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a b s t r a c t

A semi-analytical approach based on a variational framework is developed to obtain the
three-dimensional solution for a nano-scale inhomogeneity with arbitrary eigenstrains
embedded in a matrix of infinite extent. Both the inhomogeneity and the matrix can be
elastically anisotropic. The Gurtin–Murdoch surface/interface model is used to describe
the elastic behavior of the inhomogeneity/matrix interface. The displacement fields in
the inhomogeneity and the matrix are represented, respectively, by two sets of polynomi-
als. Coefficients of these polynomials are determined by solving a system of linear algebraic
equations that are derived from minimizing the total potential energy of the system. In the
case of an isotropic spherical inhomogeneity with dilatational eigenstrain in an isotropic
matrix, our solution shows an excellent agreement with the corresponding analytical solu-
tion available in the literature. To demonstrate the capabilities of the method developed
here and to investigate the effect of interfacial excess energy, numerical examples are also
presented when the inhomogeneity and matrix are both elastically anisotropic. Both dila-
tational and pure shear eigenstrains are considered in these examples.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nanostructured materials, e.g., polycrystalline solids
with nano-scale grains, and high temperature superalloys
with nano-scale precipitates, exhibit many unique proper-
ties not seen in conventional materials, such as high
strength and ductility. To a large extent, these unique char-
acteristics are attributed to the extraordinarily high inter-
face to volume ratio in these nanostructured materials
(Ashby et al., 2009). Generally speaking, atoms near a sur-
face or an interface have different electronic density from
atoms in the bulk (Daw et al., 1993). Consequently, the en-
ergy associated with atoms near the surface or interface is
different from these in the bulk. The influence of these

surface/interface atoms is much more pronounced in
nanostructured materials because of their high interface
to volume ratio.

In traditional continuum mechanics, the surface/inter-
face energy is generally neglected. To account for the inter-
faces, Gurtin and Murdoch (1975) and Gurtin et al. (1998)
developed a mathematical continuum framework in which
the effects of surface/interfaces are accounted for by intro-
ducing the interfacial stress. Recently, this general frame-
work has been used by a number of researchers to study
the behavior of nanostructured materials. For example,
He and Lilley (2008) examined the influence of surface
stress effect on the bending resonance of nanowires with
different boundary conditions. Dingreville et al. (2005)
studied the effective modulus of nano-wires, nano-dots
and nano-films. Zhao and Rajapakse (2009) investigated
surface energy effects on the elastic field of an isotropic
elastic layer bonded to a rigid substrate. Furthermore,
Steigmann and Ogden (1997, 1999) generalized

0167-6636/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechmat.2012.07.008

⇑ Corresponding author at: Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA. Tel.: +1 847 467 4528;
fax: +1 847 491 4011.

E-mail address: j-qu@northwestern.edu (J. Qu).

Mechanics of Materials 55 (2012) 41–48

Contents lists available at SciVerse ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat



Author's personal copy

Gurtin–Murdoch model to account for the effects of intrin-
sic flexural resistance of surface/interface. Refinements to
the general Gurtin–Murdoch framework (Gurtin and Mur-
doch, 1975) have also been made in recently years to ac-
count for, e.g., the interfacial incoherency (Wang and Pan,
1994), finite deformation of the interface (Nix and Gao,
1998), the three-dimensional nature and the Poisson’s ef-
fects of the interface (Dingreville and Qu, 2008) and the ef-
fects of corrugation (Wang et al., 2010) of the surfaces/
interfaces.

The elastic state of an inhomogeneity with prescribed
eigenstrain (misfit) strains embedded in a foreign matrix
is one of the most important problems in continuum
mechanics. The problem is generally known as the Eshel-
by’s problem because of his pioneering work (Eshelby,
1957, 1959), and is widely used in mechanics, material sci-
ence and solid-state physics. It is considered the corner-
stone of modern micromechanics (Mura, 1987; Qu and
Cherkaoui, 2006). When the inhomogeneity size is in the
nanometer scale, interfacial stress between the inhomoge-
neity and matrix can play a significant role. Thus, the origi-
nal Eshelby’s solution needs to be modified for nano-scale
inhomogeneities to account for the effects of interfacial
stresses. Using the Green’s function approach, Sharma
and Ganti (2004) and Sharma et al. (2003) obtained the
modified Eshelby solution for a spherical inhomogeneity
in an isotropic solid when the prescribed eigenstrain is
dilatational. Tian and Rajapakse (2007) solved the same
two-dimensional problem under arbitrary eigenstrain and
remote loading using the Muskhelishvili’s complex func-
tion method. Duan et al. (2005a,b,c) studied the stress con-
centration tensors of spherical inhomogeneities, and their
effects on the effective elastic constants of composite
materials consisting of nano-scale inhomogeneities, again
assuming elastic isotropy for both the inhomogeneity and
the matrix.

In summary, all the existing work assumes that the
inhomogeneity is spherical, and both the inhomogeneity
and the surrounding matrix are elastically isotropic. In
many applications, most notably, precipitate strengthen-
ing in high strength alloys and embedded quantum dots,
both the inhomogeneity (precipitate and quantum dot)
and the surrounding matrix are anisotropic. Furthermore,
the shape of the precipitate is typically non-spherical,
and the eigenstrains are typically not pure dilatational.
Therefore, it is necessary to obtain the elastic state of
an inhomogeneity of arbitrary shape in an elastically
anisotropic matrix subjected to an arbitrary eigenstrain
field.

In this paper, we develop a variational formulation to
study the problem of an inhomogeneity with arbitrary
shapes and eigenstrains. Both the inhomogeneity and the
surrounding matrix can be generally anisotropic. The solu-
tion is semi-analytical in that all the elastic field quantities
are given explicitly in terms of polynomial functions whose
coefficients can be solved from solving a system of linear
algebraic equations. To illustrate the solution procedure,
several examples are given. The validity and accuracy of
the solution method are verified by comparing the numer-
ical solutions with available analytical solutions in the iso-
tropic case.

2. Problem statement

We consider an inhomogeneity X embedded in an
otherwise homogeneous matrix of infinite extent. Assume
that X is a singly-connected finite region of arbitrary shape,
bounded by a smooth surface S with outward unit normal
n. Both the inhomogeneity and the matrix are elastic, and
their elastic stiffness tensors are denoted by the fourth or-
der tensors CI and CM, respectively. Note that both CI and CM

can be anisotropic. Further, we assume that the interface
between the inhomogeneity and the matrix is coherent, i.e.,

½u� ¼ uðSþÞ � uðS�Þ ¼ 0; ð1Þ

where u is the displacement field, and S+ and S� mean
approaching the interface from the matrix side (+) and
from the inhomogeneity side (�), respectively, see Fig. 1.

Let a uniform eigenstrain field e⁄ be applied to the inho-
mogeneity. Our objective is to find the stress and strain
fields caused by the applied eigenstrain. This elasticity
problem for a conventional size inhomogeneity has been
solved by Eshelby (1957, 1959). In this paper, we are inter-
ested in the case when the inhomogeneity is very small so
that interfacial stress becomes non-negligible.

The interfacial excess energy density can be written as
(Dingreville and Qu, 2008)

C ¼ C0 þ Cð1Þ : es þ 1
2
es : Cð2Þ : es; ð2Þ

where C0, C(1) and C(2) are the intrinsic interfacial elastic-
ity properties (Dingreville and Qu, 2008) that can be calcu-
lated once the material system is given (Dingreville and
Qu, 2009). The interfacial strain can be computed from

es ¼ 1
2
½P � ðrsuÞ þ ðrsuÞT � P�; ð3Þ

where P = I � n � n is the projection tensor, I is the iden-
tity tensor, � represents a dyad, and the surface gradient
is defined as rsu =ru �P. The corresponding interfacial
stress can be obtained from the interfacial excess energy
from the Shuttleworth equation (Shuttleworth, 1950),

Rs ¼ @C
@es
¼ Cð1Þ þ Cð2Þ : es: ð4Þ

3. Weak form of the governing equations

To derive the governing equations, consider the poten-
tial energy of the system consisting of the inhomogeneity

n

ΩΩ

S +

S −
*ε

Fig. 1. An inhomogeneity in the matrix subjected to a uniform
eigenstrain.
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and the matrix. Since there are no applied forces, the po-
tential energy of the system is the elastic strain energy

U ¼ UM þ UI þ US; ð5Þ

where

UM ¼
1
2

Z
VM

r : edV ; UI ¼
1
2

Z
X
r : ðe� e�ÞdV ;

US ¼
Z

S
CdS ð6Þ

are the strain energy in the matrix, strain energy in the
inhomogeneity and the interfacial excess energy on the
inhomogeneity/matrix interface, respectively. In (6), VM is
the matrix domain, X is the inhomogeneity domain, and
S is the inhomogeneity/matrix interface. Furthermore, we
assume small strain deformation so that the strain tensor
is related to the displacement field by

e ¼ 1
2
½ruþ ðruÞT �; ð7Þ

and the stress r and strain e are related through the
Hooke’s law,

r ¼ CI : ðe� e�Þ x 2 X

CM : e x 2 VM

(
: ð8Þ

According to the minimum potential energy theorem,
among all the kinematically admissible displacement
fields, the true solution to the problem minimizes the po-
tential energy, i.e.,

dU ¼ dUM þ dUI þ dUS ¼ 0: ð9Þ

Here, any differentiable vector field that satisfies (1) and
vanishes at infinity is a kinematically admissible displace-
ment field. By using the divergence theorem, one can show
that the Euler equations of (9) are the equilibrium equa-
tions at the interface (Gurtin and Murdoch, 1975)

r � r ¼ 0 in the matrix and in the inhomogeneity; ð10Þ
r � nþrs � ðRsÞ ¼ 0 on the interface: ð11Þ

Thus, (9) provides a weak form of the governing equations
if a kinematically admissible displacement field is selected.
However, since a kinematically admissible displacement
field must satisfy (1), it is rather difficult to select such a
field. So, for numerical solutions, we consider another form
of the functional by introducing a Lagrangian multiplier k

to relax the kinematic constraint (1),

P ¼ U þ
Z

S
k � ½u�dS or dP ¼ dU þ d

Z
S

k � ½u�dS ¼ 0:

ð12Þ

The Euler equations corresponding to (12) include all the
equilibrium equations (10) and (11), as well as the interfa-
cial coherent condition (1). Using (12) as the weak form of
the governing equation for numerical solution allows the
use of independent trial functions in the matrix and the
inhomogeneity.

One caveat in using (12) is the apparent ambiguity of
computing the interfacial strain from (3). Since the trial
function for the displacement fields in the matrix is differ-

ent from that in the inhomogeneity, the resulting interfa-
cial strain may differ depends on which displacement
field is used. However, since the coherent condition (1) be-
comes an Euler equation, the solution procedure itself
forces the two displacement fields to be the same on the
interface. Therefore, regardless which field is used to calcu-
late the interfacial strain, the end results are the same.

To illustrate the above, let us define the averages

�us � 1
2
½uðSþÞ þ uðS�Þ�;

�es ¼ 1
2

P � ðrs �usÞ þ ðrs �usÞT � P
h i

: ð13Þ

If the displacement is continuous at the interface, then
�us ¼ uðSþÞ ¼ uðS�Þ. Thus, the second of (13) reduces to
(3) because P � (rsu) involves only the in-plane compo-
nents of the displacement u(S+) = u(S�). Similarly, follow-
ing (4) one may introduce

�Rs ¼ Cð1Þ þ Cð2Þ : �es: ð14Þ

Now, by using the divergence theorem, the second of
(12) can be transformed to

dP ¼ �
Z

X
ðr � rÞ � dudV �

Z
VM
ðr � rÞ � dudV

þ
Z

S
½u� � dkdS�

Z
S
ðr � nþrs � RsÞ � d�us dS

þ
Z

S
ðk� �r � nÞ � dudS ¼ 0 ð15Þ

where

�r � 1
2
½rðSþÞ þ rðS�Þ�: ð16Þ

Since du, dk and d�us are arbitrary and independent, the Eu-
ler equations corresponding to (15) are

r � r ¼ 0 in the matrix and in the inhomogeneity; ð17Þ
r � nþrs � ð�RsÞ ¼ 0 on the interface; ð18Þ
½u� ¼ 0 on the interface; ð19Þ
k� �r � n ¼ 0 on the interface: ð20Þ

Clearly, a solution that satisfies (15) must also satisfy (19),
the continuity of displacement across the interface. Thus,
this ensures that the end results are the same regardless
whether u(S+), or u(S�) or �us is used to compute the inter-
facial strain. Furthermore, (20) also indicates that the
Lagrangian multiplier k is nothing but the average traction
on the interface. We note that since the traction is discon-
tinuous across the inhomogeneity/matrix interface, the
average traction differs from the traction on S+ and S�.

4. Solution procedures

When the interface is coherent and interfacial stress is
neglected, the strain within the inhomogeneity is constant
under homogeneous eigenstrain (at least for a class of
shapes such as an ellipsoid). However, this is generally
not true when the interface is endowed with separate
material parameters. To solve the couple boundary value
problem, some approximation schemes have to be
adopted. A straightforward method is through expanding
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the field quantities in the form of Taylor series (Moschovi-
dis and Mura, 1975; Sendeckyj, 1967). In the present work,
we adopt a similar approach by expanding the displace-
ment field into polynomials. For convenience, we attach a
Cartesian coordinal system x ¼ ðx1; x2; x3ÞT to the inhomo-
geneity, so that far away from the origin, i.e., r ¼ kxk !
1, all field quantities vanish.

Within the inhomogeneity, we postulate that the dis-
placement field can be expressed as

u ¼
XN1 ;N2 ;N3

m1 ;m2 ;m3¼0

am1m2m3 xm1
1 xm2

2 xm3
3 þ e� � x; ð21Þ

where e⁄ is the prescribed eigenstrain on the inhomogene-
ity, and N1, N2 and N3 are the upper limits of the summation
for m1, m2 and m3, respectively. For each given set of m1, m2

and m3, am1m2m3 is a 1 � 3 vector whose components are un-
known constants to be determined by the weak form of the
governing Eq. (12). Clearly, there are 3 � N1 � N2 � N3 un-
known constants in (21). The accuracy of the numerical
solution depends on the number of terms used in the
expansion. In this work, the series was truncated when
the coefficients of two additional terms in the expansion
are less than 1% of those of the previous two terms.

For convenience, we introduce a shorthand notation
(Wang and Pan, 1994) to denote an integer triplet m1, m2

and m3 by its base letter with curly brackets, e.g.,
fmg () m1;m2;m3 and fNg () N1;N2;N3. This way, one
may use a{m} to denote am1m2m3 . Eq. (21) can then be writ-
ten as

u ¼
XfNg
fmg¼0

afmgx
m1
1 xm2

2 xm3
3 þ e� � x: ð22Þ

Making use of (21) in the second of (6) in conjunction with
(7) and (8), one obtains

dUI ¼
Z

X
r : dedV ¼

XfNg
fmg;fpg¼0

afmgK
I
fmgfpgdafpg; ð23Þ

where KI
fmgfpg is a known constant 3 � 3 array that involves

the integrals of polynomials over the inhomogeneity and
the elastic stiffness tensor CI. We note that KI

fmgfpg is sym-
metric and positive definite because of the positive defi-
niteness of the stiffness tensor CI.

In the matrix, we can postulate that

u ¼
XfNg
fmg¼0

bfmgx
m1
1 xm2

2 xm3
3 kxk

�2ðm1þm2þm3Þ; ð24Þ

where b{m} is an array of unknown constants to be deter-
mined. This functional form ensures that all the field quan-
tities vanish at infinity. Making use of (24) in the first of (6)
in conjunction with (7) and (8), one obtains

dUM ¼
Z

VM

r : dedV ¼
XfNg

fmg;fpg¼0

bfmgK
M
fmgfpgdbfpg; ð25Þ

where KM
fmgfpg is a known constant 3 � 3 array that involves

the integrals of polynomials over the matrix and the elastic
constants.

As noted earlier, to compute the interfacial strain from
(3), either the displacement field in the matrix or in the

inhomogeneity can be used. For convenience, we use the
displacement in the matrix (24). Thus, it follows from
using (24) in (3), one can compute

dUS ¼
Z

S
dCdS

¼
XfNg
fpg¼0

dbfpgF
S
fpg þ

XfNg
fmg;fpg¼0

dbfpgK
S
fpgfmgbfmg; ð26Þ

where FS
fpg and KS

fmgfpg are known constant 1 � 3 and 3 � 3
arrays that involve the integrals of polynomials over the
inhomogeneity/matrix interface and the intrinsic interfa-
cial elasticity tensors, C(1) and C(2).

Finally, variation of the Lagrange multiplier can be ob-
tained by using (20)

d
Z

S
k � ½u�dS ¼

XfNg
fmg;fpg¼0

dafpgðLI
fpgfmgafmg �HP

fpgfmgbfmgÞ

�
XfNg

fmg;fpg¼0

dbfpgH
M
fpgfmgafmg �

XfNg
fpg¼0

dafpgF
�
fpg;

ð27Þ

where LI
fmgfpg, HP

fpgfmg and HM
fpgfmg are known constant 3 � 3

matrices that involve the integrals of polynomials over the
inhomogeneity/matrix interface and the elastic stiffness
tensors of the inhomogeneity and the matrix, respectively,
and F�fpg is a known constant 1 � 3 vector that involves the
eigenstrain and integrals of polynomials over the inhomo-
geneity/matrix interface and the elastic stiffness tensors of
the inhomogeneity.

Substituting (23) into (25) and (27) into (12) yields

XfNg
fmg;fpg¼0

dafpg KI
fpgfmg þ LI

fpgfmg

� �
afmg �HP

fpgfmgbfmg
h i

þ
XfNg

fmg;fpg¼0

dbfpg KM
fpgfmg þ KS

fpgfmg

� �
bfmg �HM

fpgfmgafmg
h i

þ
XfNg
fpg¼0

dbfpgF
S
fpg � dafpgF

�
fpg

� �
¼ 0: ð28Þ

Since da{p} and db{p} are arbitrary and independent, (28)
leads to

XfNg
fmg¼0

KI
fpgfmg þ LI

fpgfmg

� �
afmg �HP

fpgfmgbfmg � F�fpg
h i

¼ 0;

fpg ¼ 0;1; . . . ; fNg; ð29ÞXfNg
fmg¼0

KM
fpgfmg þ KS

fpgfmg

� �
bfmg �HM

fpgfmgafmg þ FS
fpg

h i
¼ 0;

fpg ¼ 0;1; . . . ; fNg; ð30Þ

This is a system of 6 � N1 � N2 � N3 algebraic equations for
the same number of unknown constants a{m} and b{m}, for
fmg ¼ 0;1; . . . ; fNg. The explicit expressions of KI

fpgfmg,

KM
fpgfmg, KS

fpgfmg, HP
fpgfmg, HM

fpgfmg, fLg
I
fpgfmg, F�fpg and FS

fpg are
given in the appendix for a spherical inhomogeneity.
Once this system of equations are solved, displacements
fields in both the matrix and the inhomogeneity can be
evaluated by substituting a{m}, b{m} back to (22) and (24),
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respectively. Some numerical examples will be given in the
next section.

5. Numerical examples

As an example to illustrate the solution methodology
developed in previous sections, we consider a spherical
inhomogeneity of radius R = 4 nm embedded in an other-
wise infinite solid. A Cartesian coordinate system is at-
tached to the center of the inhomogeneity so that the
inhomogeneity is given by

X ¼ x1; x2; x3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
6 R

� �
: ð31Þ

For convenience, a spherical coordinate system ðr; h;uÞ, see
Fig. 2, is also introduced through

x1 ¼ r sin h cos u; x2 ¼ r sin h sin u; x3 ¼ r cos h: ð32Þ

For simplicity, we further assume that the interfacial
elasticity tensors are isotropic and given by (Dingreville
and Qu, 2008; Gurtin and Murdoch, 1975)

Cð1Þab ¼ s0dab; Cð2Þabjk ¼ ksdabdjk þ lsðdajdbk þ dakdbjÞ; ð33Þ

where s0 = 0.9108 N/m, ks = 6.8511 N/m, ls = �0.3760 N/m
(Miller and Shenoy, 2000).

In what follows, we will consider two cases, (1) both the
inhomogeneity and the matrix are elastically isotropic, and
(2) both the inhomogeneity and the matrix are elastically
cubic. The interfacial elasticity tensor above will be used
for both cases.

5.1. Isotropic inhomogeneity and isotropic matrix with
dilatational eigenstrain

Since this problem has been solved by Sharma and Gan-
ti (2004) and Sharma et al. (2003), it provides a benchmark
to validate our numerical solutions. To proceed, we assume
that the isotropic elastic Young’s and shear moduli for the
inhomogeneity and the matrix are given by kI = 50.66 GPa,
lI = 19.0 GPa, kM = 64.43 GPa, and lM = 32.9 GPa (Sharma
and Ganti, 2002). The prescribed eigenstrain is dilatational
e�ij ¼ e0dij, with e0 = 0.01.

Shown in Fig. 3 is the comparison of the radial displace-
ment between the present solution and that of Sharma
et al. (2003). The solutions presented in Fig. 3 were

obtained using N1 = N2 = N3 = 3 for the inhomogeneity
and N1 = N2 = N3 = 7 for the matrix. It is seen that the solu-
tion reproduces the existing result accurately.

5.2. Anisotropic inhomogeneity and anisotropic matrix

Because of the material anisotropy, the problem is no
longer spherically symmetric. Such anisotropic inhomoge-
neity problems have not been solved before when interfa-
cial stress is considered. To demonstrate that the
numerical method developed here is capable of handling
material anisotropy, we select CI

11 ¼ 83:0 GPa, CI
12 ¼ 45:0

GPa, CI
44 ¼ 40:0 GPa, CM

11 ¼ 118:0 GPa, CM
12 ¼ 54:0 GPa, and

CM
44 ¼ 59:0 GPa. For the numerical solutions, N1 = N2 =

N3 = 4 is used for the inhomogeneity, and N1 = N2 = N3 = 9
for the matrix.

First, consider the case where the eigenstrain is purely
dilatational, e�ij ¼ e0dij. The corresponding total radial strain
err and hoop strain ehh are plotted in Figs. 4 and 5, respec-
tively. The solid and dashed lines represent, respectively,
the solutions with and without considering interfacial
stress.

Several observations can be made. First, it is seen that
the total strain field inside the inhomogeneity is still a con-
stant independent of the orientation, same as in isotropic
materials. Second, the interfacial excess energy reduces
the total strain inside the inhomogeneity by more than
20%. This is because the interface acts as a stiff shell to con-
strain the expansion of the inhomogeneity, thus reducing
the stress concentration. Third, the strain in the ½110�
and ½�110� directions are identical, as expected from the cu-
bic symmetry under hydrostatic eigenstrain. Fourth,
although the elastic anisotropic has no effect inside the
inhomogeneity, the deformation in the matrix is orienta-
tion dependent. Finally, the effects of interface and elastic
anisotropy become negligible about 2 diameters away
from the inhomogeneity.

Next, consider a pure shear eigenstrain e�ij ¼ c0ð1� dijÞ.
The corresponding radial strain err and hoop strain ehh are
plotted in Figs. 6 and 7, respectively. The results show that,Fig. 2. A spherical coordinate system.

0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

r/R

ε r
r/

ε 0

Sharma et al., 2003
Present method

with interface effects

without interface effects

Fig. 3. Total radial strain err under dilatational eigenstrain. The solid lines
are from Sharma et al. (2003), and the symbols are numerical solutions
from this paper.
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in comparison to the previous example, the effects of inter-
face are much more pronounced when the inhomogeneity
is subjected to a shear eigenstrain. For example, the total
strain fields in the ½110� and ½�110� directions are no longer
anti-symmetric when the effects of interface is considered.
Further, the interfacial stress does not lower the total
strain magnitude consistently. In fact, it increases the total
strain amplitude in the ð�110Þ direction. More importantly,
the total strain inside the inhomogeneity becomes visibly
non-uniform. This is particularly obvious for the hoop
strain along the ½111� direction.

Once the displacement and strain fields are known, the
corresponding stress fields can be computed using the
Hooke’s law. When interfacial stress is considered, the
traction across the inhomogeneity/matrix interface is no
longer continuous. This is illustrated in Figs. 8 and 9, where
the distribution of rrr along different radial directions is

0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

r/R

ε r
r/

ε 0

[001]direction
[110]direction
[1̄10]direction
[111]direction

Fig. 4. Non-dimensional radial strain components err along different
directions under dilatational eigenstrain. The solid and dashed lines
represent, respectively, the solutions with and without considering
interfacial stress.
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Fig. 5. Non-dimensional hoop strain components ehh along different
directions under hydrostatic eigenstrain. The solid and dashed lines
represent, respectively, the solutions with and without considering
interfacial stress.
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plotted. The discontinuities at the interface are clearly
seen.

It follows from (11) that the jump in the interfacial trac-
tion across the interface is given byrs � (Rs). To understand
the traction jumps, the interfacial stress Rs

hh, Rs
uu, and Rs

uh

have been obtained. It can be shown analytically from
(18) that Rs

hh should be a constant under dilatational eigen-
strain. Our numerical results do confirm this. Under pure
shear eigenstrain, the interfacial stresses are no longer
constants. Fig. 10 shows Rs

hh along the azimuthal direction
under pure shear eigenstrains.

6. Conclusion

In this paper, we have developed a variational formula-
tion to solve the general anisotropic nano-inhomogeneity
problem incorporating the interfacial stress. We demon-
strated that the method is robust and accurate, and appli-
cable to non-spherical and anisotropic inhomogeneities, as
well as anisotropic matrix. As an example, we studied a
spherical nano-inhomogeneity with elastic cubic symme-
try. It is found that the interface stress lowers the strain

and stress fields when the eigenstrain is dilatational. This
is no longer the case when a pure shear eigenstrain field
is applied.
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Appendix A

For simplicity, the following notations are employed
here,

Xfmg ¼ xm1
1 xm2

2 xm3
3 ; eX fmg ¼ Xfmgkxkafmg ;

afmg ¼ �2ðm1 þm2 þm3Þ ðA:1Þ

and

CIJ ¼
I
J

� �
C

¼
i1 i2 i3

j1 j2 j3

� �
C

¼
Ci1 j1 Ci1 j2 Ci1 j3

Ci2 j1 Ci2 j2 Ci2 j3

Ci3 j1 Ci3 j2 Ci3 j3

264
375;
ðA:2Þ

where I = {i1 i2 i3} and J = {j1 j2 j3} are vectors that can take
1, 2, 3 corresponding [1 6 5], [6 2 4] and [5 4 3], respec-
tively. It should be mentioned that the boldface CIJ here
is a 3 � 3 matrix, while the italic Cij is one of the compo-
nents of the 6 � 6 stiffness matrix.

The matrix involved in (23) can be expressed as

KI
fpgfmgIJ ¼ CI

IJ : bI; ðA:3Þ

where

bI
ij ¼

Z
X

XfmgXfpg
mi

xi

pj

xj
dV : ðA:4Þ

The matrix in (25) is written as

KM
fpgfmgIJ ¼ CM

IJ : bM; ðA:5Þ

where

bM
ij ¼ ~bij þ miafpgb�ij þ pjafmgb

�
ji

� �
þ afmgafpgb̂ij

~bij ¼
R

VM

eX fmgeX fpg mi
xi

pj

xj
dV

b�ij ¼
R

VM

eX fmgeX fpg xj

xi

1
kxk2 dV

b̂ij ¼
R

VM

eX fmgeX fpg xixj

kxk4 dV

: ðA:6Þ

The matrix in (26) is

KS
fpgfmgIJ ¼

Z
S

eX fmgeX fpgC�IJ dS;

FS
fpgI ¼ s0

Z
S

eX fpg T2I
eV fpg2 þ T3I

eV fpg3

� �
dS; ðA:7Þ

where

C�ij ¼ KST2iT2j þ lST3iT3j

� �eV fmg2
eV fpg2

þ KST3iT3j þ lST2iT2j

� �eV fmg3
eV fpg3

þ kST2iT3j þ lST3iT2j
	 
eV fmg2

eV fpg3

þ ðkST3iT2j þ lST2iT3jÞeV fmg3
eV fpg2 ; ðA:8Þ
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Fig. 10. Interfacial stress Rs
hh under pure shear eigenstrain Rs

hh ¼ Rs
uu

� �
.
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eV fmgi ¼TijV
fmg
j ; ðA:9Þ

Vfmg ¼ m1

x1
þafmg

x1

kxk2

m2

x2
þafmg

x2

kxk2

m3

x3
þafmg

x3

kxk2

" #
: ðA:10Þ

In the above, T is the coordinate transform matrix. For
example, in the spherical coordinate system ðr; h;uÞ, we
can write

T ¼
sin h cos u sin h sinu cos h

cos h cos u cos h sinu � sin h

� sin u cos u 0

264
375: ðA:11Þ

Moreover,

LI
fpgfmgIJ ¼ CI

IJ : nM þ CI
JI : nP ; ðA:12Þ

HM
fpgfmgIJ ¼ CI

IJ : n̂M; HP
fpgfmgIJ ¼ CI

JI : n̂P; ðA:13Þ
F�fpgI ¼ EP

I : e�; ðA:14Þ

where

nM
ij ¼

Z
S

XfpgXfmgni
mj

xj
dS; nP

ij ¼
Z

S
XfpgXfmgni

pj

xj
dS; ðA:15Þ

n̂M
ij ¼

Z
S

eX fpgXfmgni
mj

xj
dS; n̂P

ij ¼
Z

S

eX fmgXfpgni
pj

xj
dS; ðA:16Þ

EP
IJK ¼ CI

JI : gP
K ; ðA:17Þ

gP
k

	 

ij ¼

Z
S

Xfpgni
pj

xj
xk dS: ðA:18Þ
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