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The Inception of Faulting in a Rock Mass With a Weakened Zone

Joun W. RUDNICKI!
Division of Engineering, Brown University, Providence, Rhode Island 02912

. This paper investigates models for the inception of earth faulting based on the deformation of a rock
mass containing an embedded weakened zone, Constitutive laws appropriate to dilatant, frictional,
inelastic behavior are used to characterize the weakened zone material. Two distinct types of instability,

. corresponding to possible models of seismic mechanisms, are identifiecd. These are ‘localization’ in-

i stabilities. at which essentially homogeneous deformation gives way to localized shearing, and ‘runaway’
instabilities, at which no further quasi-static deformation is possible and inertial effecis dominate.
Conditions derived for the onset of these instabilities demanstrate that the amount of posipeak deforma-
tion in the weakened zone prior to instability is strongly dependent on the deviatoric state of stress
induced within the weakened zone and on the detailed nature of the inhomogeneities. [n particular,
instability is predicted much nearer to peak load for very narrow weakened zones and for states of devia-
toric pure shear than for states of axisymmetric compression. Hence, the premonitory events predicied by
“dry crack’ precursor models, which associate crack closure with the postpeak regime, would be dramati-
cally different for these twa cases. More generally, systematic differences may be observed between strike
slip and thrust type faults. A discussion of the qualitative effects of coupled stress-pore fluid diffusion on
instability suggests a new interpretation of the dilatancy-diffusion model and indicates that premonitory
events predicled by this model may also depend on the amount-of postpeak deformation prior 1o

instability.

INTRODUCTION

1t has been proposed that dilatancy and the nonuniformity
of material properties in a seismically active area are sufficient
to produce observed seismic precursors without fluid diffusion
[Myachkin et al., 1972, 1974; Swart. 1974; Brady, 1974a, b,
1975a]. Despite disagreement over some aspects of the mecha-

nism involved [Brady. 1975b; Stuart, 1975] and a lack of

discriminating evidence, this hypothesis is an alternative to
that of dilatancy-diffusion [Nur, 1972; Scholz et al., 1973} as an
explanation of precursory phenomena. However, although
these hypotheses and the differences between them [Myachkin
et al., 1975] have been discussed in qualitative terms, neither
hypothesis has been examined in terms of a quantitative
model, incorporating constitutive properties which are consist-
ent with experiments, to determine if they can, in fact, explain
the observations in accordance with the laws of mechanics. A
principal difficulty is an incomplete understanding of brittle
rock failure in general and of mechanisms for the inception of
earth faulting in particular. On the other hand, most labora-
tory investigations of rock failure, despite the evident impor-
tance in faulting of heterogeneity of material properties, have
bheen confined necessarily to samples which are relatively
homogencous [e.g.. Brace, 1964; Mogi, 1966, Wawersik and
Fairhurst, 1970] or which have a flaw which completely trans-
verses the specimen [e.g., Swanson and Brown, 1971; Hobbs,
1970].

This paper examines some models for the inception of earth
faulting based on the deformation of a rock mass in which the
heterogeneity of material properties is idealized, for mathe-
matical convenience, as a single ellipsoidal zone. This zone
exhibits dilatant, inelastic behavior due to frictional sliding on
fissures and microcracking, and it is *weakened’ in the sense
that the threshold stress marking the onset of inelasticity is
sufficiently less than that in the surrounding, more competent
material that the surrounding material remains essentially
clastic. Deformation results from the action of remotely ap-
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plied strains (Figure 1); these may be regarded as boundary
conditions imposed by large-scale tectonic processes arising
from plate motions or by motion on another portion of the
fault system.

Two distinct types of instability in the deformation of the
rock mass are identified as possible models for seismic mecha-
nisms. The conditions which are derived for the onset of these
instabilities demonstrate that the processes prior to rupture are
strongly dependent not only on the weakened zone shape but
also on the prevailing stress state. In particular, for a given
weakened zone shape, much greater deformation in the post-
peak regime of the weakened zone stress-strain curve is re-
quired for instability under stress states of axisymmetric com-
pression than under those of deviatoric pure shear. According
to dry crack models, which associate the return of anomalous
wave speed ratios to normal values with postpeak deformation
in the fault zone, these results indicate that different precursor
events will be observed for faulting associated with different
stress states, More generally, different premonitory events may
be expected for strike slip and thrust type faults. A qualitative
discussion of coupled deformation-pore fluid diffusion effects
indicates that the results are relevant, as well, to considerations
of the dilatancy-diffusion hypothesis, although a more thor-
ough analysis is needed.

First, a constitutive law, proposed by Rudnicki and Rice
[1975] (hereafter referred to as RR) to describe the time-
independent behavior of brittle rock, is introduced to charac-
terize the weakened zone response. The parameters are given a
concrete interpretation in terms of simple deformation states
and experimental observations. Next, the conditions for in-
stability are derived in terms of the weakened zone shape, the
stress state, and parameters of the weakened zone constitutive
law. These are discussed in terms of mechanisms for pre-
monitory events.

CONSTITUTIVE LAW IN THE WEAKENED ZONE
Weakened Zone Behavior

The weakened zone material is considered to exhibit stress-
strain behavior which is representative of rock in a temper-
ature and pressure regime appropriate to brittle deformation.
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Fig. 1. An ellipsoidal weakened zone with semiaxes 2 2 4 2 ¢,
embedded in a rock mass subjected to remotely applied boundary
strains due to large-scale tectonic motions.
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Inelastic behavior results primarily from microcracking and
frictional sliding on fissure surfaces. Uplift from sliding at
asperities and local tensile cracking at the tips of fissures or
other discontinuities give rise to macroscopic inelastic volume
change or dilatancy. Typical stress-strain curves are depicted
schematically in Figure 2 [e.g., Brace, 1964; Jaeger and Cook,
1969; Wawersik and Fairhurst, 1970]; the onset of inelastic
behavior (marked by the onset of dilatancy) occurs at g4, and
the peak stress is a5. Although the precise condition of the
material in weakened or fault zones is not well-known, it may
be more appropriately regarded as rubblelike or broken,
rather than intact, rock. However, laboratory experiments
comparing the behavior of intact and prefractured specimens
[Hobbs, 1970; Swanson and Brown, 1971] indicate that the
qualitative description given above applies in this case as well,
The weakness of the material in this zone is reflected in the
lower values for the siresses ¢, and o, as compared with the
corresponding stresses in the more competent surrounding
material. This interpretation is consistent with experiments
comparing the strength of *virgin' samples with that of rocks
weakened by cyclic fatigue or by fracturing. For example,
Haimson [1974] in a study of four rocks under cyclic loading
(Tennessee marble, Indiana limestone, Berea sandstone, and
Westerly granite) found that for the number of fatigue cycles
tested, the uniaxial peak stress was reduced to 60-80% of the
monotonic value. The difference between the peak stresses of
intact and prefractured specimens was found by Swanson and
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Fig. 2. Representative stress-strain curves for brittle rock in ax-
isymmetric compression,

Brown [1971] to be of the order of 3.5 kbar for Westerly
granite and 100 bars for Cedar City tonalite, decreasing to zero
at high confining pressure, for confining pressures of 1-7 kbar,
and it was found by Hobbs [1970] to be.400-600 bars for
Ormonde siltstone, Bilsthorpe silty mudstone, and Hucknall
shale (for Bilsthorpe mudstone the difference was somewhat
less) for confining pressures between 34 and 140 bars. For the
rocks tested by Hobbs the difference between the stress mark-
ing the onset of dilatancy {¢.) in the broken samples and that
in the intact samples was slightly less than the difference in op.
Scholz and Kranz [1974] and Haimson [1974] also noted a
decrease in o, with continued cycling. However, Zoback and
Byerlee [1975] attributed this effect in the former to the fact
that the loading was in uniaxial stress, as it was not observed in
their tests of cycling under triaxial conditions.

Constitutive Law

The constitutive law which will be used te characterize the
response of the weakened zone material is a simple general-
ization, in a manner analogous to the Prandtl-Reuss equations
often used in metal plasticity, of the elementary forms of
stress-strain laws used in soil and rock mechanics. This is one
of the elastic-plastic laws proposed by RR to describe time-
independent brittle rock behavior, and it incorporates pressure
dependence of inelastic deformation and inelastic volume
change, ‘Plastic’ is used here in the generic sense of referring to
any inelastic deformation, in particular, inelasticity which in
the present case arises from frictional sliding and micro-
cracking.

Although this constitutive law has been treated extensively
by RR, it will be presented again in some detail in order to
make clear its structure and to emphasize the relation with
experimental data. For an increment of elastic unloading from
some general stress state the deviatoric and volumetric strain
increments are given by

2 df”' = dﬂ'”’/G

respectively, where a prime on a tensor denotes the deviatoric
part and ¢ and K are the appropriate incremental shear and
bulk moduli (Figure 3). These moduli, in general, will decrease
with continued microcracking during the deformation. For
example, in the axisymmetric compression test the data of Lee
et al. [1972] on Hawkesbury sandstone show that Young's
modulus (£ = 2G(1 + »)) for unloading at a point slightly past
peak stress has decreased to 0.85 of its value in the regime of
linear behavior, and the data of Wawersik and Fairhurst [1970]
on Tennessee marble suggest that in the postpeak regime of
general failure, £ decreases to fractions ranging from 0.9 10 0.5
of the initial value, Although some clustering of cracks in these
samples occurred in the postpeak regime, they were still rela-
tively homogeneous, and no macroscopic fault had formed. A
slight decrease in the unloading moduli may also be observed
in cyclic fatigue tests [e.g., Zoback and Byerlee, 1973; Haimson,
1974]. In general, continued loading results in inelastic defor-
mation, and the inelastic, or plastic, portions of the strain
increments must be added to those of (1). These are defined as
the strain remaining after an infinitesimal cycle of loading
followed by elastic unloading which restores the stress state,

and they are written
O'[J" . dﬂ'kk
h7 [d’ e ]

,8(2 dPGU, dféur)”z

dery = dops/ 3K (N

2 dPt'”'
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Fig. 3. Constitutive law {equation (4)) specialized to ax-
isymmetric compression. The geometric interpretation of the hard-
ening modulus & and the shear modulus for unloading G is illustrated.

where T = (o4's,//2)* and 8, yx, and A are the dilatancy
factor, internal friction coefficient, and plastic hardening mod-
ulus, respectively.

Hlustration for Axisymmetric Compression

If 0 = —o4/3 (positive in compression), ¢ = ¢4, and y =
(€, — €)/32 (2) reduces to

dfy = (d7 — u do)/h
d'e = 8 d

where 7 = (o, — a3)/3'2. An experiment may now be imagined
in which an axially symmetric sample (Figure 3) is subjected to
a constant hydrostatic pressure, say, & = ¢*, and 7 is increased
to the value at which the onset of inelastic behavior occurs,
say, T = 7*, Repeating this procedure for different values of ¢
traces an ‘initial yield surface’ (Figure 4a). The coefficient of
internat friction p, defines the slope of this yield curve, and it
represents the pressure dependence of the onset of inelastic
behavior. Using data of Brace et al. [1966] on Westerly granite
and aplite and of Bieniawski [1967] on norite and quartzite,
RR found values of g, ranging from 0.4 to 0.9. Data from
Hobbs [1970] on both broken and intact samples generally
yielded values which were also in this range, although g, for
some intact samples of the silty mudstone and the siltstone was
as high as 1.15. Data from Schock et al. {1973] on Climax
Stock granodiorite gave values of , from 0.3 t0 0.7,

Note that this interpretation of u differs from that based on
a curve of failure stress or of peak stress at different confining
pressures. Such curves predict somewhat higher values of u:
0.9-1.3 for the data of Brace er al. [1966] and Bieniawski [1967]
and 0.7-1.1 for the data of Schock et al. [1973]. An example of
the difference between the failure curve and the curve denoting
the -onset of inelasticity is shown in Figure 4b, in which the
data from Figure 2 of Schock et al. [1973] have been replotted.
- The failure surface would coincide with a yield surface only if
the mechanism of failure was precisely the same as that for
inelastic deformation. Figure 46 also illustrates that u, for low
confining pressures, tends toward the higher values of the
range quoted.

In general, the ‘current yield surface’ (Figure 4a) separates
the regions of elastic unloading from those of continued in-
elastic deformation. Deformation increments making dr < g
de correspond to elastic unloading. Those tending to make 47 >
u do correspond to continued inelastic loading, and the plastic

(3)
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shear and volumetric strain increments are given by (3). As
shown in Figure 3, the hardening modulus k is related to the
slope of the 7 versus v curve by h,, = #/(1 + h/G). Consistent
with the behavior of frictional materials, #"y depends not only
on the shear stress but also on the hydrostatic component of
stress. Despite some indications to the contrary from micro-
scopic examination of stress cracks by Tapponnier and Brace
[1976] it seems most likely that dilatancy arises from uplift in
sliding at asperities, local tensile fissuring at crack tips, and the
propping open of microcracks, Thus it is plausible that at any
given deformed state, @°¢ bears a fixed relation to &y ex-
pressed by the dilatancy factor 8. In Figure 42 the inelastic
strain increment, depicted as a vector, would be normal to the
yield surface if 8 = u. However, this ‘normality’ assumption of
classical plasticity, appropriate when slip depends only on the
thermodynamical conjugate force [Rice, 1974], would be too
restrictive for frictional materials.

From the data of Brace er al. [1966, Figure 6], RR inferred
typical values of § as 0.2-0.4 and noted that § diminishes
slightly with confining pressure. Using a stiff-testing machine,
Crouch [1970] measured volumetric strains for a norite and a
sandstone strained far into the postpeak regime. Values of 3
inferred from this work are approximately 1.1 for the norite
and 0.8 for the sandstone, It is unclear to what degree these
large values of @ may be attributed to deformation into the
postpeak regime instead of the character of the rock type. The
data of Brace et al. indicate that 3 may increase by a factor of 2
from the inception of inelastic behavior to conditions near
peak stress, and while such an increase is not evidenced in the
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Fig. 4. (a) Initial and current yield surfaces in stress space. The

geometric interpretation of the friction coefficient # and the dilatancy
factor 8 is illustrated. (&) Initial yield surface and ‘failure’ surface for
Climax Stock granodiorite, replotted from Figure 2 of Schack et al.
[1973].
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data from Crouch, further increases in 8 may occur in the
postpeak regime.

In summary, the constitutive law for the weakened zone is
written

. _ do)/ Uz_f' 0y dou o,
2de/ =75 +}ﬁ|: % TFT3
(4)

RUNAWAY INSTABILITY

The boundaries of the rock mass are taken to be sufficiently
far away that the weakened zone is effectively embedded in an
infinite matrix and a special property of an ellipsoidal in-
clusion in an infinite body may be exploited. Eshefby [1957]
demonstrated that if an ellipsoidal region of an isotropic,
homogeneous elastic body undergoes a ‘transformation’
strain, which in the absence of the constraint of the surround-
ing material would be the homogeneous strain €, , then the
resulting stress and strain in the inclusion are uniform, The
strain is given by

c — T
£ = Sttt

where the §,;.; are shape factors depending only on the geome-
try of the ellipsoid and Poisson’s ratio. The factors S, are
symmetric in if and k/, but in general, S # Sk (see appen-
dix). Values of the Sy, for oblate spheroids (semiaxesa = & >
¢} are tabulated in Table 1. If a uniform strain ¢,/ is now
applied at infinity, the inclusion strain becomes

eV = e + gf

and the upiform inclusion stress is {(since €;,” occurs without
stress)

(5)

where LUM = (K - 26/3)6”6;” + G(éikﬁﬂ + 61[5]};); G and K are
the Yinear elastic shear and bulk moduli, respectively; and §,, =
1,if i = j, and §;; = 0 otherwise.

Now take an ellipsoid which has the same size and shape as
the untransformed (before application of ¢,7) inclusion of
matrix material and apply to it the homogenous strain e, If
the constitutive law of this ellipsoid is such that the resulting
stress is ", then it may replace the inciusion of matrix
material, without viclating continuity of displacement or sur-
face traction at the interface [Eshelby, 1957]. Alternately, spec-
ifying the constitutive law, not necessarily elastic, and finding
the appropriate €, in accordance with {5) and the relation

(6)

(.
a = L:ju(fkam - 5sz)

el o T
37 € = 8 men
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solve the problem of the ellipsoidal inhomogeneity embedded
in a linear elastic matrix deformed by uniform strain at infinity.

Since the Eshelby theory supposes small strain, changes of
geometry are neglected as second order, and if the elastic
moduli are interpreted as incremental values, (5) and (6) may
be taken to relate increments of stress and strain. Combining
these equations yields, after some rearrangement,

A R
Spui L™ yanif do e = Sen; de,V + de™ — dey” M

Equation (4} may be inverted for the weakened zone stress
increments in terms of the strain increments

dﬂ'um = Lmu dfum - LmuPu[G(Umn'm/f) + #Kamn] dEmnm
Ch+ G+ KBt (B)

where P,, = (g,/¢'/2F) + (8/3)8,,. Obviously, the do,/* may be
eliminated between (7) and (8), leaving an expression relating
the weakened zone strain increments and the remote boundary
strain increments (he G t\q\g,T"

dfmnm{amrfsnj'_ SUMPH[G(Umn““/?) + #Kﬁmnu = d‘i}:m) (9)

Because of the symmetry of dey'" and Sy, (9) is a quasi-linear
system of six equations for the six weakened zone strain in-
crements. The condition for runaway instability, that is, the
condition for which the ratio of a strain increment in the
weakened zone to a remote boundary strain increment may
become unbounded is

det |M|] =0 (10)

where M is the 6 X 6 matrix whose elements are given by the
bracketed term of (9). Otherwise, if det |M] # 0, the coefficient
matrix possesses a unique inverse, and a unique solution for
the dey'" in terms of the far-field strain is possible.

Equation {10} may be regarded as a condition on one of the
weakened zone constitutive parameters, taken to be the hard-
ening modulus £, in terms of the other constitutive parameters,
the geometry of the weakened zone, and the stress state. Be-
cause A is a decreasing function of strain, the value for which
the instability condition is first met in the progress of deforma-
tion is the maximum value of 4 satisfying {10). Hence the
critical value of the hardening modulus at runaway is

3
by o= —G[l - >
f.j=
P2
3
>
=

[G(o: /7Y + pK]Sulle," 0/ 27} + B/3]
1

where all summations have been written explicitly. Surveying

the values of the Si,u tabulated in Table 1 and observing that

the terms a,//7 are bounded by unity reveal that A, will be
negative and only in certain circumstances will it approach

(ﬂ'u””/ﬂzsuu} - ukp

1.

+ (i1}

i

TABLE 1. Values of S,» for Oblate Spheroids (Semiaxes a = b > ¢) for Various Aspect Ratios ¢/a

Aspect Ratio

c/a Siun= Saua Sazm Sz = Stz S = Smww Suw = Ssar Size = Sz Siaws
0.01 0.0i4 0.994 -0.003 0.241 0.001 0.491 0.007
1 0.120 0.938 -0.021 0.177 0.005 0.427 0.057
0.25 0,247 0.843 -0.032 0.106 0.008 0.356 0.119
0.5 0.376 0,702 —(0.028 0.045 0.007 0.295 0.184
0.75 0.451 0.589 —-0.015 0.015 0.004 0.265 0.223
1.0 0.500 0.500 00 - 0.0 - 0.0 0.250 0.250

The distinguished axis is the x, direction. Calculation for » = 0.2. Sy = Spurr = Soux; other entries not

shown are zero.
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zero. Although (11) is a result of general applicability and
presents no difficulties of computation in a particular case, the
salient features of the runaway instability and the effects of the
various parameters are best illustrated by considering two
important limiting cases.

Spherical Weakened Zone

For a spherical weakened zone the relations (6) have the
particularly simple form

Hhn

h T
¢ key't = g — gy

Ho|

T ()
Q€pp’ = Epp Exx

where the prime again denotes the deviatoric part of the ten-
sor,a = (1 + v}/3(1 - v)and « = 2(4 — 50)/15(1 ~ »),and v is
Poisson’s ratio, The expression for the critical hardening mod-
ulus simplifies accordingly:

B = —G(l — &) - uKB(1 — a) (12)

The ranges of the parameters o and « are 0.3333-1 and 0.400-
0.5333, respectively; typical values for brittle rock are v = 0.2
and &« = « = 4 Thus runaway instability can occur for this
weakened zone geometry only after deformation far into the
postpeak regime.

Flat, Cracklike Weakened Zone
This configuration approximates a flat, tabular weakened

zone, and it is an important limiting case in that runaway

instability will occur earlier in the progress of deformation for
this shape than for those of more nearly equal dimensions.
One could proceed with the analysis by expanding the shape
factors Sy for small values of aspect ratio, neglecting terms
beyond first order, and continuing as before, but a more direct
approach makes use of a result from fracture mechanics.

In light of Eshelby’s result that the strain is constant in an
ellipsoidal inhomogeneity embedded in a linear elastic solid
uniformly strained at infinity, a penny-shaped crack is the limit
of a very flat ellipsoidal inhomogeneity having vanishing mod-
uli. Because the ellipsoid strains must be compatible with the
matrix strains at the interface, the crack surface displacements
determine, apart from an inessential rigid rotation, the homo-
geneous strains in the ellipsoid. Expressions for the surface
displacements of a penny-shaped crack of radius a loaded by
surface tractions and stresses (or strains) at infinity are well-
known from fracture mechanics solutions [e.g., Sit and Lie-
bowitz, 1968]:

= 41 — o)en'™ — on'Na® - xF - VTG - »)

(13)

Uy =‘1(| — u)(a’n‘w} —_ G.Hm)(az - xlz — x82)|/2/,‘1_G

where w, and u, are the displacements in the x, and x, direc-
tions, respectively; the x, direction is normal to the crack
surface, and the x, axis may be chosen, without loss of general-
ity, so that o,'"’ = 0. These, of course, are the additional
displacements due to inserting the crack in the existing elastic
field. Because the penny-shaped crack is the limit of a very flat
spheroid, the equation of the boundary in the deformed state is

O+ xt)a =

and (@® — x,* — x,*)* may be replaced in the expression for the
displdicements by £x.(a/c) (the positive sign applies for the
upper surface of the crack, and the negative sign for the
lower). Thus the weakened zone strain increments may be
written

RuDNICKI: THE INCEPTION OF FAULTING

d'le(!] = (d’o.mlw) — dﬂ'glu))/zGTl
(14}
dfgg(“ = (da.”(\'ﬂ) — dan(!])/Gi—

Y 2
wheren = (¢/a)m(2 —w)/(l —¥)and § = {¢/a)yx /(1 — v). The
remote strain increments are related to doy,™ and de,,'™ by

doy,'™" = 26 dey, ™!
doy'™ = (K — 2G/3) depp'™ + 2G dep™

Equations (14) supplant (7) and could have been obtained by
asymptotic expansion of the Sy, The remainder of the in-
clusion strains are simply equal to the elastic strains in the
matrix to order c/e, where ¢/a << 1. Thus the relevant
.coefficient matrix is again 2 X 2, and the solution for the
critical hardening modulus is

by = =Gl — (1 = n)ou /7]
— WBK — (1 — {G/M)[Gloy"/7) + BK]
[G(en""/7) + uKY/ M} + O(c/ay

where M = K + 4G/3.

Although (15) was obtained by considering the limit as ¢/a
goes to zero, the result gives the first term of a perturbation
expansion in the aspect ratio. Hence the condition for *small’
aspect ratios is that they be negligible with respect to unity,
and (15) may give acceptable results for c/a of the order of a
few tenths. Note that 3 and u occur symmetrically here, al-
though not in (11). If the compressive stress normal to the
plane of the weakened zone (—e.) exceeds in magnitude the
average in-plane normal stress, then a,,""/7 ts negative; in this
sense, compression normal to the plane of the weakened zone
inhibits the onset of instability, although it is clear from (15)
that the effect also depends on the relative magn..ade of K/G
and of 8 + u.

If the stress induced by large-scale tectonic processes is
principally shear and greatly exceeds in magnitude any am-
bient stress levels, as would be expected near a large transform
fault system (e.g., the San Andreas), a further limiting case
may be obtained. Thus if one makes the approximation
a"'/F =~ 0 and o' /F = 1, (15) reduces to

(15)

oy T2 )
he/G = =(cla) G
- 54 [x + (¢/a) "’—‘IL_L))—] +0G/ay  (16)

where the relation K = 2G(1 + »)/3(1 — 2») has been used.
The critical hardening modulus is negative and comprises
a term of the order of the aspect ratio plus a term of the order
of Bu, both multiplied by the shear modulus for unloading.
For the range of 8 and x4 quoted earlier and values of c/a
consistent with the approximation the contributions of the two
terms are roughly equal. It is apparent from Table 2, in which
{16) is evaluated for several values of ¢/a and Sy = 0.2), that

TABLE 2. Values of 4./ for a Cracklike Weakened Zone Accord-
ing to (16), With » = 0.2

c/a Bu =0.09 B =018 Au=036 Su=060
CL0DF o —0079.. 7 =039 :—0.261 —0.423

0.05 —0.153 0217 . -0346 0518

0.10 ~0.245 —0314 0452 0635

add .4aeq E‘?,(Cm_) Yo Ea_c\r\ QM"'wj
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instability is inhibited both by large aspect ratios and by
dilatancy and pressure sensitivity. In general, runaway in-
stability for the cracklike weakened zone will occur for values
of h equal to small-to-moderate negative fractions of the un-
loading shear modulus; it may occur just after peak load only
for a very narrow zone, if, in addition, the factor for Bu is
small.

LOCALIZATION INSTABILITY

In the treatment of the runaway instability the strain in the
weakened zone was assumed to remain homogeneous. An-
other possibility is the development of concentrated, nonuni-
form deformation in a narrow band within the weakened zone
itself. One approach to this problem is that localization may be
explained in terms of an instability in the constitutive descrip-
tion of homogeneous deformation. Adopting this approach,
Rice 1973] outlined a general method for addressing such
bifurcations, and RR studied in detail the localization of de-
formation for constitutive laws intended to model the behavior
of brittle rock. It is important to emphasize that this approach
addresses the inception of instability in a “perfect’ system: the
deformation is idealized as homogeneous up to the point of
localization, Although the analysis does not address the
growth of the nonuniformity after this point, in many cases the
subsequent deformation is so intensely concentrated that lo-
calization is synonymous with the onset of rupture. Thus RR
identify a limiting material instability in the sense that local
nonuniformities, say, in crack content or pore fluid pressure,
may cause some localization in the actual system prior to that
predicted by the analysis; however, the onset of localization
instability does mark the point at which rapid growth of such
perturbations will occur. The limiting nature of the local-
ization instability has been discussed in a rigorous fashion by
Rice [1976].

An alternative and compiementary approach to localization
is to focus on the growth of initial nonuniformities or favor-
ably oriented microflaws. This approach has been adopted by
Brady [1974a): conditions are obtained for the growth of a
nonuniformity in crack content or ‘clusters’ of cracks. The
condition for failure is then expressed in terms of the stress
within these clusters rather than in terms of parameters apply-
ing for homogeneous deformation.

The results of RR will be used to investigate whether local-
ization instability in the weakened zone may precede runaway
instability. One of the constitutive laws investigated by RR
(their equation (10)) is the counterpart of (4) written in a form
which is invariant to rigid spins and valid for arbitrary defor-
mation magnitudes. However, under the assumptions of the
present analysis their results may be applied directly. The
critical value of the hardening modulus at localization has the
simple form (KR, equation (20))

2
her =L1'+—V)(ﬂ—#)’— 1+ (N+ ﬁ-h;,) + 0G/G)
G 91— ) 2 3 a7

where A is the intermediate principal deviatoric stress divided
by 7. N has the values —1/3"%, 0, and 1/3'* for axisymmetric
extension, deviatoric pure shear, and axisymmetric compres-
sion, respectively. Since the magnitude of 7 is that of a typical
stress component, terms of order 7/G are needed only when
the critical hardening modulus itself is very small. Equation
(17) is plotted schematically as a function of N in Figure 5
(from Figure 6 of RR), and Table 3 (from Table 1 of RR)
tabulates f., for various values of N, G, and .

From (17) the maximum value of k., occurs for ¥ = —(f +
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©)/3 and is given by

1+

91 — ») (1%)

hmax =G ﬁﬁ - ﬂ)z
This equation demonstrates that for brittle rock, for which
typically § # u, localization instability can occur under rising
foad. More generally, for states of stress near deviatoric pure
shear (¥ = 0), the predicted values of A, are near zero, and,
depending on the values of 8 and g, may be slightly positive or
negative. However, for axisymmetric compression a hardening
modulus equal to a large negative fraction of G is predicted for
localization.

The stress state in the weakened zone, characterized by N,
depends not only on the applied, far-field stresses but also on
the geometry of the weakened zone. For a spherical weakened
zone it is apparent from the form of the Sy that the stress
state will preserve the character of the far-field stress state.
However, for the cracklike weakened zone an examination of
the asymptotic form of the shape factor or of the penny-
shaped crack solution reveals that the deformation is con-
strained essentially to combinations of simple shear and
uniaxial compression. For such a mode of deformation the
conditions for localization are met at & = 0, and consequently,
localization is predicted near peak stress for very narrow
weakened zones.

Effects of Yield Surface Vertices
and Anisotropy

The formulation of the constitutive law, (4), assumed that
the subsequent yield surfaces in stress space retain the shape of
the initial yield surface or ‘harden isotropically.’ Using a
model of brittle rock as sliding on a collection of randomly
oriented fissures, RR have shown that subsequent yield sur-
faces tend to form a pointed vertex at the current stress point
and that the isotropic hardening idealization will be in-
adequate in describing the stiffness of response to abrupt
changes in the pattern of straining. Although a modification of
the isotropic hardening constitutive law, proposed by RR to
approximate the responsc at a vertex, considerably com-
plicates the localization calculation, its essential effect is to
reduce the magnitude of #./G as shown schematically in
Figure 5. Localization for states of stress near deviatoric pure
shear occurs closer to peak stress, but the character of the
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Fig. 5. From Figure 6 of Rudnicki and Rice [1975]. Schematic
shows the variation with stress state of the critical hardening modulus.

Solid line indicates predictions based on the constitutive law (equation

{4)). Dashed line shows predictions modified for vertex effects. Draw-
ing is not to scale.
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predictions based on the constitutive law (4) is preserved.
However, for axisymmetric compression the predicted values
of h.. are substantially less negative than those predicted by
(17). Nevertheless, negative values of magnitude ranging up to
roughly 0.1 G are still predicted for localization.

Another feature which is not included in the constitutive law
(4) is the anisotropy which develops, even in samples which are
isotropic when unstressed, owing to the preferential growth of
microcracks in a direction perpendicular to the greatest princi-
pal stress (positive in tension) [Wawersik and Brace, 1971;
Tapponnier and Brace, 1976]. Although the localization analy-
sis is again complicated by the inclusion of anisotropy, prelim-
inary studies for transverse isotropyv, intended to model the
developed anisotropy in an axisymmetric specimen, indicate
that the effect is similar to that of vertex formation: the magni-
tude of k.. /G is reduced, and the reduction is much greater for
axisymmetric deformation states. This anisotropy may be re-
sponsible for the fact that the values measured by Mogi [1967]
for the angle between the normal to the plane of localization
and the direction of the least principal stress were consistently
greater than those predicted by RR [Cleary and Rudnicki,
1976).

Because the localization instability is sensitive to details of
the constitutive modeling (RR), particularly for axisymmetric
stress states, the effects of yield surface vertices and anisotropy
are most important here. However, for the runaway instability
these effects are not pronounced and may be taken into ac-
count approximately simply by regarding the moduli which
enter (11) as average values,

Localization in Axisymmetric Compression
Experimenis

It is a frequent observation that the failure of brittle labora-
tory specimens in axisymmetric compression involves local-
ization, at least in a gross sense: relatively random micro-
cracking progresses to a clustering of microcracks from which
develops a more or less distinct failure plane. Because the
analysis of RR idealizes the deformation as homogeneous
until the point of localization, at which the deformation is

intensely concentrated, there is inevitable arbitrariness about
what constitutes localization. However, the limiting nature of
the instability indicates that the sensible interpretation for-the
onset of Jocalization instability is the appearance of a macro-
scopic fault in the sample.

Although many studies have shown that only slight changes
occur in the rock structure untit very near the peak stress {e.g.,
Brace, 1964; Scholz, 1968; Friedman et al., 1970], precise in-
vestigations of when faulting does occur are complicated by
instabilities induced by the testing machine. If the postpeak
stress-strain curve descends more rapidly than the unloading
characteristic for the testing machine (Figure 6), the sample
will ‘run away,’ owing to the stored elastic energy in the
machine, until the point of localization instability is reached.
Hence apparent faulting will be identified at the point of
runaway, even though the actual material or localization in-
stability may have occurred much later.

Nevertheless, experiments using stiff-testing machines with
rapid unloading capacity [Wawersik and Fairhurst, 1970;
Crouch, 1970; Rummel and Fairhursi, 1970; Wawersik and
Brace, 1971) indicate that faulting dees not occur until after
peak stress and, for at least some rock types, not until very
much past peak stress. For Westerly granite this is evidenced
most dramatically in a reexamination of the samples of Wa-
wersik and Brace [1971] by Tapponnier and Brace [1976); com-
parison of the comments of the latter authors in their Table 1
with the schematic stress-strain diagram of their Figure 2
indicates that faulting did not occur until roughly one third of
the way down the descending portion of the curve. Figure 4 of
Crouch [1970] for a sandstone clearly indicates that faulting
occurred at the break in the curve at a point where the stress
had decreased to less than one half of the peak value. Further-
more, & careful examination of this work on postpeak defor-
mation suggests that microcracking often occurs in isolated
events until well after peak stress and that some of the in-
homogeneity of microcracking which does exist prior to fault-
ing is attributable to the end constraints. For example, Plate 2b
of Wawersik and Brace [1971] and Figure 7 of Rumme! and
Fairhurst [1970] suggest that deformation sufficiently diffuse to

TABLE 3. Values of &.,/G at Instability for Various Stress States

Axially Axially

Symmetric Maximum Symmetric

Extension Value Pure Shear Compression

B 8 (V=-1/317) (N=—(u+8Y/Y (M =10) (VM =1/317)
0 0 —0.200 {50.8) 0 (45.0) 0 (45.0) —0.200 (39.2)
03 0 —0.122 (54.9) 0.015 {(49.3) 0.009 (48.4) —0.260 (43.2)
0.3 015 —0.106 (57.0) 0.004 (51.6) —0.,010 (50.2) —0.314 (45.2)
03 03 —0.085 (59.2) 0 (53.9) ~0,024 (51.9 —0.362 (47.2)
06 0 —0.025 (59.2) 0.060 (53.9) 0.036 (51.9) —0.303 (47.2)
06 015 —0.031 (61.6) 0.034 (56.3) -0.004 (53.7) -0.377 (49.2)
0.6 0.3 —0.031 (64.0) 0.015 (58.9) -0.039 (55.6) —0.423 (50.0)*
0.6 045 —0.027 (66.6) 0.004 (61.7) —0.070 (57.4) —0.385 (90.0)*
06 06 —0.019 (69.5) 0 (64.9) —0.096 (59.3) —0.342 {90.0)*
09 0 0.089 (64.0) 0.135 (38.9) 0.081 (55.6) —0.303 (90.0)*
09 015 0.063 (66.6) 0.107 (61.T) 0.020 (57.4) -0.295 (90.0)*
\ 09 03 0.041 (69.5) 0.060 (64.9) 0.036 (59.3) —0.282 (90.0)*
09 045 0.024 (72.7) 0.034 (68.6) 0.088 (61.3) —0.264 (90.0)*
09 06 0.011 {76.6) 0.015 (73.2) 0.135 (63.4) —0.242 (90.0)*

From Rudnicki and Rice {1975, Table t}; recalculated for v = 0.2. 8, in degrees is-given in parentheses.
Calculations are based on the constitutive law (4). ¥ = 0, /7, where v,/ 2 ¢, 2 @, are the principal
deviatoric stresses. B o

*For these cases, 4., is given with Ny, = 0, /7 substituted for ¥,
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Fig. 6. Schematic showing the runaway instability caused when
the material stress-strain curve descends more rapidly than the un-
loading characteristic for the testing machine.

be considered homogeneous for the purpose of this analysis
may persist well into the postpeak regime, although clustering
of cracks inevitably occurred as the point of faulting was
approached. Although Figure 75 of Rummel and Fairhurst
indicates a large crack emanating from the lower left boundary
of the sample, there is only isolated cracking in the interior,
and it is likely that the larger fracture was due to end effects
rather than intrinsic material instability. Indeed, the analysis
of RR suggests that jocalization instabilities can occur earlier
under plane strain than axisymmetric deformation fields, and
the constraint at the ends of a specimen forces a strain field
that is not only much larger in magnitude by comparison with
the average deformation but also much closer to a plane
strain-like state.

Ideally, one would like to study fault formation by mon-
itoring the distribution of strain in the sample, but there are
obvious experimental difficulties with such a procedure. How-
ever, one promising method is the acoustic emission technique
used by Lockner and Byeriee [1975] to study a granite and a
sandstone under 1 kbar of confining pressure. Although they
reported a clustering of acoustic emission events prior to peak
stress for one sandstone sample, another sample, deformed at
a much slower rate, showed localization only in the postpeak
regime. For the granite there was no evidence of localization
prior to peak stress.

The complexity of brittle rock failure is well documented,
and it has been demonstrated by RR that predictions of local-
ization are very sensitive to the precise structure of the consti-
tutive law. Nevertheless, although some localization in labora-
tory samples may begin near peak stress, the predicted values
of h,, are consistent with the observations cited here for which
faulting, that is, localization in the sense of limiting material
instability, was not prematurely induced by the loading ma-
chine. Furthermore, although the discussion here has been
limited to axisymmetric compression experiments, Cleary and
Rudnicki [1976} have pointed out that the variation with ¥ of
predicted values of A, (Figure 5) is consistent with that of the
slopes at failure observed by Mogi [1971]. These observations
support the assertion that localization can be modeled as an
instability in the constitutive description of homogeneous de-
formation, and it is recommended that this point of view
merits greater attention in the study of brittle rock failure. At
the same time, it must be recognized that details of the consti-
tutive law, on which the predictions of localization depend, are
the least well-known aspect of the theory.

COMPARISON OF THE [NSTABILITIES .

Conditions have been derived for the onset of the runaway
instability and the localization instability, and these have been

examined for the two limiting cases of a spherical weakened
zone and a Aat cracklike weakened zone. For a spherical
weakened zone the onset of the runaway instability {equation
(12)), even under conditions most favorable to instability (e.g.,
g = 8 = 0 and « equals its maximum value (0.533)), is pre-
dicted for values of the hardening modulus which are negative
and of magnitude equal to approximately half the unloading
modulus. On the other hand, the onset of the localization
instability for this geometry depends primarily on the nature
of the far-ficld stress state through the parameter N (equation
(17)). Predictions for the onset of localization, even under the
most severe circumstances, that is, predictions for ax-
isymmetric compression based on the smooth yield surface
idealization (Table 3), indicate that localization will precede
runaway (k. > k) for the spherical weakened zone. Although
for very narrow weakened zones, runaway instability is pre-
dicted for A, ~ —{uf + c¢/a)G (equation (16)), it was argued
that the localization instability, owing to the constraint of the
weakened zone deformation state, will occur near k., = 0.
Therefore localization will occur, in general, prior to runaway,
although the'onset of the instabilities may be competitive for
very matrow weakened zone shapes.

The condition for the runaway instability was that a remote
boundary strain increment could induce an unbounded strain
increment in the weakened zone. This condition indicates the
absence of any static solution for the next increment of defor-
mation. The onset of this instability obviously entails a sudden
loss of load-carrying capacity for the rock mass and corre-
sponds to the onset of a seismic instability.

Localization of deformation has been treated with the use of
the results of RR. For stress states near that characterized by
N = —(8 + u)/3, localization may occur under rising load.
Such deformation may be associated with creep events. How-
ever, the concentration of straining in the localized zone will
likely drive the stress here past peak, and it is doubtful that
conditions of rising load will prevail very long in the localized
zone. More typically, localization will occur under falling
load, and in this case the process may accelerate and increas-
ingly concentrate the deformation. For example, if the weak-
ened zone is roughly spherical, localization results in a planar
region of concentrated deformation that constitutes a further
weakened zone. At instability for the spherical zone the critical
value of A for the very narrow zone, not only for localization
but also for runaway, has aiready been attained. Hence fur-
ther, rapid concentration of deformation and transition to a
dynamic or seismic instability are expected. Although the anal-
ysis specifically addresses only the inception of instability, the
results suggest the possibility of acceleration of localization as
a seismic mechanism.

CoOUPLED DEFORMATION—-FLUID DIFFUSION EFFECTS

The preceding analysis of conditions for instability has been
carried out as if the rock mass were completely dry. If the rock
mass is Aluid infiltrated and if the time scale of stress alteration
induces significant local pore pressure changes, the analysis
can be considerably complicated by the coupling of the defor-
mation tu the diffusion of pore fluid. Because of the in-
homogeneity of material properties, which has been idealized
as an ellipsoidal weakened zone, the pore pressure changes
induced by rapid stress alteration will be nonuniform at the
outset. Rice and Cleary [1976] have identified two ways in

- which coupled-stress-diffusion can contribute to the stabiliza-

tion of a shear fault, and these may be used to assess qual-
itatively the effects on the instabilities.
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The first mechanism concerns the alteration of the effective
values of elastic moduli according to whether the material
responds in a ‘drained’ {pore fluid pressure is a constant) or
‘undrained’ (fluid mass content is a constant in each elemental
volume} fashion. In particular, Rice and Cleary [1976] have
shown that the undrained Poisson’s ratio #, is in the rangery <
v, < 0.5, where # is the drained value and the upper limit is
attained if the solid and fluid constituents are separately in-
compressible. The shear modulus, of course, remains the same:
the undrained bulk modulus is accordingly elevated in com-
parison to the drained value. Hence the elastic response is
stiffer for changes in load which are rapid in comparison to the
time scale of fluid diffusion.

Alteration of the apparent value of the modulus governing
inelastic deformation will also result from stress-diffusion ef-
fects and dilatancy. If new pore space is created at a rate
exceeding the influx of pore fluid, pere suctions will be in-
duced, This will cause an increase in the ‘effective’ compressive
stress (o — p), even when the total stress is constant, Further
inelastic deformation due to frictional sliding and microcracking
will be inhibited, and the rock is said to be ‘dilatantly hardened.’
In terms of the constitutive law (4) the apparent value of the
hardening modulus is increased over the value for drained behav-
jor, and it may, in fact, be positive while the corresponding value
for the underlying drained deformation is negative. Dilatant
hardening has been observed in laboratory specimens by Brace
and Martin [1968] and has been studied by Rice [1975] for the
special deformation state of simple shear. Rice [1975] showed
that the amount of dilatant strengthening which can be ef-
fected is limited by diffusive instability: when the condition for
localization instability, (17), phrased in terms of the hardening
modulus for drained behavior, is met, local nonuniformities in
the amount of shear tend to grow rather than decay.

As is shown by the analyses of Rice [1975] and Rice and
Cleary [1976], the essential effect of coupled deformation-pore
fluid diffusion is to introduce a time dependence into the
material response. Thus it is plausible that the onset of the
runaway instability will be predicted approximately by (11) if
the weakened zone pore fluid pressure is included as an addi-
tional hydrostatic stress component and if the moduli entering
(11) are the effective values. The way in which the action of
pore fluid diffusion may stabilize runaway instability is evi-
dent: the condition for instability may be met in terms of the
drained moduli, but its onset will be delayed until the moduli
relax from their undrained values. Similarly, the progress of
diffusive instability, which Rice {1975] has shown to set in
when the localization condition is met in terms of the drained
moduli, will be governed by the rate of pore fluid diffusion.
Thus although advocates of dry crack or diffusionless models
for earthquake precursors maintain that pore fluid diffusion is
not required to explain the observed premonitory effects, if
pore fluid is present, diffusion will set a time scale of the in-
stability, Nevertheless, it has not yet been established that this
effect is of sufficient magnitude and spatial extent to account
for precursory events, as is proposed by dilatancy-diffusion
proponents.

APPLICATIONS TO EARTH FAULTING

The analysig has shown that only for weakened zone defor-
mation states near N = —(8 + u)/3 (Table 3) can instability
occur under rising lead (A > 0). Although the deformation in
very narrow weakened zones will be constrained to such states,
falling stress-strain curves are, in general, a necessary feature
of modeling processes leading to faulting. Data from labora-
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tory axisymmetric compression tests using stiffi-unloading ma-
chines support this conclusion, as it is a frequent observation
that faulting does not occur until postpeak and that for at least
some types of brittle rock, faulting does not occur until rela-
tively late in the region of descending stress-strain curves.
Although Waish [1971] suggested, on the basis of a com-
parison of the relative stiffness of a loading apparatus versus
that of the surrounding material for a fault, that descending
stress-strain curves could not be realized in situ, the calcu-
lation assumed elastic properties and slip on a cracklike sur-
face. This conclusion is consistent with the analysis here for
the special case of a cracklike weakened zone but is not appli-
cable for other shapes of weakened zones.

More generally, for most weakened zone shapes the local-
ization instability will precede the runaway instability, al-
though their onset may be competitive for very narrow weak-
ened zones. Thus for a given weakened zone shape the amount
of postpeak deformation prior to instability depends on the
stress state, at least if the weakened zone is not extremely
narrow, For deviatoric states of stress near pure shear (¥ = (),
localization is predicted near peak stress as compared with
states of axisymmetric compression (¥ = 1/3'%). For faulting
under different states of stress these results suggest differences
in conditions prior to rupture and consequently in precursory
events, In particular, it is possible that strike slip and thrust
type faults are associated with states of stress that are more
nearly deviatoric pure shear and axisymmetric compression,
respectively.

The predictions concerning the amount of postpeak defor-
mation prior to instability have a particularly clear con-
sequence for the dry crack models of Myachkin et al. [1972,
1974] and Stuart {1974] which associate the closing of cracks
and consequently the return of anomalous wave speed ratios
to normal vatues with the descending portion of the stress-
strain curve. Thus for cases in which the onset of instability
has been predicted near peak load the earthquake will occur,
according to these models, when the wave speed ratio is still
anomalously low.

Although it is implicit in these dry crack models that crack
closure is associated with descending stress-strain curves in a
weakened zone, the experimental evidence is to the contrary.
Thill [1972] and Rumme! [1974] observed continued decreases
in the compressional wave speed during deformation in the
postpeak regime, and Crouch [1970] observed continued di-
lataney in this regime. Although there is disagreement about
whether the conditions of these experiments adequately reflect
the situation in the field, it may be more appropriate to asso-
ciate the descending portion of the curve not with the closing
of cracks but rather with the formation of the anomalous zone,
that is, the region exhibiting significant dilatancy. In this case,
crack closure outside of the zone of localization may be caused
by the acceleration of localization within the anomalous zone.
This possibility seems to be similar to that suggested by
Myachkin et al. [1974], although they were not specific about
the mechanism involved and they evidently envisioned crack
closure as beginning near peak stress. However, a more de-
tailed analysis which considers the evolution of instability is
needed to evaluate this mechanism.

The analysis also suggests an interpretation of the dilatancy-
diffusion hypothesis. As was noted by Rice [1975], if the rock
mass is fluid infiltrated, dilatant hardening (and elastic stiffen-
ing) in an initially very narrow weakened zone will cause
adjacent regions to sustain greater stress and consequently to
undergo inelastic, dilatant deformation. This is one mecha-
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nism by which a spatial extent of dilatancy sufficient to cause
observable travel time anomalies might be achieved. Because
the extent of dilatant hardening is limited by the localization
instability, the total dilatant volume achievable by this process
will depend on the amount of postpeak deformation prior to
instability. Thus according to the analysis here, the extent of
the anomalous zone will depend on the deviatoric state of
stress in the weakened zone and consequently may be consist-
ently different for strike slip and thrust type faults. Aggarwal et
al. [1975] reported that for thrust type earthquakes in New
York state the characteristic length of the anomalous region
was 610 times that of the rupture zone, while Robinson et al.
[1974] suggested that the characteristic lengths of anomalous
zones associated with strike slip earthquakes in California are
at most 2-3 times the largest dimension of the rupture zone.
However, since some of the conclusions of Robinson et al.
T1974] have been revised but not yet published (anonymous
reviewer, private communication, [976), these observations
are at most suggestive. Nevertheless, they do indicate a direc-
tion for further field measurements.

After the onset of localization instability the deformation
will be concentrated in a narrow rupture zone within the
anomalous region. This would explain the apparent discrep-
ancy between the narrowness of zones of fault gouge due to
past ruptures and the spatial extent of the inelastic deforma-
tion and dilatancy required to cause observable wave travel
time anomalies. The progression of instability, however, will
be limited by the time scale of pore fluid diffusion as moduli
relax from their undrained values. This interpretation of the
dilatancy-diffusion hypothesis is certainly an extrapolation of
the results of the present model. More detailed modeling
which includes coupled deformation-diffusion effects and con-
siders not only the inception but also the evolution of the
instability is necessary for a more precise evaluation. Indeed,
the questions of whether_ dilatant hardening and diffusion
processes can stabilize a rock mass against a rapid failure,
cause dilatancy to achieve a spatial extent sufficient to generate
observable anomalies in stress wave travel times, and permit a
progression of failure on a time scale comparable to that
observed for the premonitory period are central to the di-
latancy-diffusion hypotheses and have not as yet been an-
swered.

Pore fluid diffusion has been suggested as one mechanism
which may account for the characteristic time dependence of
earthquake precursors. Time-dependent crack closure,
though it is not explicitly included in the present model, is
another possibility. Although there is no apparent time scale
associated with this process in the dry crack models of Myach-
kin et al. [1972, 1974] and Stuart [1974], Brady [1974a] has
identified a charactetistic time for crack closure. Under certain
assumptions this time scale is formally the same as that asso-
ciated with diffusion processes, and preliminary experimental
verification of its existence has been obtained by Brady [1976].

CONCLUSION

Although the results provide no direct evidence for or
against existing earthquake precursor models, they suggest
new interpretations for dry crack and dilatancy-diffusion hy-
potheses in térms of constitutive behavior of brittle rock which
is consistent with laboratory experiments. These results are
based on a new approach to brittle rock failure as a constitu-
tive instability and the idealization of material inhomogeneities
near a fault as a single weakened zone. Although the ideal-
izations considerably simplify the immense complexity of ac-
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tual tectonic processes, the two distinct instabilities which have
been identified represent possible models for the onset of seis-
mic instability. Furthermore, it has been demonstrated that
conditions prior to rupture depend strongly on the state of
stress and the nature of material inhomogeneities. This sug-
gests that premonitory events will also be sensitive to these
features. More specifically, it is anticipated that premonitory
cvents will be different for strike slip and thrust type faults.
This prediction may be testable as more detailed ficld evidence
becomes available.

APPENDIX: VALUES OF §, 5 FOR THE
GENERAL ELLIPSOID

The factors S;j, are symmetric in i and k{, but in general,
Sus # Swuy. In addition, if the coordinate axes coincide with
the principal axes of the ellipsoid, the Sy, possess the conve-
nient property that the only nonzero entries have the form
Situss Siepyy OT Sy (no sum here on i or j). Expressions for the
Sipa have been given by Eshelby [1957]. The ellipsoid has
semiaxes g > b > ¢, with the orientation as in Figure L.

&l — 0)Siy = 3@, + (1 — W),
8x(l — 1)Suz = 36 — (1 — 20)a
81!'(1 - V)S]gu (i)(az + ba)lab + (1 - 2”){!5 + Ih)/Z

fl

where
= du
I, = 2wabe j; m
« du
l,e = 2mabe f T ava (A1)
= du
lan = frabe fo @ + w)(b* + w)a (A2)
A= [(g® + w)(b® + u)(® + w)]|®

The remaining quantities may be obtained by cyclic per-
mutation. Expressions for I, /5, and [, may be written alterna-
tively as

drabe
=Gy - f 7P
I = 4rabe bla® — ) £
¢ (bz — cz){a‘z — (.2)1:2 ac
!b=41|""la—](.

where F = F(@, k) and E = E(8, k) are elliptic integrals of the
first and second kinds with amplitude 8 = sin™' (I — ¢*/a*)'*
and modulus & = (@ — b)V¥(a® — &)*. The remaining
quantities may be obtained by the relations

_ A — 1)

T 3a® — ) (AD

Ias law = Az/3a* — fon — doc

In the case of an oblate spheroid (@ = & > ¢}, (A3) fails, but
from (A1) and (A2) it is clear that fay = Tos/3. The other
factors are then computed straightforwardly. A similar manip-
ulation is possible for the prolate spheroid (g > & = ¢). Finally,,
we record that for the oblate spheroid
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2nate ¢ etz
IL.=1= m{cos"(c/a) - ; (l — -;2-') }

and for the prolate spheroid

2rac? afl &
Lh=1I-= (@ — oy {?(L_z
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