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Metal oxidation is sustained by continuous diffusion of ions in the scale layer. At the same
time, stresses are induced in the scale layer and the base metal due to internal oxidation
and volumetric change when metal ions are oxidized. Such stress may in return affect
the diffusion of ions in the oxide layer, thus changing the oxidation kinetics. In this paper,
a continuum thermodynamic model is developed to account for such stress–diffusion
interaction in the oxidation of Cr–Fe alloys. The model predicts that the compressive stress
in the scale layer has a rather nonlinear distribution across the layer thickness with its
maximum at the metal–scale interface. Such stress significantly slows down the rate of oxi-
dation. Consequently, the growth kinetic is not strictly parabolic. It is found that the distri-
bution of stress and diffusive ions in the scale layer can be normalized by the oxidation rate
constant so that, with proper scaling, the numerical solutions given in this paper are appli-
cable to any value of the rate constant.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction Although mechanisms of oxidation-induced stresses
Growth of oxide scale on metallic alloys may cause sig-
nificant mechanical stress in the scale layer. In return, such
stress may affect the oxidation kinetics and may also lead
to scale spallation or detachment (Noden et al., 1968;
Rhines and Wolf, 1970; Stringer, 1970). Mechanisms of
stress generation in the scale may include heteroepitaxy
(Pieraggi and Rapp, 1988), Pilling and Bedworth Ratio
(PBR) of conversion from metal into scale (Huntz, 1988;
Kofstad, 1989), oxygen incorporation in substrate or reac-
tion composition of oxygen and metal, nonstoichiometric
vacancy concentration in the scale, etc. Among these, the
PBR, the ratio of the oxide molar volume to that of the me-
tal (Huntz, 1988; Kofstad, 1989), is believe to be primarily
responsible for the generation of stresses during selective
oxidation (Huntz, 1995), although oxygen incorporation
in substrate or reaction composition of oxygen and metal
may also introduces significant stresses in certain alloys.
. All rights reserved.
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have been studied extensively, very few attempts have
been made to develop computational models to describe
the oxidation–stress interaction process (Clarke, 2003;
Krishnamurthy and Srolovitz, 2004; Limarga et al., 2004).
Most of the existing models are based on the original con-
cept of Rhines and Wolf (1970). Clarke (2003) considered
the generation of lateral growth strain in response to the
counter-diffusion of cations and anions. By neglecting
stress relaxation, they have shown that the lateral growth
strain rate is proportional to the outward cation flux. Un-
der a steady-state condition, Limarga et al. (2004) derived
the average growth stress by assuming that the inward
oxygen diffusion occurs along grain boundaries. A more
general model describing the stress distribution in the
oxide scale is presented by Krishnamurthy and Srolovitz
(2004), in which they had formulated a continuum frame-
work that predicts the oxide scale growth rate and the spa-
tial distribution of stress and concentrations within the
scale. The stresses affect internal oxidation by changing
the free energy of the reaction and affect diffusion by
modifying the chemical potential. This allows the authors
to consider how the stress inhibits internal oxidation in a
thermodynamically and kinetically consistent manner.

http://dx.doi.org/10.1016/j.mechmat.2009.09.007
mailto:jianmin.Qu@me.gatech.edu
http://www.sciencedirect.com/science/journal/01676636
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In this work, we follow closely the approach of Krish-
namurthy and Srolovitz (2004) with a few notable differ-
ences. In our approach, the equations are formulated and
solved in the Eulerian framework. One of the advantages
of the Eulerian formulation is to allow the oxide lattice to
‘‘flow” upward, avoiding the complexity of computing the
velocities of metal–scale and scale–air interfaces and
greatly simplified the equations and their numerical solu-
tion. Another important difference is the use of a fully
coupled theory (Swaminathan et al., 2007) between
chemical reaction and mechanical stress, namely, not
only oxidation induces stress, in return stress also affects
the rate of oxidation. Furthermore, in this fully coupled
theory, not only the hydrostatic stress, but also the devi-
atoric stress needs to be considered. Details of these dif-
ferences and their consequences will be explained later
in this paper.

To develop our model, a binary alloy (16% wt Cr–Fe) is
used in this paper as a model material. It will be seen from
the derivation that the general approach presented here is
applicable to a wide range of alloys.
2. Model synopsis and assumptions used

Consider a Cr–Fe binary alloy exposed to an oxygen
gas environment (e.g., air) with a given oxygen partial
pressure at elevated temperature. Based on experimental
data (Seo et al., 1986; Wood et al., 1966), it is reasonable
to assume that at over 800 �C the only oxidation product
forming a scale layer on the alloy surface is Cr2O3. Obser-
vations from experiments (Hultquist et al., 1986; Seo
et al., 1986; Wood et al., 1966) give two different scale
morphologies for oxidation of Cr–Fe alloys at different
temperature regions. Below 500 �C, a layer of Fe2O3 exists
on the top of the oxide film (Hultquist et al., 1986).
Above 800 �C, though some Fe2O3 is observed at the very
early stage of oxidation, Cr2O3 is by far the dominant
compound in the oxide film at steady state (Seo et al.,
1986; Wood et al., 1966).

The very initial stage of oxidation process, which in-
cludes numerous different physical and chemical pro-
cesses, is extremely complicated. To date, there is no
consistent agreement on the formation mechanism of the
very first layer of oxide. To avoid such complexity, this pa-
per models the oxidation process only after an infinitesi-
mally thin scale layer had already formed. For simplicity,
we assume that the initial scale layer is Cr2O3 with a per-
fect (defect free) lattice structure.

When such a metal–oxide system is further exposed to
a given oxygen partial pressure at elevated temperature, a
layer of atomic oxygen will be adsorbed to the scale sur-
face (Atkinson, 1985). According to Cabrera and Mott (Cab-
rera and Mott, 1948), the adsorbed oxygen layer is atomic.
These oxygen atoms are then ionized by capturing the free
electrons in the scale layer. At the same time, oxidation-fa-
vored Cr atoms in the binary alloy are converted to ions at
the metal/scale interface. Consequently, counter diffusion
occurs, namely, both oxygen anion O00 at the gas–scale
interface and the chromium cation Cr� � � at the metal–scale
interface will diffuse into the scale layer driven by electro-
chemical potentials across the scale layer. When two Cr� � �

meet with three O00, oxidation reaction may take place to
form a Cr2O3. Depending on the rates of diffusion of these
reactive ions, new oxide may form near the metal–scale
interface, the gas–scale interface or within the scale layer.
Once formed, the Cr2O3 lattice is assumed non-diffusible,
although they can be transported due to the subsequently
created new Cr2O3 sites.

As discussed in the previous section, the diffusion paths
and the mechanism of internal oxidation in polycrystalline
oxides may be rather complex, and the locations of new
oxide within the existing scale layer may vary depends
on the material system. Nevertheless, effective diffusivities
of diffusing ions can be used to account for both grain
boundary and lattice diffusion by assuming that the scale
layer is a homogeneous continuum. Clearly, such a contin-
uum assumption also conveniently homogenizes the inter-
nal oxidation, namely, new Cr2O3 sites can be created
anywhere within the oxide layer.

In the Cr2O3 scale, Cr� � � cations diffuse much faster than
Fe ions (Hoshino and Peterson, 1985; Lobnig et al., 1992).
Therefore, it is assumed that the diffusion of Fe in the scale
layer is negligible. Furthermore, we assume that O ions do
not diffuse into the metal. Therefore, in our model, the me-
tal–scale interface is physically identified as the boundary
between regions without Fe and without O, respectively.

At the metal–scale interface, Cr atoms in the metal alloy
are striped of their electrons, and the resulting Cr� � � cations
jump across the metal–scale interface into the scale layer
driven by the electrochemical potential. This leaves behind
Cr vacancies in the metal alloy near the metal–scale inter-
face. The higher Cr vacancy concentration near the metal–
scale interface compels Cr atomic diffusion in the metal al-
loy toward the interface. Although the metal substrate is
assumed to be infinitely thick so that the supply of Cr is
infinite, experiments (Hultquist et al., 1986; Seo et al.,
1986) indicate that local (near interface on the metal side)
Cr depletion occurs. This means that the rate of converting
Cr atoms into Cr� � � cations is faster than that of Cr atomic
diffusion in the metal alloy.

The decreasing Cr (or increasing Cr vacancy) concentra-
tion in the metal near the scale–metal interface typically
generates tensile stress in the metal. In addition, internal
oxidation increases the volume of the oxide scale not only
in the thickness direction, but also in the plane of the scale
layer. The latter induces additional stress in the scale and
the metal substrate.

A key element of the current model is the stress-depen-
dent chemical potentials for the various species involved.
Such stress-dependent chemical potentials affect the oxi-
dation process in two ways. First, they introduce the stress
into the diffusion equations so the fluxes are stress-depen-
dent as well. Second, they bring the stress into the total
free energy of the system, which controls the rate of oxida-
tion/reduction reaction. Without the influence of stress,
the rate of chemical reaction is dictated solely by the con-
centrations of reactants and products. When mechanical
stress is involved, the elastic strain energy becomes a part
of the total free energy. A chemical reaction can take place
only if the total free energy is to be reduced. In other word,
even if a chemical reaction reduces the total chemical
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energy, it may not take place unless the amount of reduc-
tion in chemical energy is more than the increase in
mechanical (strain) energy.

Having described the basic framework of the model, we
proceed to derive the appropriate governing equations and
boundary/initial conditions.

3. Governing equations

Shown in Fig. 1 is a schematic of the metal–scale–oxy-
gen structure, where a Cartesian spatial (Eulerian) coordi-
nate system xi (i = 1, 2, 3) has been introduced so that the
metal–scale interface is located at x3 = 0. During the entire
oxidation process, this coordinate system is treated as a
reference frame fixed to the metal–oxide interface. All
the governing equations and boundary conditions will be
presented in this Eulerian coordinate system.

When writing the field quantities related to deforma-
tion such as strain and stress, it is often convenient to
introduce the Lagrangian reference frame Xi (i = 1, 2, 3).
We assume in this paper that Xi coincide with xi initially
at t = 0. The two coordinates are related by

x ¼ Xþ UðX; tÞ or X ¼ x� UðXðxÞ; tÞ ¼ x� uðx; tÞ; ð1Þ

where U(X, t) is the particle displacement of the particle X,
while u(x, t) can be interpreted as the displacement of the
particle instantaneously located at x.

3.1. Kinematic equations

The total deformation gradient tensor F is related to the
displacement vector U(X, t) through

F ¼ FeFc ¼ IþrXU; or F�1 ¼ ðFeFcÞ�1 ¼ I�ru: ð2Þ

The eigentransformation due to compositional change is
given by

Fc ¼ Jc1=3
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

X
s
gsDcs

q
I: ð3Þ

where gs is the coefficients of compositional expansion
(CCE) and Dcs is the deviation of molar fraction of cs from
its stoichiometric composition (Swaminathan et al., 2007).
Binary Metal (Cr-Fe)

Gaseous Oxygen (O2) 3x

1x
Oxide Scale (Cr2O3)

O′′

Cr 6e

2Cr

2

3O

3

Atomic Oxygen (O)

Fig. 1. Schematic of the metal–oxide–gas structure (not to scale).
For the oxidation problem considered here, there are
several species in the scale layer 0 6 x3 6 h that may change
their compositions. They are, respectively, Cr� � � (s = Cr), O00

(s = O) and Cr2O3 (s = p), due to the formation of oxide from
Cr� � � and O00. For Cr2O3, we have gp = (2 + 3)/3=5/3, while
gCr��� and gO can be measured experimentally or computed
using molecular dynamic simulations (Swaminathan and
Qu, 2009). In the metal (x3 < 0), chromium atom (s = Cr(a))
is the only independent diffusible species.

It then follows from the second of (2) that

Fe ¼ ðI�ruÞ�1 � Fc�1 ¼ I�ru�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

P
sgsDcs

p ; ð4Þ

Ee ¼ 1
2
½ðFeT

Fe � I�

¼ 1
2

1
1þ 2

P
sgsDcs

½ðI�ruÞ�1�TðI�ruÞ�1 � I
� �

: ð5Þ
3.2. Kinetic equations

The mechanical stresses in both the oxide scale and the
metal substrate must satisfy the equilibrium equations. In
terms of the first Piola–Kirchhoff stress tensor, the equilib-
rium equations can be written as

rX � r0 ¼ ðrx � r0Þ : F ¼ 0; ð6Þ

where the first gradient operator is with respect to the
Lagrangian coordinates X and the second one is with re-
spect to the spatial coordinates x as indicated by the sub-
script. Making use of the Hooke’s law, one can express
the first Piola–Kirchhoff stress tensor in term of the defor-
mation gradients,

r0 ¼ C : Ee � FT ; ð7Þ

where C is the elastic stiffness tensor. In this paper, it is as-
sumed that C is independent of Dcs.

3.3. Stress-dependent chemical potential

Strictly speaking, electrochemical potentials should be
used for the oxidation process. However, if local electro-
neutrality is assumed (as done in this paper), the diffusion
process can be described using the chemical potential
alone (Swaminathan et al., 2007). For most insulating and
semi-conducting ceramics, local electroneutrality is an
excellent assumption throughout the film, except for thin
surface layers of a few nanometers (Dechamps and Barbier,
1991; Krishnamurthy and Srolovitz, 2003). The stress-
dependent chemical potential for a species s in ionic solids
has been derived in by Swaminathan et al. (2007),

ls ¼ l0
s þ RT ln cs þ Vm

s ss ð8Þ

where l0
s is the chemical potential of species s at some ref-

erence state, R and T are the universal gas constant and
temperature, respectively, Vm

s is the molar volume of spe-
cies s in its nature (stress-free stoichiometric state). The
last term in (8) is the stress-dependent part of the chemical
potential derived in (Swaminathan et al., 2007). If one
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assumes that the elastic stiffness tensor is independent of
concentration, then ss reduces to

ss ¼ gs
3
2

Ee : C : Ee � 1
Jc tr½F � r0�

� �
; ð9Þ

where Jc = ||Fc|| is the Jacobian of the deformation gradient
tensor, and Ee is the elastic strain given by (5).

3.4. Oxidation–reduction reaction in the scale layer
(0 6 x3 6 h)

During oxidation, every two Cr� � � and three O00 will form
a chromium oxide (chromina) Cr2O3, or vice versa, i.e.,

2Cr��� þ 3O00 � Cr2O3: ð10Þ

Statistically speaking, both oxidation (forward) and reduc-
tion (backward) reactions may take place simultaneously.
When the forward reaction is more favorable, there is a
net increase of the product (Cr2O3). The newly formed
oxide creates new lattice sites leading to scale growth. This
is possible if and only if the forward reaction decreases the
total free energy, i.e.,

dG ¼ dlp � 2dlCr � 3dlO < 0; ð11Þ

where lCr, lO and lp are, respectively, the chemical poten-
tials of Cr� � �, O00 and the product Cr2O3. Clearly, chemical
equilibrium is achieved when dG = 0.

It follows from the chemical Eq. (10) that the rate of for-
ward reaction is given by kf c2

Crc
3
O, and the rate of backward

reaction is given by kbcp, where kf and kb are the reaction
rate constants of the forward and backward reactions,
respectively. Therefore, the net rate of increase of the prod-
uct is given by

Rp ¼ kf c2
Crc

3
O � kbcp: ð12Þ

At chemical equilibrium, the net rate should be zero.
Since the chemical potentials are stress-dependent, it

can be easily shown that the reaction rate constants kf

and kb are stress-dependent,

kf ¼ k0
f exp �

Vm
p sp

RT

" #
; kb ¼ k0

b exp �2Vm
CrsCr þ 3Vm

O sO

RT

� �
;

ð13Þ

where k0
f and k0

b are, respectively, the forward and backward
reaction rate constants when there is no mechanical stress.

3.5. Diffusion and fluxes

In the scale layer (0 6 x3 6 h), it is assumed that the
oxide (product) does not diffuse, although its lattice may
still move (convection) due to internal oxidation. The diffu-
sion fluxes of Cr� � �and O00 are related to their chemical
potentials through

Js ¼ �
Dscs

RT
rls; for s ¼ Cr and O ð14Þ

where r is the gradient operator with respect to the spa-
tial coordinates x, and Ds is the effective diffusivity of spe-
cie s in the oxide scale. Substitution of (8) into (14) yields,
Js ¼ �
Dscs

RT
RT
rcs

cs
þ Vm

s rss

� �
; for s ¼ Cr and O ð15Þ

Similarly, in the metal substrate (x3 < 0), diffusion flux of
chromium is given by

JCrðaÞ ¼ �
DCrðaÞcCrðaÞ

RT
RT
rcCrðaÞ

cCrðaÞ
þ Vm

CrðaÞrsCrðaÞ

� �
; ð16Þ

where DCr(a) is the diffusivity of atoms in the metal alloy.
It is noted that the mass diffusion and their fluxes dis-

cussed above are the mass motion relative to a background
lattice. In the scale layer, this background lattice is the
Cr2O3 lattice already formed. In the metal substrate, this
background lattice is the original Cr–Fe lattice.

3.6. Continuity equation

When new oxide is created near the scale–metal inter-
face, or internally within the scale layer, the existing Cr2O3

lattice will move up to accommodate the new lattice sites.
Therefore, the motion of a diffusible species in the oxide
scale consists of both diffusion relative to the background
lattice and the transport of the background lattice itself.
This situation is called convective diffusion (Levich,
1962). The continuity equation in a fixed coordinate (Eule-
rian description) system for the product is thus given by

@cp

@t
¼ Rp �r � ðcpvÞ: ð17Þ

where Rp is the net rate of oxide generation given by (12),
and v = v(x, t) = o u(x, t)/ot is the spatial velocity distribu-
tion given as a function of time t and the Eulerian coordi-
nates x. The left hand side of (17) is the change of
product concentration. It equals the rate of product gener-
ation plus the net flow (convection) due to the transport of
the existing background lattice. This convective term is
necessary because convection may also change the concen-
tration locally at a fixed spatial location. The inclusion of
this convective term in (17) is one of the major differences
between the present model and that of (Krishnamurthy
and Srolovitz, 2004).

For the diffusing ions, the mass transport due to diffu-
sion needs to be included in the continuity equation. Thus,
the continuity equations for Cr� � � and O00 become

@cCr

@t
¼ �2Rp �r � JCr �r � ðcCrvÞ; ð18Þ

and

@cO

@t
¼ �3Rp �r � JO �r � ðcOvÞ: ð19Þ

In other words, the time–rate of change of the ion concen-
tration equals to the local consumption (�2Rp for Cr� � � and
�3Rp for O00), plus the diffusion and the convection.

In the metal substrate, the only contribution to the local
rate of change of Cr concentration comes from diffusion.
Thus, the continuity equation becomes

@cCra

@t
¼ �r � JCrðaÞ ð20Þ
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3.7. Boundary value problem

Consider the oxide scale first. It follows from (2)–(5)
that r0, Fe, Fc and Ee can be expressed in terms of the six
unknown scalar functions u(x, t) and cs(x, t) for s = Cr, O
and p. Making use of these relationships in the continuity
conditions (17)–(19) and the kinetic condition (6) yields
six partial differential equations for the six unknown scalar
functions u(x, t) and cs(x, t) (s = Cr, O and p).

Similarly, in the metal substrate, it follows from (16),
(20), (7), and (5) that r0, Fe, Fc and Ee can be expressed in
terms of four unknown scalar functions u(x, t) and
cCr(a)(x, t). Making use of these relationships in the continu-
ity condition (20) and the kinetic condition (6) yields four
partial differential equations for the four unknown scalar
functions u(x, t) and cCr(a)(x, t).

With proper continuity conditions at the scale–air and
metal–scale interfaces, and proper boundary conditions
on the sides of the structure depicted in Fig. 1, these partial
differential equations formulate a boundary value problem
that can be solved to obtain the deformation, stresses and
the defect concentration throughout the scale layer and the
metal substrate, as well as the oxidation kinetics.
4. One-dimensional examples

To illustrate the utility of the model formulated above
and to reveal certain fundamental features of the model
predictions, we present some numerical examples in this
section. To this end, we assume that all the material prop-
erties are independent of the ion concentration. Also, the
scale layer and the metal substrate are assumed to be lin-
early elastic and isotropic solids with En and mn being the
elastic constants for the oxide (n = 1) and the metal
(n = 2). Furthermore, it is assumed that the elastic con-
stants are independent of the defect concentration. This
is valid for dilute ion concentrations.

Next, we assume that the boundary conditions on the
vertical sides are such that the total width of the sample
as shown in Fig. 1 remains the same, and the scale grows
in the vertical (x3) direction only. Consequently,
u1 = u2 = 0, u3 = u3(x3, t) and cs=cs(x3, t). Therefore, the prob-
lem becomes effectively one-dimensional, and all the filed
quantities depend on the vertical coordinate x3 only.

To facilitate the numerical solutions, we introduce a
length scale k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCr=k0

f

q
and a time scale s ¼ 1=k0

f . The
non-dimensional time, spatial coordinate and displace-
ment can then be defined as,

x̂3 ¼
x3

k
; û ¼ u

k
; t̂ ¼ t

s : ð21Þ

One advantage of such normalization is that the governing
equations and boundary conditions become independent
of k0

f when written in terms the above non-dimensional
variables.

4.1. Governing equations in one-dimensional

For the specific one-dimensional problem considered
in this section, it is easy to see that in both the scale layer
and the metal substrate, the only non-zero stress compo-
nents are r0

11 ¼ r0
22. This leads to

@û3

@x̂3
¼ 1þ m1

1� m1

X
k

gkDck ð22Þ

Consequently, in the scale layer, the continuity Eqs. (17)–
(19) become

@cCr

@t̂
¼ �2c2

Crc
3
O exp �ĝp

X
s

gsDcs

 !
þ @

2cCr

@x̂2
3

þ ĝCr
@

@x̂3
cCr

X
s

gs
@cs

@x̂3

" #
� @

@x̂3
cCr

@û3

@t̂

� �
; ð23Þ

@cO

@t̂
¼ �3c2

Crc
3
O exp �ĝp

X
s

gsDcs

 !
þ DO

DCr

@2cO

@x̂2
3

þ ĝO
DO

DCr

@

@x̂3
cO

X
s

gs
@cs

@x̂3

" #
� @

@x̂3
cO
@û3

@t̂

� �
; ð24Þ

@cp

@t̂
¼ c2

Crc
3
O exp �ĝp

X
s

gsDcs

 !
� @

@x̂3
cp
@û3

@t̂

� �
; ð25Þ

where

ĝs ¼
2Vm

s E1gs

RTð1� m1Þ
ð26Þ

measures the coupling between stress and diffusion.
Furthermore, it follows from (7) and (9) that the non-

zero stress components in the scale layer are

r0
11 ¼ r0

22 ¼ �
E1

1� v1

X
s

gsDcs; ð27Þ

and the stress-dependent part of the chemical potential is

ss ¼
2E1gs

1� m1

X
k

gkDck: ð28Þ

In the metal substrate, the continuity Eq. (20) becomes

@cCrðaÞ

@t̂
¼ DCrðaÞ

DCr

@2cCrðaÞ

@x̂2
3

þ ĝCrðaÞ
DCrðaÞ

DCr

@

@x̂3
cCrðaÞgCrðaÞ

@cCrðaÞ

@x̂3

� �
:

ð29Þ

The non-zero stress components in the metal substrate are

r0
11 ¼ r0

22 ¼ �
E2

1� m2
gCrðaÞDcCrðaÞ: ð30Þ

And the corresponding stress-dependent part of the chem-
ical potential is

sCrðaÞ ¼
2E2gCrðaÞ

1� m2
gCraDcCra: ð31Þ

It can be easily seen that the above stress fields automati-
cally satisfy the equilibrium Eq. (6).

4.2. Boundary conditions

In addition to the governing equations above, interface
conditions need to be specified. In the structure shown in
Fig. 1, there are two interfaces, the metal–scale interface
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and the scale–air interface. At these interfaces, the follow-
ing conditions must be satisfied: (a) continuity of mass flux
of each species, (b) continuity of chemical potential of each
species for adsorption and ionization reaction, respec-
tively, (c) continuity of displacement and (e) continuity
of traction. These conditions are described below.

4.2.1. Metal–scale interface (x3 = 0)
At the metal–scale interface, ionization of Cr atoms is

assumed to be an equilibrium process. Thus, continuity of
chemical potentials must hold between Cr� � � ions and Cr
atoms, i.e.,

l0
Cra � l0

Cr

RT
þ ln

cCrðaÞ

cCr
¼ ĝCr

X
k

gkDck � ĝCragCrðaÞDcCrðaÞ: ð32Þ

Conservation of mass for Cr across the interface leads to

@cCra

@x̂3
þ ĝCrðaÞ cCragCrðaÞ

@cCrðaÞ

@x̂3

� �

¼ DCr

DCrðaÞ

@cCr

@x̂3
þ ĝCr

DCr

DCrðaÞ
cCr

X
s

gs
@cs

@x̂3

" #
: ð33Þ

Furthermore, per the assumption that noO00 can cross the
interface into the metal, theO00 flux must cease at the inter-
face, i.e.,

@cO

@x̂3
þ ĝO cO

X
s

gs
@cs

@x̂3

" #
¼ 0: ð34Þ

Finally, traction continuity is automatically satisfied by the
choice of stress components, and the continuity of dis-
placement leads to

û3jx̂3¼0þ ¼ û3jx̂3¼0� : ð35Þ
Table 1
Material properties of 16% (wt) Cr–Fe alloy and its oxide.

Symbol Value

Chromia properties
Chemical expansion

coefficient
gCr 0.05

gO 0.02
gp 5/3

Diffusivity of
chromium ion

DCr 5.8 � 10�16 cm2/s

Diffusivity of
oxygen ion

DO 3.0 � 10�16 cm2/s

Temperature T 1073 K
Young’s modulus E 250 GPa
Poisson’s coefficient V 0.27
Molar volume Vp = M(Cr2O3)/q 2.92 � 10�5 m3/mol

16% (wt) Cr–Fe alloy
properties

Chemical expansion
coefficient

gCr(a) 0.05

Diffusivity of vacancy DCr(a) 6 � 10�16 cm2/s
Young’s modulus E 162.3 GPa
Poisson’s coefficient V 0.29
4.2.2. At the scale–air interface ðx̂3 ¼ h=kÞ
At the scale–air interface, equilibrium condition is as-

sumed for ionization of oxygen (in the air), i.e.,

1
2RT

l0
O2
þ ln P1=2

O2
¼ l0

O

RT
þ ln cO þ ĝO

X
k

gkDck: ð36Þ

Where l0
O2

is the standard chemical potential of oxygen gas
and PO2 is the oxygen partial pressure in the air. Note that h
is not known a priori. It is a function of time that needs to
be solved. In addition, since the Cr� � � ion cannot leave the
scale, its flux must follow the Stefan (Garcia and Kovacs,
1994) condition at the scale–air interface, i.e.,

@cCr

@x̂3
þ ĝCr cCr

X
s

gs
@cs

@x̂3

" #
¼ �cCr

dû3

dt̂
: ð37Þ

Furthermore, it is assumed that, in comparison with the
stresses in the scale layer, the atmosphere pressure is neg-
ligible in typical applications. Thus, the scale–air interface
can be viewed as a traction free surface which is satisfied
by the choice of the stress components.

An additional condition needed is cCr(a) = C as x3 ? �1.
This is equivalent to assuming the Cr concentration is a
constant deep inside the base metal.
5. Numerical solution procedure

In this paper, the governing equations above are solved
by a finite-difference method. A very thin initial scale
thickness h(t)|t=0 = h0 = 20 nm is assumed initially. The
material properties of 16% (wt) Cr–Fe alloy and its oxide
used in the numerical simulation are listed in Table 1
(Hammer, 2002; Horiguchi and Shindo, 2003; Tsai et al.,
1996; Yoshimura et al., 2004). Oxygen partial pressure is
set to be 0.3 atm at the air–oxide interface. Furthermore,
it is assumed that once the oxide is formed, it is stable
and no reduction takes place. This means that backward
reaction rate constant k0

b ¼ 0.
By substituting (22) into (23), (24), (25), and (29) to

eliminate u3, we arrive at four partial differential equations
with four unknown functions. They are cCr, cO, cp in the
oxide scale and cCr(a) in the metal. These four equations
were solved by an explicit finite-difference method. The
time step used is Dt = 1 s . The initial scale layer of thick-
ness h0 was first divided evenly into n = 3 elements with
n + 1 = 4 nodes across the thickness. At t = 0, all the quanti-
ties cCr, cO, cp are known throughout the initial scale layer,
and cCr(a) is known throughout the metal. Eqs. (23), (24),
(25), and (29) can then be integrated with respect to time
to obtain the values of cCr, cO, cp and cCr(a) at the next time
step, t = Dt. The integration constants are determined by
the initial and boundary conditions. Once the values of
cCr, cO, cp are known for t = Dt, the displacement u3(x, t)
can be obtained from (22). Consequently, the scale thick-
ness at t = Dt is given by h1 = h0 + u3(h0, Dt). The above pro-
cess is then repeated N times to obtain the solutions at any
desired time, t = NDt.
6. Results and discussion

The scale thickness is plotted as the solid line in Fig. 2.
The triangle symbols in Fig. 2 are the experimental results
by Kurokawa et al. (2004). For comparison purpose,
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numerical results without accounting for the stress–diffu-
sion interaction are also plotted in the same figure as the
dotted line. It is seen that neglecting the stress–diffusion
interaction overestimates the scale thickness, particularly
over longer time period. This is because the compressive
stress developed in the scale layer can significantly reduce
the diffusion of ions, thus slowing down the scale growth.

Shown in Fig. 3a is the stress distribution across the
thickness of the scale layer at four different oxidation
times. The thickness is measured from the metal–scale
interface. The right end of the curves indicates the thick-
ness of the scale when the stress distribution is measured.
It is seen that spatially the maximum (compressive) stress
occurs at the metal–scale interface, and decreases gradu-
ally away from it. Very near the air–scale interface, the
stress decreases abruptly. The temporal evolution of the
stress at several different locations within the scale layer
is shown in Fig. 3b. It is seen that the compressive stress
increases with time, and eventually saturates. For the
example considered here, the maximum saturated com-
Fig. 2. Oxidation kinetics profile of 16% (wt) Cr alloy.

Fig. 3a. Stress distribution along scale thickness at different times.
pressive stress is about 2.6 GPa, occurring on the scale side
of the metal–scale interface. Interestingly, the newly
formed oxide starts with zero stress, increases very quickly
within a few minutes to a somewhat saturated value. This
is because when new oxide just formed, it is not fully dense
yet. There is still room for adding more oxide before com-
pressive stresses are fully developed. Once the density
reaches a threshold value, stress will remain relatively con-
stant. This result contradicts that of (Krishnamurthy and
Srolovitz, 2003) where the numerical results seem to indi-
cate that the stress at any point in the scale layer keeps
increasing without bound.

To further illustrate the oxidation kinetics, the stress-
dependent oxidation rate constant kf as given by the first
of (13) is plotted in Fig. 4 at four different locations in
the scale. As expected, at a given location, the oxidation
Fig. 3b. Stress evolution over time at different locations within the scale
layer.

Fig. 4. Oxidation reaction rate constant (normalized) versus time at d
within the scale layer.



Fig. 5. Distribution of Cr ion across the scale thickness at different time. Fig. 6. Distribution of O ion across the scale thickness at different times.
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rate starts at a higher value, decreases very quickly to al-
most zero. This is consistent with the stress distribution
shown in Fig. 3a and b, i.e., compressive stress in the oxide
grows rapidly to prohibit further internal oxidation. Conse-
quently, new oxide grows primarily on the air–scale inter-
face, which is consistent with experimental observations
(Brylewski et al., 2001) that Cr ion diffusion is predominant
in the oxide layer for Cr–Fe alloys. In fact, if new oxide is
formed primarily on air–scale interface, there must be
strong upward diffusion of Cr ions. This can also be seen
from the Cr ion distribution across the scale thickness as
shown in Fig. 5. Because of the prescribed constant supply
of Cr atoms at the metal substrate, the concentration of Cr
ion in the scale layer near the scale–metal interface is the
highest and remains constant, cCr � 0.018. Cr ion concen-
tration is the lowest near the air–scale interface, and con-
tinuously decreases with time.

On the other hand, the oxygen ion concentration is the
lowest (cO � 0.012) at the scale–metal interface, and re-
Fig. 7. Distribution of oxide velocity across
main almost constant for about 1/3 of the scale thickness,
as shown in Fig. 6a. It then increases quickly towards the
air–scale interface and reaches the prescribed cO = 0.025,
a value dictated by the prescribed oxygen partial pressure
PO2 ¼ 0:3 and (36).

To further understand the oxidation kinetics, upward
motion velocity of the oxide lattice û3ðx̂3; t̂Þ is plotted in
Fig. 7 across the scale-layer thickness at different times.
It is seen that after about 100 h, the oxide lattice over much
of the scale-layer no longer move upward anymore. In
other words, convective motion of the lattice due to inter-
nal oxidation is significant only very near the air–scale
interface. This also implies that internal oxidation eventu-
ally becomes insignificant over long time oxidation, and
the growth of new oxide is primarily at the air–scale inter-
face. The oxidation is thus controlled primarily by the up-
ward diffusion of Cr ions across the scale-layer, and the
kinetics becomes parabolic. This is further verified by plot-
ting the parabolic rate constant kp ¼ ĥ2=t̂, see Fig. 8. It is
the scale thickness at different times.



Fig. 8. The evolution of kp over time.
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seen that the kinetics is not parabolic in the early stage of
oxidation.

7. Summary remarks

In this paper, a continuum thermodynamic model is
developed to account for stress–diffusion interaction in
the oxidation of Cr–Fe alloys. In comparison with other
existing models, the present approach is formulated in
the Eulerian framework. One of the advantages of the Eule-
rian formulation is to allow the oxide lattice to ‘‘flow” up-
ward, avoiding the complexity of computing the velocities
of metal–scale and scale–air interfaces and greatly simpli-
fying the equations and the numerical solution. Another
important advance is the use of a fully coupled theory
(Swaminathan et al., 2007) between chemical reaction
and mechanical stress, namely not only oxidation induces
stress, but in return stress also affects the rate of oxidation.
In this fully coupled theory, not only the hydrostatic stress,
but also the deviatoric stress needs to be considered. The
model provides detailed distribution of stresses in the scale
layer, as well as concentration distributions of all diffusing
species in the system. The model results provide clear in-
sight of oxidation mechanisms and how the stress affects
the diffusion and oxidation process. It is found that the dis-
tribution of stress and the concentration of diffusible spe-
cies can be scaled by the oxidation reaction rate constant.
This means that, with proper scaling, the numerical results
in the dimensionless form can be used for any value of the
reaction rate. Finally, it should be point out that, although it
is developed based on a Cr–Fe alloy, the present model can
be easily extended to many different types of binary alloys.
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