harmonic lon-

gitudinal wave mainly in the forward and backward

directions. As the frequency increases, the backscattered sec-

ond harmonic longitudinal wave starts to diminish. In the in-

termediate frequency regime (kLR¼ 1), only the forward

lobe remains. In the high frequency regime (kLR¼ 100), the

forward lobe reduces to needle shape in the forward direc-

tion, e.g., all the scattered second harmonic field is limited to

the forward direction only. The situation is somewhat differ-

ent for the scattered second harmonic shear wave, see Fig.

2(b). In the low frequency regime, the inclusion acts like a

quadruple generating scattered second harmonic shear waves

in four perpendicular directions with almost identical ampli-

tude. As the frequency increases, amplitude of the scattered

second harmonic shear wave starts to diminish in all direc-

tions with a much faster rate in the backward direction. In

the intermediate frequency regime, only the lobes in the for-

ward direction remain. In the high frequency regime, the

scattered second harmonic shear wave almost disappears in

the far field.

Similarly, the far-field approximation of the static

Green’s function (20) is given by

Ĝijðx; yÞ ¼
ðj2 þ 1Þdij þ ðj2 � 1Þx̂ix̂j

8p xk k : (34)

Since Ĝijðx; yÞ is independent of y, it is clear from Eq. (21)

that us
i ðxÞ ¼ 0 for x far away from the inclusion.

Of great interest in practice are the forward scattered

and backscattered fields. In the forward direction,

x̂j ¼ x̂f
j ¼ dj1. Thus,

AL
j ðx̂f Þ ¼ iU2k3

L

2
/Lðx̂f Þdj1; AS

j ðx̂f Þ ¼ 0;

ALðx̂f Þ ¼ U2k3
L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/Lðx̂f Þ/
Lðx̂f Þ

q
;

(35)

where

/Lðx̂f Þ ¼
ð

V

bLðyÞdy: (36)

In the backward direction, x̂j ¼ x̂b
j ¼ �dj1. Thus,

AL
j ðx̂bÞ ¼ �iU2k3

L

2
/Lðx̂bÞdj1; AS

j ðx̂bÞ ¼ 0;

ALðx̂f Þ ¼ U2k3
L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/Lðx̂bÞ/
Lðx̂bÞ

q
;

(37)

where

/Lðx̂bÞ ¼
ð

V

bLðyÞ exp 4ikLy1ð Þdy: (38)

These results will be used in Sec. V to determine the nonli-

nearity parameters through the forward and backscattered

waves.

V. STOCHASTIC NONLINEAR PROPERTIES OF THE
INCLUSION

Consider the case when the nonlinear properties of the

inclusion ba(x), a¼ L, S, are random functions of x, i.e., they

represent random (stochastic) processes. For simplicity, we

assume that these random processes are ergodic, i.e., the

FIG. 2. (Color online) (a) Normalized amplitude directivity of the second

harmonic longitudinal wave in far-field scattered by a spherical nonlinear

inclusion with radius R. kL¼x/cL is the wave number of the incident longi-

tudinal wave, which propagates in the direction of 0�. (b) Normalized ampli-

tude directivity of the second harmonic shear wave in far-field scattered by a

spherical nonlinear inclusion with radius R. kL¼x/cL is the wave number of

the incident longitudinal wave, which propagates in the direction of 0�.
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ensemble average (mean) hbaðxÞi is independent of the spa-

tial coordinate x, and is equal to its spatial averages, i.e.,

hbai 	
ð1
�1

npaðnÞdn ¼ 1

V

ð
V

baðxÞdx; (39)

where paðx; nÞ ¼ paðnÞ is the probability density functions

(PDF) of ba(x) at location x. The autocorrelation function of

ba(x) is given by

Naaðs; tÞ 	 hbaðsÞbaðtÞi

¼
ð1
�1

ð1
�1

n1n2paðn1; n2; s; tÞdn1dn2

¼ 1

V2

ð
V

ð
V

baðy1; sÞbaðy2; tÞdy1dy2;

(40)

where paðn1; n2; s; tÞ is the second order PDF. The last

equality in Eq. (40) is a consequence of the ergodicity of the

process. In a similar manner, the cross-correlation function

between bL(x) and bS(x) is given by

NLSðs; tÞ 	 hbLðsÞbSðtÞi

¼
ð1
�1

ð1
�1

n1n2pLSðn1; n2; s; tÞdn1dn2

¼ 1

V2

ð
V

ð
V

bLðy1; sÞbSðy2; tÞdy1dy2:

(41)

Next, treat Aa
j as random variables of the stochastic proc-

esses ba(x). For each particular realization ba(x), the values

of Aa
j can be determined from Eqs. (28) and (29). The

expected (mean) values or ensemble averages of these ran-

dom variables can then be written as

hAL
j ðx̂Þi ¼

iU2k3
L

2
½h/Lðx̂Þi � ð1� x̂2

1ÞhwLðx̂Þi�x̂j; (42)

hAS
j ðx̂Þi ¼

iU2k3
T

2
ðdj1 � x̂jx̂1Þx̂1hwSðx̂Þi; (43)

where

h/aðx̂Þi ¼ hbLiVaðx̂Þ; hwaðx̂Þi ¼ hbSiVaðx̂Þ; (44)

and

Vaðx̂Þ ¼
ð

V

exp �2ikay � x̂þ 2ikLy1ð Þdy; (45)

which can be readily evaluated once the geometry of the

inclusion is known.

In a similar manner, the ensemble average of the

squared amplitude of the scattered fields can also be obtained

in terms of the correlations functions,

hAL
j AL


j i ¼
U4k6

L

4



h/L/



Li � 2ð1� x̂2

1ÞRehw
L/Li

þð1� x̂2
1Þ

2hwLw


L

E
�; (46)

hAS
j AS


j i ¼
U4k6

T

4
ð1� x̂2

1Þx̂2
1hwSw



Si; (47)

where

h/a/


ai¼

ð
V

ð
V

NLLðs;tÞ

�exp �2ikaðs�tÞ�x̂þ2ikLðs1�t1Þ½ �dsdt; (48)

hwaw


ai¼

ð
V

ð
V

NSSðs;tÞ

�exp �2ikaðs�tÞ�x̂þ2ikLðs1�t1Þ½ �dsdt; (49)

h/aw


ai¼

ð
V

ð
V

NLSðs;tÞ

�exp �2ikaðs�tÞ�x̂þ2ikLðs1�t1Þ½ �dsdt: (50)

These expressions can be significantly simplified for the forward

and backscattered fields. Specifically, in the forward direction,

x̂j ¼ x̂f
j ¼ dj1. Thus, we have hAS

j if ¼ 0, hAS
j AS


j if ¼ 0 and

hAL
j if ¼

iU2k3
L

2
hbLiVdj1;

hAL
j AL


j if ¼
U4k6

L

4
h/L/



Lif ;

(51)

where

h/L/


Lif ¼

ð
V

ð
V

NLLðs; tÞdsdt: (52)

In the backward direction, x̂b
i ¼ �di1. It then follows from

Eqs. (43) and (47) that hAS
j ib ¼ 0, hAS

j AS

j ib ¼ 0, and

hAL
j ib ¼ �

iU2k3
L

2
hbLiVLðx̂bÞdj1;

hAL
j AL


j ib ¼
U4k6

L

4
h/L/



Lib;

(53)

where

VLðx̂bÞ ¼
ð

V

exp 4ikLy1ð Þdy;

h/L/


Lib ¼

ð
V

ð
V

NLLðs; tÞ exp 4ikLðs1 � t1Þ½ �dsdt:

(54)

The above equations establish the relationship between the

scattered far fields and the stochastic nonlinear properties of

the inclusion. Once the statistics of ba(x) is known through-

out the inclusion, the statistics of the scattered fields can be

evaluated from the above equations. As an example, con-

sider the case where ba(x) is uniform throughout the

inclusion

paðx; nÞ ¼ dðn� �baÞ; paðn1; n2; s; tÞ

¼ dðn1 � �baÞdðn2 � �baÞ;
(55)

pLSðn1; n2; s; tÞ ¼ dðn1 � �bLÞdðn2 � �bSÞ: (56)

Making use of these in Eqs. (39)–(41), we have
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hbai ¼ �ba; Naaðs; tÞ ¼ �b2
a; NLSðs; tÞ ¼ �bL

�bS: (57)

It then follows from Eqs. (42)–(47) that

hAL
j i ¼

iU2k3
L

2
½�bL � ð1� x̂2

1Þ�bS�x̂jVLðx̂Þ; (58)

hAS
j i ¼

iU2k3
T

2
ðdj1 � x̂jx̂1Þx̂1

�bSVSðx̂Þ; (59)

hAL
j AL


j i ¼
U4k6

L

4
½�bL � ð1� x̂2

1Þ�bS�2VLðx̂ÞV
Lðx̂Þ; (60)

hAS
j AS


j i ¼
U4k6

T

4
ð1� x̂2

1Þx̂2
1
�b2

SVSðx̂ÞV
Sðx̂Þ: (61)

A practically more interesting, and more challenging, prob-

lem is to obtain the statistics of ba(x) from the measured sta-

tistics of the scattered fields, i.e., to solve for hbai, Naaðs; tÞ,
and NLSðs; tÞ from the measured scattered fields A

a. This

inverse problem in general does not have unique solutions.

In what follows, we will attempt to solve this inverse prob-

lem for a simplified case.

We begin by assuming that bL(x) follows a Gaussian

process, and the autocorrelation function is given by an ex-

ponential form

Nðs; tÞ ¼ �b2
L þ r2 expð� s� tk k=kÞ; (62)

where �bL is the mean, r is the standard deviation, and k is

the autocorrelation length of bL(x). Further, we assume that

experimental measurements have been obtained for the scat-

tered fields, i.e., Aa
j ðx̂Þ have been measured experimentally.

It then follows from Eqs. (51) and (53) that hAL
j if , hAL

j ib,

hAL
j AL


j if , and hAL
j AL


j ib can be computed from the experi-

mentally measured Aa
j ðx̂Þ. Our next task is to find �bL, r, and

k in terms of these measured quantities.

To this end, we first turn to Eq. (51). It is seen from the

first part of Eq. (51) that �bL can be readily found once hAL
j if

is known. Next, substituting Eq. (62) into Eq. (52) and the

second part of Eq. (54) yields

h/L/


Lif ¼ �b2

LV2 þ r2

ð
V

ð
V

expð� s� tk k=kÞdsdt; (63)

h/L/


Lib ¼ �b2

L

ð
V

ð
V

exp 4ikLðs1 � t1Þ½ �dsdt

þ r2

ð
V

ð
V

expð� s� tk k=kÞ

� exp 4ikLðs1 � t1Þ½ �dsdt: (64)

We note from Eqs. (51) and (53) that once the forward scat-

tered and backscattered fields are measured experimentally,

h/L/


Lif and h/L/



Lib are known. Therefore, Eqs. (63) and

(64) provide a system of two equations from which the devi-

ation r and the correlation length k can be obtained.

VI. EXAMPLE PROBLEM WITH SYNTHETIC DATA

To illustrate this procedure and its effectiveness, we

consider an example where the inclusion is a sphere of radius

R. To obtain the experimental data for Aa
j ðx̂Þ, we first gener-

ate a set of fbL(x)g that follows the Gaussian distribution of

FIG. 3. (Color online) (a) Comparison between actual ensemble average of

nonlinear parameter bL to experimental (Monte Carlo simulation) ensem-

ble average of nonlinear parameter bL with different times of realization

(three-dimension inclusion). (b) Comparison between actual standard devi-

ation r of nonlinear parameter bL to experimental (Monte Carlo simula-

tion) standard deviation r of nonlinear parameter bL with different times

of realization (three-dimension inclusion). (c) Comparison between actual

dimensionless autocorrelation length k/R of nonlinear parameter bL to ex-

perimental (Monte Carlo simulation) dimensionless autocorrelation length

k/R of nonlinear parameter bL with different times of realization (three-

dimension inclusion).
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which the autocorrelation function is given by Eq. (62) with

given values of �bL, r, and k. These given statistical parame-

ters are called the actual values. For each bL(x), the forward

scattered field Aa
j ðx̂f Þ and backscattered field Aa

j ðx̂bÞ will be

computed from Eqs. (35) and (37), respectively. Thus, one

can generate a set of fAa
j ðx̂f Þg and fAa

j ðx̂bÞg. We will regard

this set of synthetic forward scattered and backscattered data

as the “experimental” data. The quality of these synthetic ex-

perimental data depends on the number of realizations used

to generate fbL(x)g. The more realizations used, the closer

are Aa
j ðx̂f Þ and Aa

j ðx̂bÞ to their expected values.

Next, we will use these synthetic experimental data to

compute hAL
j if , hAL

j ib, hAL
j AL


j if , and hAL
j AL


j ib. These com-

puted values are then used in Eqs. (51), (53), and (63) and

(64) to obtain �bL, r, and k. The �bL, r, and k so obtained will

be regarded as the experimental results. Figures 3(a)–3(c)

show the comparison between the experimental results and

actual values of �bL, r, and k. In Figs. 3(a)–3(c), we have six

groups of fbL(x)g with different �bL, r, and k. The horizontal

axis stands for different actual values of �bL, r, and k/R,

while the vertical axis shows the corresponding experimental

values. It is seen that results based on about 300 or more

realizations are very accurate.

Before closing, we note that the above method assumes

that the distribution of bL(x) is Gaussian. A much more

challenging problem is how to find what the distribution

medium is.

VII. SUMMARY AND CONCLUSIONS

This paper investigates the scattering of a time-

harmonic plane wave by an elastic inclusion with heteroge-

neous quadratic nonlinearity. Both the near and far fields of

the scattered second harmonic waves are obtained in terms

of the Green’s function of the matrix material. Major find-

ings of this investigation include: (1) the scattered second

harmonic fields depend on the nonlinear properties of the

inclusion through two independent acoustic nonlinearity pa-

rameters, bL and bS, both of which are functions of the sec-

ond and third order elastic constants; (2) under longitudinal

wave incidence, the scattered wave fields contain both longi-

tudinal and shear second harmonic waves, and the second

harmonic shear wave disappears when bS¼ 0; (3) in the near

field, a “static” displacement corresponding to the radiation

induced eigenstrain (Qu et al., 2011) is present. This static

displacement vanishes in the far field.

Also considered in this study is the case when the non-

linear properties of the inclusion are given as random func-

tions. The statistics of the scattered second harmonic waves,

such as the ensemble average, deviation, autocorrelation,

and cross-correlation, are obtained in terms of the corre-

sponding statistics of the acoustic nonlinear parameters of

the inclusion. Furthermore, a methodology is developed to

solve the inverse problem, i.e., obtaining the statistics of the

acoustic nonlinearity parameters from scattered second har-

monic waves. It is shown that by experimentally measuring

the forward and backscattered second harmonic waves, one

can nondestructively estimate the statistics of the acoustic

nonlinearity parameters of the inclusion.
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