Models for compaction band propagation
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Abstract: A compaction band is modelled as a thin, ellipsoidal heterogeneity with an imposed
inelastic compactive strain and different elastic moduli from the surrounding matrix. Previously
published results are used to determine the siress state in the band. For a wide variation of
properties, stress conditions, and inelastic strain, the stress state in the band for aspect ratios
ohserved in the field, 107°-107, is indistinguishable from the result in the zero aspect ratio
limit. In this limit, the compressive stress immediately adjacent to the band tip is roughly 10—
100 times the far-field stress for parametess representative of field conditions. This value is rela-
tively insensitive to the elastic mismatch between the band and the surrounding material, and s
primarily contrelled by the ratio of the far-field stress to twice the shear modulus times the inelastic
compactive strain. This ratio is inferred to be about 0.02—0.05 from published field results, but
may be several times larger for laboratory specimens. The ratio of tip o far-field siress increases
with decrease of band shear modulus and becomes unbounded if hoth the shear modulus and
aspect ratio go to zero. A combined anti-crack-dislocation model, in which a compactive relative
displacement 24 is specified in the centre of the band and uniform traction elsewhere, predicts that
for growth at constant energy release rate k is proportional to +/L where L is the half-length of the
band. For an energy telease rate of 40 kI m™2, inferred in an earlier study from field observations
and comparable with compaction energies inferred from laboratory tests on circumferentiafly
noiched compression samples, the constant of proportionality is consistent with that inferred

from laboratory observations and earlier field data.

In brittle rocks, shear deformation in localized
zones is typically accompanied by dilation (porosity
increase) or compaction {porosity decrease). In a
limiting case, localized, roughly planar zones of
solely compaction, without shear, can occur perpen-
dicular to the maximum compressive stress. Such
structures, called compaction bands, have been
identified in porous sandstone formations in the
field {(Mollema & Antonellini 1996; Sternlof et al.
2005; Sternlof 2006), in axisymmetric compression
experiments on several porous sandstones (Olsson
1999; Olsson & Holcomb 2000, Wong et al.
2001; Holcomb & Olsson 2003; Baud et al, 2004;
Fortin ef al. 2006) and emanating from borehole
breakouts in laboratory experiments on porous
sandstone (Haimson & Song 1998; Haimson 2001,
2003; Klaetsch & Haimson 2002; Haimson & Lee
2004). Although this mode of localized deformation
has attracted attention in rocks only recently, it has
been observed in a variety of other porous materials,
including metal foams (Bastawros et al. 2000; Park
& Nutt 2001), polycarbenate honeycomb (Papka &
Kyriakides 1998), snow (J. Desrues, pers. comm.),
ice (Kirby ef wl. 1992) and large deformation of
porous elastomers (Kinney er al. 2001). Both lab-
oratory (Holcomb & Olsson 2003; Vajdova et al.
2004) and field studies (Antonellini & Aydin
1994, 1995; Sternlof er al. 2004; Sternlof 2006)
have shown that compaction bands can inhibit
flow across them. The porous rocks in which these

bands have been observed are typical of reservoir
rocks. The presence of compaction bands in such
formations can form impermeable barriers and
adversely affect the use of these rocks for a
variety of applications, such as aquifer manage-
ment, hydrocarbon recovery and storage, and CQO,
sequestration (Wawersik et af. 2001).

There are many differences between the
structures observed in the laboratory and in the
field but an obvious one is their length. The lengths
of bands observed in the field (Mollema &
Antonellini 1996; Sternlof er al. 2003; Sternlof
2000) are of the order of tens of metres. In contrast,
the lengths of the bands in the experiments are
limited to the width of the specimen, a few centi-
metres. In addition, the bands in the experiments
appear suddenly across the entire width, or, at
least, extend across the width rapidly in comparison
with the rate of loading (Wong e al. 2001; Baud
et al. 2004; Fortin et al. 2006). The constraint
created by the larger amount of material surrounding
the bands in the field is certainly one factor in the
differences in extension. In an effort to understand
better the conditions for extension of compaction
bands, Vajdova & Wong (2003) and Tembe ef af.
(2006} conducted axisvmmetric compression tests
on circumferentially notched specimens. They
observed incremental propagation of compaction
bands from the notch edge that coincided with
bursts of acoustic emission activity.
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One possible mechanism for band extension
is that the presence of the band increases the com-
pressive stress ahead of the band {the component
perpendicular to the plane of the band or, possibly,
the hydrostatic stress} to a level that favours band
extension. A second, more complex possibility is
that the presence of the compaction band alters the
stress and deformation field just ahead of the band
in a way that makes it more favourable for localized
compaction according to the criterion that has been
used with some success to model the onset of band
formation (Issen & Rudnicki 2000; Rudnicki 2003,
2004; Bésuelle & Rudnicki 2004; Challa & Issen
2004; Grueschow & Rudnicki 2005). Essential to
evaluation of either mechanism is knowledge of
the stress state ahead of the band. Here we calculate
the stress within the band and adjacent to the band tip

"using a model of the band as a flat, ellipsoidal
inclusion subjected to an inelastic compactive
strain and having different elastic moduli from the
surrounding matrix material.

Although knowledge of the stress state ahead of
the band tip is necessary to evaluate propagation, it
is not sufficient. Extension of the band by localiz-
ation depends on the inelastic properties of the
material. For extension by elevation of the stress
ahead of the band, the level of the stress needed
must be known. Furthermore, the stress field at
the tip of the band depends on the detailed structure
there. In a later section, we summarize an energy
release criterion for propagation suggested by
Rudnicki & Sternlof (2005) that does not depend
on the details of the near-tip field.

Finally, we examine a combined anti-crack—
dislocation model motivated by a suggestion by
Sternlof (2006) and by the observed variation of
midpoint band width with length reported by
Sternlof et al. (2005). The model has a closing
mode dislocation, representing inelastic compaction
specified over the central portion of the band and
uniform traction, equal to the difference between far-
field compressive normal stress and a resistive band
stress, specified over the rematnder. The magnitude
of this traction is specified by the requirement that
the relative displacement should vary smoothly at
the ends of the central dislocation.

Compaction band as ellipsoidal
inhomogeneity

At present, the only detailed study of compaction
bands in the field is that of Stemlof (2006) on the
Aztec Sandstone of the Valley of Fire, Nevada. A
striking feature of these data is that profiles of the
width of the bands v. length are very nearly
elliptical, although the aspect ratio is very small,
107*-10"". Sternlof et al. (2005) figure 4a shows

1700 measurements of thickness v. length for 16
band traces. The measurements have a correlation
index of 0.79 with an ellipse drawn through the
data. Stemnlof ef al. figure 4¢ shows data for a single
band 24.75 m long with a correlation index of 0.87.
These data strongly suggest modelling the bands as
ellipsoidal inhomogeneities, which makes it possible
to take advantage of the well-known results of
Eshelby (1957).

The compaction band is idealized as an ellipsoi-
dal region with different elastic properties from the
surrounding material (Fig. 1). The surrounding
material is assumed to be of infinite extent (that is,
of extent much greater than that of the compaction
band) and loaded at infinity by compressive
normal stresses in directions coinciding with the
principal axes of the ellipsoid. Eshelby (1957)
showed that the stress and strain in the ellipsoidal
region are uniform (as long as the properties of the
region are uniform). Because of the uniform interior
strain and the ellipsoidal shape, the displacements of
the boundary are also ellipsoidal. This supports the
use of the measured width of the bands as a surro-
gate for the displacements in the observations of
Sternlof er al. (2003) and Sternlof (20006).

A further implication of Eshelby’s (1957) result
is that the difference between the stress state in the
band o} and the stress state in the far field oy is
related to the corresponding difference in strain
states e} — &j by

Smnkfck.'ij{o'g - Uf-f} = (Suwkt — BenBt)

% {E’E’*Ez?} (1

where §; is the Kronecker delta (5; = 1, if i = j;
&;=0,if i # j). Here and throughout the paper,
repeated indices imply summation over values 1, 2,
and 3. In equation (1) the S,,.; are components of a
tensor that depends only on the geometry of
the ellipsoid and the Poisson’s ratio v of the matrix.
The tensor possesses the symmetries S, = Spurs
and Sm"]d = Smm’k bllt, in general, S,m,k[ #* Sklmn'
The Cyy;are the elastic compliances of the matrix, i.e.

g5 = Cyuoy,.- (2

(The result (1) was not cited explicitly by Esheiby
(1957} but follows from the results of that study and
has been discussed by Rudnicki (1977, 2002).) The
band material is also assumed to be elastic, possibly
with different properties from the matrix, but sub-
jected to an inelastic strain €f. Thus, the relation
between the stress and strain in the band is given by

B P
if kOn T &5 (3)
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Fig. 1. Model of a compaction band as a thin, axisymmetric ellipsoidal inclusion showing far-ficld stresses o,
uniform stresses in the band (r}j-_. stresses at the tip of the band cy,‘-}" and stresses at the flank u'}}“"k.

where the Cgk, are the elastic compliances of the
band. The elasticities of both the band and the
matrix are assumed to be isotropic so that the Cyy,
have the form

1M1 v
C,'jﬂ = 2‘; {E (aikaj{ =+ a,'{ajk) - mﬁuaﬂ} (4)

where p is the shear modulus and v is Poisson's
ratio. The corresponding array of maduli is

Lyw = (k — 2/3)8;8u + n(Budy + 8:84)  (5)

where k = 2p(l +v)/3(1 —2v) is the bulk

modulus and

(Bimebjn + BinBjm) . (6)

b} =

LigiCrimn = CiptLten =

Equations (2) and (3) can be used to eliminate the
stress or the strain from (1). Doing the latter gives

B B B B
qu + LMMS,,,,,H{CW - Ckrr'j}o'ij

= Lﬁgmn{cm"ijﬂ':; - (BEM - Smnkl'egl)}' (7)
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If &f =—CIp[Cf;,-kk, then equation (7) reduces
to equation (13) of Rudnicki (2002), where p is
pore pressure in the inhomogeneity and tis a
porous media constant; Rudmicki (2002) used the
superscript I for B, G and K for the moduli
denoted here by . and «, respectively, and labelled
matrix elasticity tensors with the superscript co.
In addition, the matrix C,,, in the first term on
the right-hand side of equation (13) of Rudnicki
(2002) should have the superscript 1 replaced by
co, Specializing to isotropic materials, separating
the stress and inelastic strain into deviatoric and
spherical parts, i.e.

(8a)

(8b)

0',3' = Sf_,' + US,‘_,‘
i
& = e +58"%

and substituting into (7) gives the following two
equations:

0B (1 + k) = (k + 1)o™ — kp(1 — a)e”
+ kS (e — 85p/ 2ug) (9)
and

Sy + (85 — 2upely)

k
d
S = sy SosSos |

2p S ik
=1 §2 = Qqugel 4 oTB_ Pge
( +3}Vm P«Bepq‘}“?’KB {l—i—ak)

% (KEEP ~ ko™) (10)

where

(1

1
S’qu.' = Spgrt — gapqsmmk!

g=mpa/n— L, k=xg/k-1, and

Sfmm’ck =3a= (] —i—U)/(l —\}). (12}

If &} =~ {'p'K}5;, then (9) and (10) reduce to
equations (15} of Rudnicki (2002) with the
changes in notation noted following (7).

Stress state in an axisymmetric band

Although it is possible to carry out the analysis for
an arbitrarity shaped ellipsoid, the planform of com-
paction bands is not well constrained by observation
and the analysis simplifies considerably if the ellip-
soid is axisymmetric. Hence, the lengths of the

semi-axes of the ellipsoid in the x| and x; directions
are assumed to be equal to @ and greater than the
length ¢ of the distinguished short axis in the x;
direction (Fig. 1). If, in addition, the far-field
stress state is axisymmetric with principal direc-
tions aligned with the band axes, and only
o5 = o)) and o33 are nonzero, then the stress
state in the band is also axisymmetric, and only
o5 = o and o5 are nonzero. In this case, for
both the band and the far-field. the mean stress is
related to the components by o = (207 + 033)/3
and there is only a single distinguished deviatoric
component,

533 = — 2893 = — 281y = 2(o33 ~ o) /3.

{13)

Similarly, we assume that the inelastic strain is also
axisymmetric so that there is only one distinguished
deviatoric component

353 = _2352 = _2‘3?1 = 2(813)3 - ETI)/?" (14)
Setting p = ¢ = 3 in (10} yields
B 1 o P
S35 = m{(l +g)55; + 2ppes; (A — 1)
+ (2pg /K )B(kge? — ka™)} (13)
where
A =831 — S
(1 AS33ie) (Spmzy — o) (16)
2(1 + ok)
and
_ (S —w) .
B= 31 + k) (17

and, for axisymmetry the indices ‘1’ and ‘2’ may
be interchanged on the Sy, Expressions for the
relevant Sy, have been given by Mura (1987)
and Rudnicki (2002) and, for convenience, are
also listed in the Appendix. Evaluating (9) for
axisymmetry then gives

oB(1+ k) = (k + 1)o™ — ka(l — a)s
+ KB2Sum11 (81;1 - g3?1/2p,ﬂ)

+ KB Smms (853 - g53],33/21~l3) (18)
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where §n11 = Swmzz. Using (13) and (14) gives

(1 +ak) = (k+ 1)o™ — k(1 —a)e’
+ KB(SmmSIi - Smml])

X (e5; — 855 /2up). (19)

However,

1
Smml! = 5 (Smmkk - SmmS])

and therefore
3
Smm33 - Smmll = 5 (Smm.'iﬁ - 05)-

Determining s from (15), substituting into (19}
and dividing by (1 + ak) gives o®. Stress com-
ponents perpendicular and parallel to the short
axis of the band are given by

B, B
0% =0 + 5%

o)y =0 — /2. (20}
The expressions for the stress reduce correctly to
the proper results in the limit of a sphere (although
this is not a realistic shape for a compaction band).
If the shear modulus of the band is finite (neither
zero nor unbounded), then expansion of the general
expressions for small aspect ratio reveals that the
zero aspect ratio limit yields results identical to
those for a planar layer considered by Cocco &
Rice (2002) and used by Sternlof er af. (2005). If
the 3-axis is the short axis of the ellipsoid, then
Cocco & Rice (2002) noted that 83 = g if neither
i nor j is three and that ff = of if either i or j is
three. The particular relations relevant here are

o = o (21a)

B _ o B __ .«
By =85, Epp = Ep. (21b)

Using (21a), and (3} and {2) to eliminate the elastic
strains from (21b) yields

B (1+vs){(1—v)% w0

v la ey e
o VB Hp V¥ P
B -2
+033[(1+VB) M('l+v)] ’Lﬁa“}

(22)

where 02 = o ; in both the band and the far field
for axisymmetry (identical to equations (4b) and

111

{(4c) of Sternlof ez al. (2003) for axisymmetry and
slightly different notation).

If the shear modulus is zero, then the band
reduces to a void and the stresses in the band are
zero. In the limit of the short axis of the ellipsoid,
¢, approaching zero, the products of ¢ and the
strains e?j equal the crack (or anti-crack) surface
displacements predicted by fracture mechanics
(Rudnicki 1977; Hoenig 1978). In the case of com-
pressive loading the crack surfaces are predicted to
interpenetrate. This analogue of a tensile crack with
the signs of the stresses and displacements reversed
has been termed an “anti-crack’ (Fletcher & Pollard
1981} and applied to compaction bands by Sternlof
& Pollard (2002) and Sternlof et ol (2005). In the
application to compaction bands, this interpenetra-
tion is interpreted as inelastic compaction of a
narrow, but finite width band.

If the shear modulus of the band is unbounded,
then the ellipsoid is rigid and has a shape change
specified by &8, (without alteration by the con-
straint of the matrix). In the limit of the short axis
of the ellipsoid, ¢, approaching zero, the products
of ¢ and the strains £¥; become equal to the specified
relative displacements (which are interpenetration
for a compaction band), as in a dislocation (or anti-
dislocation) model (Katsman ef al. 2006). Hence,
the Eshelby inclusion model encompasses both a
crack (or anti-crack} and a dislocation (or anti-
dislocation) in the limits of a vanishingly thin
zone and either zero or unbounded moduli.

Typically, the aspect ratio, ¢ = ¢/a, of compac-
tion bands is very small. Values from data of Stern-
lof et al. (2005) range from 1072 o 107* and,
consequently, those workers argued that the zero
aspect ratio limit is a good approximation. Here
we will provide additional quantitative support for
this approximation and extend the conditions for
which it applies by comparing the results for the
zero aspect ratio limit with those obtained using
the general expressions for a flat, but finite aspect
ratio axisymmetric ellipsoid.

Figure 2 plots the stress normal to the plane
of the band ofy, divided by o3, the far-field
normal stress, and Figure 3 plots the stress parallel
to the plane of the band o}y, divided by o3, against
the aspect ratios ranging from 107%=107! for fixed
values of other parameters. The other parameters
are varied about a set similar to those inferred
by Sternlof et al. (2005) for the Valley of Fire.
These are only the normal inelastic strain &85
nonzero, identical elastic constants for the band
and matrix, pg = p and vy = v = 0.2, lateral far-
field stress equal to half the normal stress (i.e.
oil = 022 = 0.5633) and the ratio o33/2uehs
equal to (1035,

Figures 2a and 3a show the effect of varying the
ratio 053/2uek; on ohs/o5; and of /053, Sternlof
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Fig. 2. Stress normal o the plane of the band of,
divided by o33, the far-field normal stress, against aspect
ratios ranging from 10~* to 107", (a) Results for

three values of ¢33/2pe5s and fixed values of other
parameters: alfl — g3 = 0. hg = p,vg =v = .2,
and o7} = o5 = 0.503 (b) Results for o33/

2@23 = (105 and three values of pp/L with other
parameters the same as in (a).

et al. (2005) used ef; = 0.1, corresponding to a
roughly 10% porosity loss in the band. For the
value of Young’s modulus E = 20GPa and
Poisson’s ratio v = 0.2 estimated by Sternlof
et al. (2003), the corresponding shear modulus is
= 83GPa. Their best estimate of the
maximum principal compressive stress at the time
of band formation was 40 MPa, although they
noted a possible range of 13-54 MPa. For
o33 = 40 MPa the ratio o53/2pel; is about 0.02,
and Figures 2a and 3a show results for the values
0.01, 0.05, and 0.20. For aspect ratios less than
about 10735 the results from (21a) and {21h),
corresponding 10 ooy = 03 and o = 0%, are a
very good approximation. The approach to this
limit is slower for larger values of e83. Nevertheless,
the ratio o33/ 2pe5s would have (o be much smaller
for there to be any significant deviation from the
zero aspect ratio limit in the range of aspect ratios
reported by Sternlof er al. (2005). Tt is, however,
interesting to note that the signs of o and of
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differ from that of o33 for larger aspect ratios
and the value at which the change of sign
occurs decreases with decreasing o33/2pels.
This occurs because of competition between the
effects of the far-field compressive stress and the
inelastic compaction. If inelastic compaction
occurred in the absence of far-field stress, the
stresses in the band would need to be tensile for
the total band deformation to be compatible with
the matrix. This effect is, however, countered by
the effect of the far-field compressive stress,
which is amplified as the aspect ratio of the
band decreases.

A 10% porosity loss in the band, corresponding
to &5 = 0.1, is also representative of compaction
bands formed in axisymmetric compression exper-
iments (Olsson 1999; Olsson & Holcomb 2040;
Wong et al. 2001; Holcomb & Olsson 2003; Baud
et al. 2004, Fortin et al. 2006), although there is
some evidence in Castlegate sandstone (Olsson
1999; Olsson & Holcomb 2000; Holcomb &
Olsson 2003) that the compaction is not purely uni-
axial and that &}, = &% is extensile (dilatant) (D.
Holcomb, pers. comm.). Whether this is a general
feature of band formation or is due to the limited
lateral constraint in the laboratory is not clear.
Values of the axial stress at which compaction
bands form in the laboratory tend to be much
higher than the 13-54 MPa estimated by Sternlof
et al. (2005) for ficld conditions at the time of
band formation in the Valley of Fire. Typically,
the axial stress at band formation in the laboratory
ranges from more than 100 MPa (e.g. Olsson &
Holcomb 2000) to several hundred MPa {e.g.
Baud et al. 2004). Estimates of the shear modulus
from axial stress v. strain curves of Olsson &
Holcomb (2000) and Baud er al. (2004) yield
values in the range of 3-10 GPa, similar to that
estimated from Sternlof er al. (2005). Thus, the
ratio o33/2uel; appropriate for laboratory con-
ditions may be c¢. 2—10 times larger than estimated
from Sternlof et al. (2005).

Figures 2b and 3b show the effect of decreasing
and increasing the band shear modulus by a factor
of 10 (in Fig. 3b the zero aspect ratio lmit is
shown by a dashed horizontal line). The effect
on ¢%; is small and the effect on o corresponds
well to the prediction of equation (22) for aspect
ratios less than 1073 Figure 3(c and d) shows
that variation of o'}y as a result of changes in the
band Poisson’s ratio and the lateral far-field
stress are also predicted well by equation (22) for
small aspect ratios. Changing these parameters
has virtually no effect on ob; and, hence, is
not shown.

These results confirm that the simplified layer
solution, analogous to that of Cocco & Rice
(2002) and used by Sternlof et al (2005), is
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indeed a good approximation for the very small
aspect ratios that have been observed, but there is
ro impediment to similar calculations for larger
aspect ratios. Therefore, in the next section we
will adopt this approximation and examine the
effects of elastic property mismatch, far-field
stress ratio and inelastic compactive strain on the
stress state immediately adjacent to the band.

Stress state adjacent to the band

The stress immediately outside the band can be

obtained from conditions of continuity of traction

and displacement across the band—matrix interface.

If, as depicted in Figure 1, the midplane of the ellip-

soid lies in the x,x,-plane and the short axis is in the

X3 direction, then continuity of normal traction on
the x;-axis requires

‘Tll = o). {23)

Contmmty of dlsplacement requires that uiP =

ws and uif = if. Consequently, the derivatives

tangent to the band—matrix boundary must also be

_continuous, requiring that

tp _ B Sl B

£z = €22, £33 = B33 (24)

Using the elasticity relations (2) and (3) to
eliminate the strains gives

wp _ M B LV B( __“‘)
a. Ory I i
2 [25:3 2 (1—v) 1 25:3

L v —vp
pe o (1—v){l+vs)
+ (IZ_P'V) (=5 +vely) {25a)
0_::;; :];0'?.3 +(l+v)(’1131 (1 _I—L—’;)
L'
e T
+(12+v)(8§3 +veb,) (25b)
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which are the same as equations (6) of Sternlof et al.
{2005) (with slightly different notation). It should
be noted that even if the ellipsoid and far-field
stress state are axisymmetric, the stress state adja-
cent to the band is not. Because the localization cri-
terion for compaction band formation (Issen &
Rudnicki 2000) indicates that axisymmetric

compression stress states are most favourable, the
departure from axisymmetry would diminish the
tendency for localization.

The relations (23) and (24) will hold at any point
adjacent to the band if expressed in terms of the
local normal and tangent directions. In particular,
we note that the conditions at the flank of the
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band (on the x;-axis at the band boundary, see
Fig. 1) are

flank B

U35 = U3 (26a)
flank B Hank B

En =8n, By =&y (26b)

These equations, together with equation (21),
imply that for a thin (zero aspect ratio) band, the
siress state al the flank is identical to that in the
far field.

Similarly to the procedure in the preceding
section, we will explore the effect of altering par-
ameters on the stress state adjacent to the band
for variations about a base set of parameters. This
base set is only &5 # 0 5, =5 =0y,
Poisson’s ratio of the matrix v = 0.2, equal shear
moduli for band and matrix, py = p, lateral
far-field stress equal to half the normal stress,
o) = o = 05053, and ¢53/2uel; = 0.05. Com-
ponents of the stress in the band, divided by 2pebs,
are plotted against vp, the Poisson’s ratio in the
band. For pg = p, and v = 0.2, vg = 0 corre-
sponds to kg/k = 0.5; for kp/k = 2, 3, 5, 10, the
corresponding values of vy are 0.333, 0.385, 0.429
and (.463, respectively. Because the porosity of
the band material is reduced relative to the matrix,
itis likely that the bulk modulus of the band material
will exceed that of the matrix kg/x > 1, but there
are no quantitative estimates. Plotting results
against vy covers the cntlre range of possibilities.

Flgure 4 shows o35 and o' for values of o35/
2uel; an order of magnitude smaller (0.005) and
larger (0. 5) than for the base set (0.05). Values of
48 /2ueks do not depend on vy and equal (.253,
0.275 and 0.5 for o51/2pels = 0.005, 0.05, and
0.5, res:pectwc]y Only for o5:/2pels = 0.5 and
small vg does 031,/ 2ue5; rise significantly above
Lmlty {to about 1.9 for vg = 0) and only for o33/
2uei; = 0.5 and large vg does o' /2pel, depart
significantly from zero (to about 0.8 for
vp = (.5). The ratio 033/2pe}s = 0.5 corresponds
to a relatively small compactive strain or relatively
large far-field compressive stress normal to the
plane of the band.

Figurc 5 shows the effect of uniaxial (o7}/
o3 = 0.0) and hydrostatic (07/o3 = 1.0} far-
ﬁeld stress in addition to the base value of)/
o33 = 0.5. The stress 03‘3’ increases with increasing
triaxiality (o7y/o33) for vg < v and decreases
with increasing triaxiality for vg > v. The stress
o' increases with triaxiality and vy but, again, the
variation is small (c. 0.1 = 2pe5a). The stress com-
ponent o5} is again independent of vy and equal
to 025, 0.275 and .30 muldiplied by 2pel; for
ail/em = 0.0, 0.5 and 1.0, An interesting feature

of Figure 5b is that for o} /o33 = 0, o\ is negative
(tensile) for vg << v and positive (compressive) for
vg = v, although the magnitude is small.

Figure 6 shows the effect of a band shear
modulus that is an order of magnitude larger or
smaller than the matrix modulus. Although, as
argued above, it 18 likely that the bulk modulus of
the band will exceed that of the matrix, the relative
size of the shear moduli is not so clear. Greater
density (as a result of decrease of porosity) might
increase the shear modulus. More likely, decohe-
sion and, sometimes, fragmentation of the band
material would reduce the resistance to shear by
facilitating particle rearrangement and rolling.
Dccrcaemg the ratio of the shear moduli to pg/
i = 0.1 increases o35, except for vy near 0.5.
The effect is greatest for small values of vy but
the maximum increase is less than a factor of two,
The variation of o5 with vy is similar for g/
p = 0.1, although the magnitude of the increase
for a reduced shear modulus is smaller than for
o"gfgp Although a value of band shear modulus
much greater than the matrix modulus seems unli-
kely, the stresses are shown for wg/p = 10.0. The
increase in the ratio of shear modulus from one to
10 has little effect on o35, reduces ol sllghtly,
more so for vg near 0.5, and increases o} from
very small fractions of 2|u-:§3 to 0.1-0.32pek;.

In summary, for a wide variation of parameters
about the base set, o3} is about 1-2 times 2pels.
The other stress components are typically around
a few tenths to half of o%%. These results suggest
that the stress state at the band tip is mainly con-
trolled by 2pels: rather than the far-field stress,
unless its magnitude is comparable with 2pel;.

Energy release propagation criterion

The results of the preceding section have shown that
when the aspect ratio of the bands is of the order of
the values inferred from field observations by Stern-
lof ef al. (2005), 107°~107*, the actual value of the
aspect ratio has little effect on the stress state at the
band tip and can be taken as zero. Similarly, if the
inelastic compactive strain £5; = (1.1 and the ratio
of the matrix shear modulus to remote stress
(mormal to the band) is of the order of 102, even
implausibly large variations of the contrast of
elastic moduli have relatively little effect. In
short, the ratio of the stress at the tip of the band
to that in the far field is in the range 10-100 and
is controlled primarily by the product of the magni-
tude of the inelastic compactive strain and the ratio
of the shear modulus to remote stress. The ratio of
stress at the tip of the band to remote stress does,
however, increase with a reduction in the band
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Fig. 5. Same as Figure 4 but with ¢53/2pe5; = 0.05 and o} /055 = 0.0, 0.5 and 1.0.

shear modulus and becomes unbounded in the limit
pe — 0. The inferred level of stress elevation,
10—100 times the far-field stress, is consistent
with the concept that band propagation occurs in a
crack-like manner.

Although these results demonstrate that the
normal stress just ahead of a compaction band is elev-
ated, they give no indication of what level is needed
for propagation. As the bands cobserved in the field
have stopped propagating, we can only say that the
current level is below that needed for propagation.
A useful approach to the condition for propagation
is to consider the energy released per unit band exten-
sion, as has been successfully applied to tensile and
shear fractures. Vajdova & Wong (2003) and

Tembe et al. (2006) have used this approach to inter-
pret the extension of compaction bands from circum-
ferentially notched specimens of Bentheim and Berea
sandstone, By estimating the compaction energy
from the nominal stress v. displacement curves,
Vajdova & Wong (2003) obtained a lower bound
on the compaction energy for Bentheim sandstone
of 16kIm > and Tembe er al. (2006) estimated
values ranging from 6 to 43 kT m~? for Berea and
Bentheim sandstones.

Rudnicki & Sternlof (2005) have developed the
idea for compaction energy release using a simple
model adapted from an example used by Rice
(1968«) to illustrate the J-integral. They considered
a long (semi-infinite) compaction band in an infinite
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strip of width w (taken as represeatative of the
distance between bands in application to the field
data) with an elastic modulus for 1D strain of M
(=2pfl —v)/(1 ~2v) for an isotropic elastic
material). The compaction band attains a constant
thickness &w far behind its tip where the elastic
modulus in the band is Mg and the 1D inelastic
compactive strain is £P. Because the configuration
is translationally invariant in the direction of the
band and strip, advance of the band a unit distance
reduces the strain energy of a vertical slice of
material far ahead of the band tip to that of a vertical
slice far behind the band tip. Rudnicki & Sternlof

Li7

(2005) gave an exact result for this difference, but
if the band thickness is very much less than w,
£ « 1, and the band modulus does not differ signifi-
cantly from the modulus of the surrounding
material, the energy release is given by the
simple expression

Goand = 04 £ePw (27)
to first order in £. In equation (27), ¢, = M(A/w)
is the uniform compressive stress far ahead of the
band tip and A is the relative closure of the layer
boundaries (so that Afw is the nominal strain in
the absence of the band). Thus, the energy released
(per unit area of band advance) has the interpret-
ation of the stress multiplied by the compactive dis-
placement in the band. For representative values of
the parameters derived for the Aztec sandstone cor-
responding to 1 cm thick compaction bands spaced
1 m apart, and e = 0.1, corresponding to a poros-
ity reduction of 10%, Sternlof ef al. (2005) found
Goond = A0kIm ™2 This result is surprisingly
similar to the range of compaction energies esti-
mated by Vajdova & Wong (2003) and Tembe
et al (2006) for different sandstones and
laboratory conditions.

Combined anti-crack—dislocation model

As discussed above, the data on compaction band
profiles from the Valley of Fire (Stemlof er al.
2005) are nearly elliptical. The ratio of midpoint
thickness to band length is not, however, constant
as would be the case for self-similar ellipses (or
as predicted for the ratio of midpoint displacement
to length for an anti-crack model with uniform
surface tractions). Sternlof et al. (2005, Fig. 4b)
showed that the midpoint thickness increases
more slowly for the longer bands. For the shorter
bands (less than about 10 m), the half-width
increases roughly linearly with length. This
suggests the possibility of self-similar extension,
although the aspect ratios are so small that any
lateral spreading must also be small. The widths
of the three longest bands do not follow this trend
but increase with length at a smaller rate. Sternlof
(2006) suggested that the midpoint thickness
reaches an asymptotic value for the longest bands,
although the data are not unambiguous on this
issue because of the difficulty of identifying very
long, isolated bands. He suggested a conceptual
model (see his fig. 4.23) that is similar to the
simple plane strain (infinite in extent out of the
plane of the sketch) model shown in Figure 7.
This configuration is identical to that for a
tensile solution given by Tada et al. {1973) with
the signs of the stress and displacement reversed.
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Fig. 7. Schematic illustration of a compaction band of total length 2L. A uniform compactive displacement 2k is
specified for —k < x < b and a uniform closure traction, equal to the difference between the far-field compressive
stress o33 and the resistive stress in the band o5, is specified for |#] < x < IL]. This is a plane strain model and,
hence, extends indefinitely out of the plane of the sketch. Displacements are shown as opening for clarity but

carrespond to interpenetration (compaction) in the model.

(Again the interpenetration of the crack surfaces is
interpreted as inelastic compactive displacement.)
The compaction band has total length 21, with a
uniform compactive displacement 2k specified for
—b < x < b For |b| < [x] < |L|] 2 uniform
closure traction, equal to the difference between
the far-field compressive siress o33 and the resistive
stress in the band o8y, is specified. The magnitude
of this traction is chosen to eliminate the singularity
in stress at x = + &, or equivalently, to ensure that
the tangent to the profile of crack surface displace-
ments is continuous. This traction is given by

B fIn.; 1
L1 =) B\ (k) — (6/LYEy (k)

where £ =+/1— (b/L?) and £, and E, are the

complete elliptic integrals of the first and second
kinds, respectively. The stress intensity factor at
the ends of the compaction band is given by

_ T ph k1 — B/L
K= VE—b(1-v) {El(k) —(1 —kz)Eg(k)}'

(29)

Ac {28)

The factor {...} equals unity in the limit
B/L — 0 (& — 1). In this limit Ao — ph/
L{1 —v) so that the stress intensity factor
reduces to Ac/wL, the well-knewn expression for
a crack of length 2L loaded by a stress Ac. In
the alternative limit, /L — 1 (k — 0), {...}

equals +/8/ar = 0.90 and equation (29) reduces to

nh

8 1
Kz\/;\/(mj(l~v)

(30)

to firstorderin 1 — &/L. Equation (30) is the stress
intensity factor at the right end of a crack of length
L — b wedged open by a semi-infinite dislocation
of magnitude 2 at the left end and uniform traction
to ensure no singularity at the left end (Tada et al.
1973). This is identical to the solution for a crack
of length (L — &) enclosing a net entrapped
dislocation 2k and traction chosen to negate the
singularity at the left end (Rice 19685). The traction
in this case is Ao — 2pk/m(L — B)(1 —v), s0
that the stress intensity factor is twice that for a
crack of length 2(£. — b) with uniform traction Ao
and no entrapped dislecation. As is evident from
equation (30), the stress intensity factor becomes
unbounded as L — % and so also does the traction
required to eliminate the singularity at the edge
of the dislocation. This behaviour reflects the
stronger stress singularity at the edge of a uniform
dislocation (reciprocal of distance from the edge)
than at the edge of a crack (reciprocal of the
square root of distance from the edge). Figure 8a
plots the factor {...} against &/L from zero to one
(corresponding te k varying over the same range).
Figure 8b plots the siress mntensity factor from
equation (29), divided by /wph/+/L{1 —v;,
against b/L. Also shown is (1—b/L) /2
the approximate result obtained by setting the
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Fig. 8. (a) Plot of the stress intensity factor K at x, = + L in Figure 7, divided by p Av/w/{(L — £)/(1 — v) against /L.
(b) Comparison of K divided by pwhy/m/L7{1 — v) with (I — /L) "/? against b/L.

factor {...} in equation (29) equal to unity. As the  not only near b/L. — 0, where it is exact, but over
plot shows, the stress intensity factor is well —most of the range of b/L.

approximated by

Tada et al. (1973) also gave the expression for
the crack surface displacements (here, closure or
interpenetration). These are plotted in Figure 9
(31) for b/L equal to 0, 0.23, 0.5, 0.75, and 0.9. For
L—b(1—-v) b/L = 0, there is no entrapped dislocation and the
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Fig.9. Closing displacement divided by half the imposed clasing dislocation /# against distance from the centre divided
by the band half-width L. Profiles are plotted for b/L = 0, 0.25, 0.5, 0.75 and 0.9.

displacement prefile is purely elliptical (as for a
craick loaded by uniform surface tractions). As
long as /L is not too large. the profiles do not
differ significantly from elliptical and probably
fall within the scatter of data from figure 4a of
Sternlof ez al. (2005).

The roughly elliptic displacement profiles
measured by Sternlof er al (2005} suggest that
b/L is small and the stress intensity factor can be
approximated by equation (31} with b = 0. Substi-
tuting this value into the relation between the stress
intensity factor and energy release rate G,

G= (1 —v)K*/2n (32)
and rearranging yields

2 _ [86(1 —)

Lo — (33)

Thus, if compaction bands are assumed to grow
at a conslant, critical value of the energy release
rate, equation (33) implies that the band thickness
(or midpoint clesure) should scale as the square
root of the band half-length. This predicted
scaling is consistent with a recent analysis of com-
paction band data by Rudnicki et af. (2006). They
replotted the data from Figure 4b of Sternlof ef al.
(2005) on a log-log scale, and added several

points from laboratory data and from field data of
Hill (1989) and Mollema & Antonellini (1996).
Fitting a straight line through the data yields a
relationship of the form

2h = ALf (34)

where A and B are constants. The exponent B
is roughly 1/2: 0.42, 0.5, and 0.53 for fitting
the entire dataset, all the field data and the
Sternlof et al. (2005) data, respectively. (Fossen &
Hesthammer (1997) have reported a similar
scaling relation (width proportional to the square
root of length) for deformation bands in Jurassic
sandstone in southeastern Utah.)) For p = 8.33
GPa and v = 0.2, values inferred for the Valley
of Fire by Sternlof et al. (2003}, the coefficient A
corresponds to critical values of G equal to 25, 30,
and 37kI/m™* for the same three fits. These
values are slightly lower than the G = 40 kI m™?
as estimated by Rudnicki & Sternlof (2005) and
consistent with laboratory estimates (Vajdova &
Wong 2003; Tembe ef al. 2006). Using the individ-
val values of 2/ and L with the same values of . and
v yields critical energy release rates ranging from
4 to 90 kI m™~? for the field data and 71, 105, and
11} kI m™? for the three laboratory values. It is
not surprising that the laboratory values are at the
upper end of the range, as the approximation of
b/L — 0 is probably not very good for bands
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that extend across the entire specimen. Despite the
many uncertainties involved in this comparison,
the agreement seems too good to be coincidental
and suggests that the model depicted in Figure 7
and suggested by Sternlof (2006) has merit.

Discussion

We have modelled a compaction band as a thin
ellipsoidal inhomogeneity subjected to an inelastic
compactive strain and compressive stresses in the
far field. The shape was strongly suggested by
field observations of Sternlof ef af. (2005) and
Sternlof (2006) on the Aztec sandstone of the
Valley of Fire, Nevada. For a range of parameters
encompassing the field data and aspect ratios
typical of the field data, 1071077, the results
show that the stress state in the band does not
differ significantly from that for zero aspect ratio.
The stress state within the band is primarily con-
trolled by the ratio of the far-field compressive
stress to twice the shear modulus of the matrix mui-
tiplied by the inelastic compactive strain. For the
field data, this ratio is about 0.02-0.03, but it may
be several times larger for laboratory experiments.
For the approximation of a zero aspect ratio band,
the stress state at the flank of the band is identical
to the far-field stress state. The stress state at the
tip of the band is fully 3D (all three principal
stresses  differ even when the far-field stress,
imposed inelastic strain and band shape are axisym-
metric). The calculations suggest that the ratio of
the compressive stress ahead of the band and
normal to the plane of the band to that in the far
field is of the order of 10—100. This ratio is not sig-
nificantly affected by elastic mismatch within even
an implausibly wide range, although the ratio does
become unbounded in the limit of the band shear
modulus going to zero. Hence, elastic mismatch is
not likely to be a major factor in compaction band
extension. The stress elevation is dominated by
the preduct of the inelastic compactive strain and
the ratio of the shear modulus to far-field compres-
sive normal stress.

Sternlof and Pollard (2002} and Sternlof ef al.
(2003) suggested that compaction bands can be
modelled as anti-cracks. Anti-cracks are the com-
pressive counterpart of a tensile crack: the stiffness
of material in the band is neglected and the band is
idealized as negligibly thin. The predicted interpe-
netration of anti-crack surfaces, although physically
unrealistic, is interpreted as closure of the band
boundaries as a result of inelastic compaction.
The anti-crack approximation arises as a limit of
the inhomogeneity model. As noted above, for
zero aspect ratio, the compressive stress at the
band tip does become unbounded as the shear

modulus within the band jug goes to zero. The cor-
respondence between a crack with uniform crack-
surface tractions and the limit of a flat ellipsoid is
well known (Rudnicki 1977; Hoenig 1978). To
obtain this limit properly, it is necessary to consider
an ellipsoid with small but finite thickness ¢, in the
limite — 0 with ce%; remaining finite and equal to
the relative crack surface displacements.

The calculations here have demonstrated that
results for zero aspect ratios differ negligibly from
those for the very small aspect ratios typical of
field data, 1077 —107*, and that o3} is roughly one
to two orders of magnitude larger than o3 for the
parameters considered here. Furthermore, the
results have been shown not to be strongly depen-
dent on the elastic mismatch (which is not well con-
strained by observation). For these reasons, it is not
unreasonable to idealize the ratio o3f/o%y as
unbounded, as it is in the limit pg/p — 0 or for
an ‘anti-crack’. Sternlof er af (2005) used a
MATLAB code {provided by P. Sharma of the
University of Houston} to compute the variation
of stress (@33 in the notation here)} with distance
from the tip of an ellipsoidal inclusion. They
showed (their fig. 15) that for very small distances
the stress varies as r~ /-, where r is distance from
the tip, as it does near the tip of a crack in a linear
elastic material, but that the stress at the interface
between band and matrix remains finite (as long
as the ellipsoid has finite aspect ratio and nonzero
modulus). Sternlof er al. (2005) concluded that, at
least for parameters representative of field data,
the difference between the stress fields of the
anti-crack and inclusion models is significant only
very close to the tip and the anti-crack model is a
reasonable approximation. This idealization of a
compaction band as an anti-crack makes it possible
to take advantage of the body of results for linear
elastic fracture mechanics.

On the other hand, Katsman et af. (2006) used
numerical calculations with a spring-network
model and some analytical calculations for a
tabular closing mode dislocation to conclude ‘that
there is little similarity between stress distributions
around CBs and cracks (or anticracks as extended
from Fletcher & Pollard (1981)" and proposed that
compaction bands are better described as ‘anti-
dislocations’. Their latter conclusion is supported
by the results here in the sense that the ratio o33/
21 85 is small, a few per cent, for field data and
that the band and near-tip stress are primarily con-
trolled by the inelastic compactive strain &%
Thus, the specified inelastic compactive strain
imposes a displacement on the band boundaries
rather than a traction, as is normally the case in
crack problems.

The distinction between crack and dislocation
models is not, however, a sharp one given the
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well-known connection between them (Bilby &
Eshelby 1968). A ‘crack’ model typically implies
that the distribution of crack surface tractions is
specified and the relative crack surface displace-
ments are calculated, whereas a ‘dislocation’ model
implies that the relative displacements are specified.
Of course, for a distribution of crack surface fractions
there is a corresponding distribution of crack surface
displacerents (distocation) and vice versa. Although
Sternlof et al. (2005) referred to their model as an
‘anti-crack’, they implemented it by specifying the
relative crack surface displacements (dislocation)
corresponding to the measured width profiles.
Because the measured width profiles are elliptic, the
resulting crack surface traction is uniform as for a
simple crack model, (In this case, the far-field stress
of Sternlof et al. (2005) should be regarded as the
difference between the far-field stress and this
uniform traction.)

As already noted, the stress ahead of a crack (or
anti-crack) is singular at the tip and varies as r~ 12
where r is distance from the tip. The stress at the
edge of a uniform tabular dislocation is, however,
also singular and, as noted by Katsman er al
(2006), varies as #~!. Of course, the stress in any
real material cannot be unbounded and will be alle-
viated by inelastic processes that are neglected in
the linear elastic idealization. A more complex
and realistic model might specify the relation
between the relative displacements and the tractions
in such a way as to reflect the inelastic processes at
the tip. At present, however, such details are not
constrained by observation. The advantage of the
crack formulation is that the energy in finite
volumes surrounding the tip is bounded. (This is
not the case for a uniform tabular dislocation; this
feature is reflected in that K — oo in equation
(30) when L — b.) Consequently, a criterion for
propagatien can be expressed in terms of a critical
value of the stress intensity factor (the coefficient
of the inverse square root singular stress on
the plane ahead of the crack, usually divided by
\/2_% or the energy released per unit area of band
advance. In addition, a large body of evidence in
fracture mechanics {(e.g. Rudnicki 1980; Anderson
1995; Lawn 1983) has established that whenever
the actual inelastic processes that occur in response
to the high stress at the tip take place in a zone
having a length scale much smaller than
geometric lengths in the problem (small-scale
yielding), the singular elastic field is a good descrip-
tion at distances several times the inelastic process
zone size. In this sense, the stress intensity factor
(or energy release rate) relates the intensity of the
near tip field to the applied loads or displacements
in a way that is insensitive to the detailed inelastic
processes near the tip. The energy release model
of Rudnicki & Sternlof (2005) takes advantage of

these features of linear elastic fracture mechanics
to compare an estimate of critical energy release
rate with values inferred from laboratory tests
(Vajdova & Wong 2003; Tembe er al. 2006). Simi-
larly, the combined anti-crack—dislocation model
discussed here uses the estimated energy release
rate to suggest an explanation for the variation of
band width with length noted by Sternlof (2006)
and elaborated by Rudnicki et al. (2006).

The variation and magnitude of the stress field
near the band tip will, of course, depend on the
inelastic microstructural processes that occur
there, including grain decohesion and rearrange-
ment and, possibly, cracking and fracture, as well
as the elastic mismatch. If the band is modelled as
having a finite stiffness (elastic constants), then it
seems unlikely that the stress field will be dramati-
cally altered by variations in the tip shape (as long
as there are no corners or vertices, which would
be expected to introduce weak singularities). If,
however, the band stiffness is neglected and the
band is assumed to be very narrow, then the siress
at the band tip is approximately inversely pro-
portional to the root radius of the band tip. An eilip-
tical profile of displacements is associated with the
inverse square root of distance singularity charac-
teristic of linear elastic fracture mechanics and
implies a very small inelastic process zone. The
field observations of Sternlof er al. (2005) and
Sternlof (2006) gave little or no indication of such
a process zone at the band tip; their band profiles
appeared to be very nearly elliptical as the end is
approached. Nevertheless, there is likely to be
increased uncertainty in measurements very close
to the tip. On the other hand, Tembe et al. (2006)
used microstructural observations to inelastic
process zone sizes of (.3-0.5 times the notch
depth (2mm) for samples with diameters of
18.4 mm and found that this agrees with predictions
of a linear elastic fracture model. The implications
of this for the different rock type, stress level and
geometry of the field data are not clear, but
further information on the details of the compaction
processes near the tip of a band would provide
insight into the interpretation of the critical energy
release rate and its possible dependence on
microstructural parameters.

Conclusion

We have used results from Eshelby (1957) to
examine the stress state within and at the tip of a
compaction band modelied as a thin, ellipsoidal
inhomogeneity subjected to an inelastic compactive
strain. For parameter values inferred for the field
site of Sternlof er al (2003), the compressive
stress normal to the plane of the band just ahead
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of the tip is of the order of 10— 100 times the remote
stress. Aspect ratios typical of field data, 1073-
107", do not yield results significantly different
from those for zero aspect ratio. Elastic mismaich
between the band and the sumrounding material
has only a small effect on the stress ahead of the
band for compactive strains, moduli and siresses
typical of field values. The relatively minor effect
of the elastic mismatch is also consistent with the
results of an energy release model of propagation
introduced by Rudnicki & Sternlof (2005). This
model suggests the product of the remote stress
and the relative inelastic compactive displacerent
as a quantity critical for propagation. An estimate
for this product from the field data of Sternlof
et al. (2005) vields a value of about 40 kJ m™?,
similar to values of compaction energies inferred
from laboratory tests on circumferentially notched
compression samples (Vajdova & Wong 2003;
Tembe et al. 2006). A combined anti-crack—
dislocation model yields quantitative results of the
stress intensity factor and the closure distribution
for a conceptual model proposed by Stemnlof
(2006). If the band is assumed to grow at a critical
value of the energy release rate estimated by Rud-
nicki & Sternlof (2005) then the prediction of the
variation of band width with length agrees well
with that identified by Rudnicki ef al. (20006).
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observations, and to S. Tembe and T.-F. Wong for pro-
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and for many discussions.

Appendix

The Eshelby factors appearing in equations (15), (16) and
{17) of the text are given by

=
Suzy =1— ((llii“}) I(e)
e = (1 - 1)
where
He) = o= {wocoste) —e(1 =)}

and, for axisymmetry, the indices “22' can be replaced by
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‘11" wherever they appear. The expression for I{e) corrects
a misprint in Rudnicki (2002}, which has e” instead of e in
the numerator of the first term multiplying {...}. The
factor $33;; can be determined from

1
Si311 = E(Si'»ﬁck — S3333)

again IlOlil']g that Sa31) = Saz22- Sp1az can be calculated in
similar fashion,
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