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Abstract Interfacial energy plays an important role in equi-
librium morphologies of nanosized microstructures of solid
materials due to the high interface-to-volume ratio, and can
no longer be neglected as it does in conventional mechanics
analysis. When designing nanodevices and to understand the
behavior of materials at the nano-scale, this interfacial energy
must therefore be taken into account. The present work devel-
ops an effective numerical approach by means of a hybrid
smoothed extended finite element/level set method to model
nanoscale inhomogeneities with interfacial energy effect, in
which the finite element mesh can be completely independent
of the interface geometry. The Gurtin–Murdoch surface elas-
ticity model is used to account for the interface stress effect
and the Wachspress interpolants are used for the first time to
construct the shape functions in the smoothed extended finite
element method. Selected numerical results are presented to
study the accuracy and efficiency of the proposed method as
well as the equilibrium shapes of misfit particles in elastic
solids. The presented results compare very well with those
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obtained from theoretical solutions and experimental obser-
vations, and the computational efficiency of the method is
shown to be superior to that of its most advanced competitor.

Keywords Smoothed extended finite element method ·
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1 Introduction

Recent advances in nanotechnology exacerbate the need for
computational tools that are capable of capturing the effects
of interfaces, which play an important role in nanostructured
materials due to a characteristically high interface-to-volume
ratio. Although atomic level computational tools such as
molecular dynamic (MD) and first principle calculations are
able to simulate interface effects, these methods are computa-
tionally intensive, thus their applications are usually limited
to nano-scale samples and nano-second time durations. Many
engineering problems, however, occur at much larger spatial
and temporal scales. For example, simulating the formation
and morphological evolution of precipitates in superalloys
involves length scales ranging from several nanometers to
tens of micrometers, and the physical processes last up to
hours in time. In these cases, it is necessary to use a con-
tinuum level model that can capture the interfacial effects of
particles at different length and time scales.

The bonding environment of atoms near surfaces/interfa-
ces differs from that in the bulk, so that the energy associated
with surfaces/interfaces is also different from the bulk energy.
This effect will be prominent for nanostructured materials
when the surface-to-volume ratio is high. Gurtin and Mur-
doch [1,2] developed a generic continuum model incorporat-
ing the surface/interface effects where the surface/interface
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is modeled as a zero-thickness layer with its own physical
properties. This surface/interface elasticity model has been
extensively used to model nanostructures [3–8], and it was
shown that the size-dependent behaviors obtained from the
surface elasticity model agree very well with the atomistic
simulations [4,9].

However, these theoretical results are limited to systems
with either simple geometries or isotropic material proper-
ties. To characterize the size dependent behavior of nanosized
structures with more realistic geometries and anisotropic
properties, standard finite element methods (FEM) incor-
porating surface/interface effects were developed by intro-
ducing surface/interface elements [10–15]. In addition, Park
and coworkers [16–18] developed a Cauchy–Born model for
nanoscale material analysis, in which surface energies are
obtained directly from an underlying crystal structure and
interatomic potential. Within the standard FEM framework,
it is required that both the bulk mesh and the interface mesh
conform to the material interface in order to describe the
strain discontinuities across the interface, so that remeshing
is generally required when the interface moves. This usu-
ally leads to difficulties for inhomogeneities with very com-
plex and evolving geometries, especially when the inhomo-
geneities are numerous and evolving with time.

The extended finite element method (XFEM), which was
originally developed to model cracks in fracture mechanics
[19], is a robust and powerful computational tool capable
of modeling arbitrary discontinuities without requiring the
meshes to conform with the moving discontinuity interfaces.
The XFEM has been successfully used to solve many phys-
ical problems with arbitrary interfaces, such as holes and
inclusions [20], phase solidification [21], multiphase flows
[22], biofilm growth [23,24], etc. A comprehensive review
of XFEM can be found in [25] and an open source C++
XFEM code is also available for use [26]. Recently, Yvonnet
et al. [27] developed an XFEM/level set approach to study
the size-dependent effective properties of nanocomposites
based on a Gurtin–Murchoch model with the coherent inter-
face assumption [1]. Moreover, Farsad et al. [28] presented
an XFEM approach allowing for strong discontinuities across
the interface based on a Gurtin–Murdoch incoherent interface
model [2] and they studied the surface/interface effects on the
mechanical behaviors of nanoscale materials. However, they
limited their studies to static models without considering the
evolution of the interfaces.

In this paper, we developed a hybrid smoothed extended
finite element/level set method incorporating the interfacial
energy effect, in which a level set function is used to implic-
itly capture the motion of the interface and the finite element
mesh is independent of the interface geometry, so that no
remeshing is required even when the interfaces move, merge,
cusp or disappear. The strain smoothing technique [29] is
applied to modify the standard XFEM so that the domain

Fig. 1 Inhomogeneities in a finite matrix

integrals in each element can be transformed into contour
integrals along the boundaries of smoothing cells. Such a
transformation alleviates the needs of numerically evaluat-
ing the Jacobian matrix and derivatives of the shape func-
tions, which reduces the computational cost without loss of
accuracy. The Wachspress interpolants [30] are used to con-
struct the shape functions, which greatly facilitate the numer-
ical quadrature along the boundaries of smoothing cells. We
present some numerical examples to illustrate the computa-
tional accuracy and convergence of the Smoothed XFEM,
followed by an example to study the influence of interface
effects on the equilibrium shape of particles with different
sizes.

2 Formulation

Consider a finite elastic domain V containing multiple inho-
mogeneities with arbitrary shapes and misfit strain ε∗ (eigen-
strain). � is the union of all the inhomogeneities and � = ∂�

denotes the interfaces between the inhomogeneities and the
matrix. Further, we assume that V is subjected to a prescribed
body force b, a surface traction t on St and a displacement
u0 on Su , where S = Su ∪ St (Fig. 1).

In terms of the displacement vector u and the total strain
tensor ε, the total potential energy � of the composite con-
sists of three parts: the elastic energy U B in the bulk, the
interfacial energy U s on all the inhomogeneity-matrix inter-
faces, and the work done by external forces W , i.e.,

� = U B + U S + W (1)

where

U B = 1

2

∫
V \�

ε : LM : ε d�

+1

2

∫
�

(ε − ε∗) : LI : (ε − ε∗) d� (2)

U S =
∫

�

γ d S (3)

123

Author's personal copy



Comput Mech

W = −
∫

V
u · b d� −

∫
St

u · t d S (4)

where γ is the interfacial excess energy density [7] given by

γ = γ0 + τS : εS + 1

2
εS : LS : εS (5)

In the above, field quantities with a superscript I, M and S
are associated with the inhomogeneity, the matrix and the
interfaces, respectively. For example, LI and LM represent
the elastic stiffness tensors of inhomogeneities and matrix.
εS is the interface strain tensor, and LS is the interface elastic
stiffness tensor. τS is the interface residual stress and γ0 is the
interfacial free energy density that corresponds to the interfa-
cial energy state when εS = 0. It should be mentioned that the
constant γ0 has no influence on the elastic field for a specific
configuration but contributes to the total system energy.

The corresponding interfacial stress can be obtained from
the Shuttleworth equation [31],

σS = ∂γ

∂εS
= τS + LS : εS (6)

According to the coherent interface assumption, the interfa-
cial strain can be obtained by taking the tangential gradient
of the displacement vector [1]

εS=1

2

[
∇S ⊗ u + (∇S ⊗ u)T

]
(7)

where ∇S = P · ∇ is the interfacial gradient, P = I − n ⊗ n
is the tangential projection operator. Here, n is the outward
unit normal to the interface and I is the second order identity
tensor.

Under equilibrium, the system minimizes its potential
energy and the stationary condition requires the variation of
the functional to vanish, i.e. δ� = 0, which gives

δ� = δU b + δU S + δW = 0 (8)

where

δU b =
∫

V −�

ε : LM : δε d� +
∫

�

(ε − ε∗) : LI : δε d�

δU S =
∫

�

[τS : δεS + εS : LS : δεS] d S

δW = −
∫

�

b · δu d� −
∫

St

t · δu d S (9)

Equation (8) will be used later to develop the weak form of
the finite element equations.

3 Level set description of the interfaces

The level set method was originally devised for tracking
a moving interface [32], and became a key ingredient of
XFEM to implicitly describe complicated geometrical inter-
faces of microstructures without tracking them explicitly,

Fig. 2 Level set function

such as cracks [33], holes and inclusions [20,34], disloca-
tions [35] and biofilms [23,24], as well as fluid-structure
interfaces [36].

In this paper, the interfaces between the inhomogeneities
and the matrix can be defined as the zero level set of a function
φ(x), such that φ < 0 in the particles, φ > 0 in the matrix
and φ = 0 on the interface, which is as shown in Fig. 2.
Often, the signed distance is used as

φ(x) = ‖x − xmin‖ sign (nmin · (x − xmin)) (10)

where xmin is the orthogonal projection of x on the inter-
face �, nmin is the outward unit normal at xmin, and sign(·)
denotes the sign function.

It should be pointed out that the function φ(x) is usually
not known explicitly, or analytically, except for simple shapes
(circles, ellipses, etc.), but can be approximated by a set of
local values, φI , at the finite element nodes:

φ(x) =
M∑

I=1

NI (x)φI (11)

where NI is the finite element shape function of node I , and
M is the total number of nodes in an element.

An initial value partial differential equation then can be
obtained for the evolution of φ by taking a material derivative
on both sides of (10) [32]

∂φ

∂t
+ vext

n |∇φ| = 0 (12)

which is the well-known level set equation. The position of
the interface at time t is defined by the zero level set φ(x, t) =
0. vext

n = v · n is the normal velocity.
A main advantage of the level set description is its ability

to describe an arbitrary number of inhomogeneities with a
single level set function. The geometric quantities such as
normal vector n and curvature κ can be easily expressed in
terms of level set function, e.g.
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n = ∇φ

|∇φ| , κ = ∇ · ∇φ

|∇φ| (13)

Additionally, when the interfaces evolve in time, merge,
create cusps, coalesce, the hybrid smoothed XFEM/level set
method can deal with the topological transformation natu-
rally without remeshing or other special treatments.

4 Smoothed extended finite element method

In this section, we present the basic idea of the strain
smoothing technique and formulate the Smoothed XFEM
(SmXFEM) to account for the effects of interfaces. This will
be based on the Wachspress shape functions [30]. The imple-
mentation of boundary integration and smoothing cell sub-
division will also be discussed.

4.1 Strain smoothing in finite element

The strain smoothing technique was first proposed in the
context of mesh-free methods to stabilize nodal integration
[37]. Liu et al. [29] introduced this method into the con-
ventional finite element formulation with the long term goal
to provide stable and accurate simplex elements. Assuming
that unstructured tetrahedral meshes will soon be able to
be generated automatically, effectively, building low order,
high quality elements would become essential. This is the
idea of the smoothed FEM. Without introducing additional
degrees of freedom, an element is further subdivided into
several smoothing cells, and a smoothing operation is per-
formed in each cell within an element by a weighted aver-
age of the standard FEM strain field in the Voigt notation,
εh ≡ [εh

11, ε
h
22, γ

h
12]T . We note that the Voigt notation for the

strain tensors will be used in the rest of this paper, except
Sect. 5 where the tensorial notation is used.

For example, the smoothed strain value at a point xk can
be expressed as

ε̄(xk) =
∫

�s
k

εh(x)W (xk − x)d� (14)

where �s
k is the smoothing cell defined in the local vicinity

of xk and W (xk − x) is the smoothing or weight function
associated with xk . The following piecewise constant weight
function is generally used in the smoothed FEM formulation,

W (xk − x) =
{

1/As
k x ∈ �s

k
0 x /∈ �s

k
(15)

where As
k is the area of the smoothing cell �s

k . Substituting
Eq. (15) into Eq. (14), one can obtain the smoothed strain by
application of the Green’s theorem

ε̄(xk) = 1

As
k

∫
�s

k

Lk(x) · u(x)d� (16)

where Lk(x) is a matrix function of the outward normal vector
on the boundary �s

k of smoothing cell �s
k and has the form

Lk(x) =
⎡
⎣ nx 0

0 ny

ny nx

⎤
⎦ (17)

In such a way, the domain integration over �s
k becomes a

boundary integration along the edges of the smoothing cells.
An isoparametric mapping is not necessary and the evaluation
of the Jacobian in each element can be avoided. Also, we can
see that the displacement gradient does not appear in Eq.
(16). As a result, the derivatives of the shape functions are
not required in the smoothed finite element method.

4.2 Extended finite element discretization

For a coherent interface, the displacement is assumed to be
continuous across the interface. The strain field, however,
may not be continuous, which is commonly called weak dis-
continuity. In the standard finite element formulation, the
element edges are required to coincide with the geometri-
cal interfaces to guarantee the accuracy and optimal con-
vergence. In contrast, XFEM allows the mesh to be almost
independent of interfaces by introducing additional enrich-
ment, so that an inhomogeneity can be modeled by simply
modifying the level set function without remeshing when its
geometry changes. The displacement can be approximated
in the following way [20].

uh(x)= N(x)d + Na(x)a (18)

where d and a correspond to the nodal displacement vector
and additional degrees of freedom due to enrichment, respec-
tively, and N(x) and Na(x) are the standard and enriched
shape function matrices

N(x) = [N1N2 · · · NM ] , Na(x) = F(x)N(x) (19)

where

NI =
[

NI 0
0 NI

]
(20)

The enrichment function F(x) is given as suggested by
[38]

F(x)=
M∑

I=1

NI (x) |φI | −
∣∣∣∣∣

M∑
I=1

NI (x)φI

∣∣∣∣∣ . (21)

Note that the enrichment function is zero in the elements
that do not contain any part of the interface, so there are no
spurious terms in the blending elements as shown in Fig. 3
[38].

Substituting Eq. (18) into (16), the corresponding smooth-
ing strain can be readily obtained in the following matrix
form
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Fig. 3 Enriched nodes (marked by red circles) which have additional
degrees of freedom due to enrichment; enriched elements (marked by
green squares) cut by the interface whose nodes are all enriched; blend-
ing elements (marked by blue squares) in which only part of the nodes
are enriched

ε̄ = B̄d + B̄aa (22)

where

B̄ = 1

As
k

∫
�s

k

Ln(x)N(x)d�,

B̄a = 1

As
k

∫
�s

k

Ln(x)Na(x)d�. (23)

On substituting displacement approximation (18) and
smoothing strain (22) into the weak form, Eqs. (8) and (9), a
discrete linear system of equations can be easily obtained.

4.3 Wachspress shape functions and smoothing cell
partition

In the original paper on the smoothed FEM [29], non-mapped
Lagrange shape functions are used to calculate the shape
function values within a smoothed finite element, but the val-
ues at the vertices and mid-points of cell edges are evaluated
using linear interpolations. This numerical scheme is valid
only when the shape function is linear along the cell edges
[39]. Unfortunately, this is not always the case, even in simple
cases such as the bilinear quadrilateral elements. When the
shape function is not linear along the edges in higher order
elements or enriched elements in XFEM whose enrichment
functions are not linear, the average shape function approx-
imation and numerical integration scheme are not accurate.
Bordas and Natarajan [39] suggested that the Wachspress
interpolation can be used to retain the desirable features in
the conventional smoothed FEM.

Following their ideas, we for the first time introduce the
Wachspress shape functions into the SmXFEM framework
to facilitate the accurate numerical integrals in the enriched
finite elements. In this way, the shape function values at
every edge of the smoothing cells can be directly obtained

1
2

3

4

1l

2l

3l

4l

x

y

Fig. 4 A sample quadrilateral element

without any approximation. Moreover, since the Wachspress
interpolants may be constructed on elements with arbitrary
(including curved) edges, this makes our formulation gen-
eral and attractive for curved interfaces. It is further shown
that the numerical accuracy depends on the smoothing cell
division used in the SmXFEM.

Although the Wachspress interpolants can be built for arbi-
trary n-sided polygonal elements with arbitrary edges, only
quadrilateral elements shown in Fig. 4 are formulated in the
present work. Let li (x, y) = 0 be the function defining the
line associated with the i−th edge of element �e which can
be uniquely written with coefficients ai , bi and ci in the form,

li (x, y) = ci − ai x − bi y for (x, y) ∈ �e

⇒ li (x, y) > 0. (24)

The wedge function wI (x, y) = 0 corresponding to the
I -th node is defined by the following product if the two edges
do not pass through node I

wI (x, y) = κI lI+1(x, y)lI+2(x, y) (25)

where κI are scalar constants. A compact definition of the
Wachspress shape function corresponding to the I -th node is
given by

NI (x, y) = wI (x, y)∑
J wJ (x, y)

(26)

In this definition, a necessary requirement for the shape func-
tion is to be linear along the element boundary, which can
be achieved by an appropriate selection of constants κI as
described by [40].

It should be noted that the shape function in (26) is not
always linear within the element, nor are the Lagrange shape
functions used in the original smoothed FEM [29] because of
the bilinear term ‘xy’ in the basis. In the standard finite ele-
ments, an element can be divided into appropriate quadrilat-
eral smoothing cells to avoid the nonlinearity of shape func-
tions along the cell edges. In XFEM, however, the elements
are generally cut by discontinuous interface with irregular
geometries. This is illustrated in Fig. 5, in which a triangu-
lation scheme used in standard XFEM is adopted to build
the smoothing cells and the values of the shape function are
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Fig. 5 Triangular smoothing cell subdivision and shape functions along the edges of smoothing cells in an enriched element. a and b standard
shape functions; c and d enriched shape functions. The blue bold lines represent the interfaces

plotted along the edges of smoothing cells. It is clearly seen
that neither the standard nor the enriched shape functions
are linear along the edges of smoothing cells in an enriched
element. In these cases, integration of both the standard and
the enrichment shape functions should be treated carefully
to maintain accuracy and convergence rates. In this work, we
will use three Gauss points in the enriched elements. In the
standard elements, one Gauss point is enough to calculate
the contour integral along each edge due to the linearity of
the shape functions.

To evaluate the strain matrix, an element needs to be fur-
ther partitioned into smoothing cells. It has been pointed
out that when the number of smoothing cells in the ele-
ment approaches infinity, the smoothed FEM solution will
approach the standard FEM solution [41]. In our SmXFEM,
we devised a new partition scheme of smoothing cells for the
enriched elements.

For quadrilateral elements, an element is firstly divided
into m × n quadrilateral smoothing cells, where m and n are
the number of subcells in the x- and y- directions, respec-
tively. In the enriched elements, those smoothing cells are fur-
ther distinguished as standard smoothing cells and enriched
smoothing cells. Then the enriched smoothing cells are parti-
tioned into a group of sub-triangles. This scheme is illustrated
in Fig. 6.

It can be seen that the present partition scheme of smooth-
ing cells provides great flexibility for arbitrary m × n cells
partition according to the requirement of numerical accuracy

and it is also extensible to higher order elements and three
dimensional hexahedral elements. Another advantage of this
scheme is that the curved interface can be more accurately
resolved when the number of smoothing cells increases,
which can be clearly seen in Fig. 6d–f.

5 Numerical examples

The SmXFEM developed above is suitable for a variety of
problems dealing with nanoscale materials and structures
with interface stress effects. In this paper, we focus on ana-
lyzing nano-inhomogeneities and their equilibrium shapes.

5.1 Convergence and computational efficiency

Consider an isotropic circular inclusion with a coherent
interface embedded in an isotropic elastic matrix of infinite
extent, subjected to a dilatational eigenstrain ε∗ = ε∗I as
shown in Fig. 7. The analytical solution to this problem is
given by [5]. The bulk elastic constants for aluminum are
λ = 58.17GPa, μ = 26.13 GPa [42] and the interface elas-
tic constants are set as τS = −1N/m and L S = 10N/m
[11]. The radius of the inclusion is taken as R = 5 nm. The
eigenstrain ε∗ = 0.01 is used. The simulation is performed
in a square domain of 15 × 15 nm and the boundary condi-
tions are applied by imposing the exact displacements on the
external boundary of the domain.
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Fig. 6 Partition of smoothing
cells in an element. For the
standard element: a 1 × 1 cell
partition; b 2 × 2 cell partition;
c 3 × 3 cell partition; For the
enriched elements: d 1 × 1 cell
partition; e 2 × 2 cell partition;
f 3 × 3 cell partition. The yellow
cells are standard smoothing
cells and the green cells
represent enriched smoothing
cells

(a) (b) (c)

(d) (e) (f)

R*

Fig. 7 Computational model in smoothed XFEM with mesh, interface
and enriched nodes

In order to study the convergence of the present method,
we define the following two norms, i.e. displacement norm
ed and energy norm ee,

ed =
∥∥uh − uexact

∥∥
‖uexact‖ (27)

ee =
√∫

�

(
εh(x) − εexact (x)

) : L : (
εh(x) − εexact (x)

)
d�∫

�
εexact (x) : L : εexact (x)d�

(28)

where uh and εh are the displacement and strain fields
obtained from the present SmXFEM by using different ele-
ment sizes h. The quantities with superscript ‘exact’ are the
exact solutions.

Figures 8 and 9 show the displacement and energy norms
for the cases without and with the interface stress, respec-

(a)

(b)

Fig. 8 Convergence rate of circular inclusion problem without inter-
face stress. a Displacement norm; b Energy norm

tively. We can see that the optimal convergence rates are
obtained for both smoothed and standard XFEM when the
interfacial energy effects are ignored. The convergence rate
is suboptimal when interfacial energy effects are consid-
ered and nearly 0.88 for the energy norm except for the
1 × 1 cell subdivision. The convergence rate is however
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(a)

(b)

Fig. 9 Convergence rate of circular inclusion problem with interface
stress. a Displacement norm; b Energy norm

much higher than that of 0.4–0.5 reported in [27] for the con-
ventional XFEM. It is seen that the SmXFEM shows better
performance over the standard XFEM if more than 1×1 cells
are used. This is more obvious in Fig. 9 where the interfa-
cial energy effects are considered. We can also find that the
relative errors decrease with the increase of the number of
smoothing cells. However, when the number of smoothing
cells exceeds 2 × 2, the improvement of the accuracy is not
very significant.

As we mentioned, in the SmXFEM, the evaluation of the
derivatives of shape functions and the Jacobian matrix in
each element is not required to calculate the strain matrix.
Moreover, the domain integrals are transformed into bound-
ary integrals. In addition, in the standard XFEM, the numeri-
cal quadrature has to be performed over all the subtriangles in
an enriched element. Therefore, two isoparametric mapping
steps are required: mapping from the reference coordinate ξ�

of subtriangles to the global coordinate x and an inverse map
from the global to reference coordinate system of the bi-unit
square ξw = x−1

(
ξw

)
. Generally, iterative algorithms are

required for the second step mapping [33], which would be
time consuming in the standard XFEM when the elements
cut by the interface are numerous. However, the Wachspress

Fig. 10 Computational time versus element number

shape function in our SmXFEM is defined directly on the
global coordinate system without requiring any inverse coor-
dinate mapping. Those characteristics can effectively reduce
the computational cost.

Figure 10 compares the computational time versus total
element numbers for the SmXFEM and the standard XFEM.
The program runs on Windows XP operating system with
Intel Xeon CPU 2.27 GHz. Since the only difference between
XFEM and SmXFEM is the way to calculate the element
stiffness matrix, we use the total time consumed to form the
global matrix as the efficiency measure. It is clearly seen
that the slope for SmXFEM is close to 1, which implies that
the computational time is linearly proportional to the total
number of elements. For XFEM, this slope is nearly 1.86,
which means that the computational cost increases exponen-
tially with the number of elements. This advantage makes
SmXFEM attractive for large scale computations. Moreover,
for time dependent problems involving moving interfaces,
the elastic field must be calculated at each time step to eval-
uate the interface velocity. In such cases, the computational
expense can be significant, even for 2D problems and the pro-
posed method can hence prove advantageous. The numerical
examples will be given in sec. 5.3.

Furthermore, to balance the computational cost and accu-
racy, we can flexibly choose different combination of cell
partition schemes, such as 2 × 2 cells in the standard ele-
ments and 4 × 4 cells in the enriched elements, which will
be used in the following numerical examples.

5.2 Elastic field of a nano-inclusion with interface effects

The elastic field of the nano-inclusion problem described in
Sect. 5.1 is considered here. A regular mesh with 50 × 50
quadrilateral elements. The displacement and strain compo-
nents in the radial direction with and without interface effects
are compared and given in Fig. 11. It is clearly seen that the
present SmXFEM results are in very good agreement with

123

Author's personal copy



Comput Mech

(a)

(b)

Fig. 11 Comparison of the normalized radial displacement ur (a) and
strain εrr b from the exact and the present SmXFEM solutions

the exact solutions, and capable of accurately capturing the
interface effects. This again provides us with confidence on
the validity of the approach to explore more complex prob-
lems.

5.3 Equilibrium shapes of nano-particles in elastic solids

It has been experimentally observed that particles (precipi-
tates) in nickel based superalloys may evolve, with increasing
particle size, from an initially spherical shape to a cuboidal
shape with flat edges and round corners [43,44]. Most the-
oretical considerations are based on the assumption that the
equilibrium morphology of such particles is governed by
minimizing the total system energy. For example, Kaganova
and Roitburd [45], Johnson and coworkers [46,47] analyzed
the shape transitions of precipitate particles in an infinite elas-
tic matrix. The equilibrium shape and morphological devel-
opment of misfit particles were also formulated based on
boundary integral methods, in which a set of marker parti-
cles are placed on the phase interface to track the moving
boundaries [48–50].

In this section, we will apply the proposed hybrid
smoothed XFEM/level set method to predict the equilibrium
shapes of misfit particles in an elastically anisotropic sys-
tem. The SmXFEM is used to compute the elastic field and
evaluate interface velocity, and the level set method is used
to implicitly describe and update the geometry of the mate-
rial interface. We assume that the total system energy is the
sum of the elastic strain energy due to the misfit strain and the
interfacial energy, so that the problem is equivalent to finding
a set of discrete values (at the nodes) of level set that mini-
mizes the total system energy � under the constant volume
constraint.

In the absence of body force and external loading, the aug-
mented energy functional can be modified by incorporating
a Lagrange multiplier λ:

L = � + λ (V� − V0) = U b + U S + λ

(∫
�

dV − V0

)
(29)

The variation of this Lagrange functional (see Mueller et al.
[49] and Kolling and Gross [51] for details) yields

δL = −
∫

�

(Gn − λ) δnd S+δλ

(∫
�

dV − V0

)
(30)

where δn represents a shape variation of the interface in the
normal direction and

Gn = n · [[�]] · n + γ κ (31)

Here [[ ]] denotes the quantity jump across the interface. � =
wI−σ ·∇u is the Eshelby energy momentum tensor where w

denotes the elastic energy density, κ represents the interfacial
mean curvature. The Lagrange multiplier is

λ =
∫
�

Gnd S∫
�

d S
(32)

Next, we take the shape variation of the interface δn as the
normal velocity of level set at the interface, i.e. vn = δn and
consider the volume conservation condition

∫
�

dV = V0.
Then the energy functional (30) becomes

δL = −
∫

�

(Gn − λ) vnd S (33)

Note that if we take

vn = Gn − λ = n · [[�]] · n + γ κ − λ (34)

at the interface, we obtain

δL = −
∫

�

v2
nd S ≤ 0 (35)

which implies that the total system energy will keep decreas-
ing during the interface evolution until the interface velocity
goes to zero.

It is noted that the velocity field in the level set equation is
defined in the spatial domain, but the velocity given in (34)
is only defined on the interface. In the following example,

123

Author's personal copy



Comput Mech

α =0.6

α =1

α =1.4

Fig. 12 Equilibrium shapes of an isolated inhomogeneity for α = 0.6,
1, 1.4 and L = 5, 10, 20

a second order fast marching method [52] is used to extend
the interface velocity to the entire computational domain,
and the third order accurate Hamilton–Jacobi WENO finite
difference spatial discretization and third order TVD Runge-
Kutta (RK) time discretization schemes are used to solve the
hyperbolic level set equation [53].

We use the anisotropic elastic constants of Ni for the
matrix, which are C M

11 = 246.5GPa, C M
12 = 147.3 GPa and

C M
44 = 124.7 GPa in Voigt notation. We adopt the assumption

that the elastic constants of particles are proportional to that of
matrix, C I

i j = αC M
i j [54], so that we have hard particles when

α > 1, soft particles when α < 1 and homogeneous particles
when α = 1. For simplicity, we further assume the interfa-
cial energy is constant that γ = γ0, where γ0 = 20ergs cm−2

and the dilatational misfit eigenstrain ε∗ = 0.3% [55]. There-
fore, we can introduce the dimensionless characteristic length
L = C I

44ε
2
0 R0/γ , in which R0 is the effective radius of par-

ticle, for example, R0 = √
A0/π where A0 is the area of

a particle in two-dimensions. It can be clearly seen that the
interfacial energy plays an important role when L is small,
while the elastic bulk energy becomes more important when
L increases. In the following numerical examples, we further
assume that the initial shapes of the particles are circles for
each case and the material axis < 100 > directions are the
same as the coordinate directions.

Figure 12 shows the equilibrium shapes of an isolated par-
ticle at different sizes and stiffness ratios. It is seen that for
the hard and homogeneous particles that α ≥ 1, the equilib-
rium morphologies undergo a transition from the circle-like
to the square-like shapes with round corners when the particle
size increases. This is in good agreement with experimental
observations [43]. For the soft particles, the cuboidal shape

remains for L = 5. However, the equilibrium shape gradu-
ally becomes concave with the increase of the particle size
as shown in the uppermost row of Fig. 12.

It should be mentioned that the present results are very
similar to that obtained from boundary integral methods
[54,56] and finite element methods [57], in which a num-
ber of marker points have to be placed on the geometric
interface to track its motion. However, the proposed hybrid
SmXFEM/LSM approach inherits the merits of both the
extended finite element and level set method and provides
distinct advantages to model the moving interface in solid
materials. The main advantage of the (smoothed) XFEM is
that the meshes do not have to conform to the evolving inter-
faces, so that no remeshing is required during the evolution.
In addition, the computational cost for evaluating the elastic
field at each time step is effectively reduced. The implicit
description of moving interfaces using the level set method
naturally allows topological changes of phase boundaries,
which are generally very hard to handle in the conventional
marker particle method.

6 Conclusion

In this paper, we developed a hybrid smoothed extended finite
element/level set method with evolving interfaces for mod-
eling equilibrium shapes of nano-inhomogeneities. A lin-
ear interface elasticity model was adopted to account for
effects of interfacial excess energy. It is shown that once the
interfacial energy is considered, the energetically favorable
shapes of precipitate particles would depend on the particle
size, misfit strain and the elastic constants of bulk materi-
als due to the competition between the interfacial energy and
anisotropic elastic energy. The SmXFEM developed here has
several advantages over the conventional XFEM. For exam-
ple, the Jacobian matrix and the derivatives of the standard
and enrichment shape functions need not be computed and
the domain integrals in the finite elements are replaced by
boundary integrals, which can efficiently reduce the compu-
tational cost without loss of accuracy. The Wachspress shape
functions are for the first time introduced into the SmXFEM
framework, which greatly facilitates accurate numerical inte-
gration along the edges of smoothing cells. The accuracy
and convergence rates are studied in the numerical results,
which show superior to the standard XFEM [27]. Further,
we showed that the computational time of our SmXFEM
scales linearly with the number of elements, while that of our
implementation of the XFEM increases exponentially (expo-
nent 1.86) with the number of elements. We believe that the
hybrid SmXFEM/LSM developed here is an effective numer-
ical tool for nano-scale material analysis and designs, and
can be used to study nano-scale inhomogeneous materials
and structures with complex morphological changes. Future
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works includes extension to realistic three-dimensional cases
and the coupling with model reduction techniques for highly
non-linear problems [58].
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