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Ivan Vlahinić a, Hamlin M. Jennings a,b,*, Jeffrey J. Thomas b

aNorthwestern University, Department of Civil and Environmental Engineering, Evanston, IL 60208-3108, USA
bNorthwestern University, Department of Materials Science and Engineering, Evanston, IL 60208-3109, USA

a r t i c l e i n f o

Article history:
Received 6 February 2008
Received in revised form 21 October 2008

a b s t r a c t

A new constitutive model for drying of an elastic porous material is presented. The model is
derived by decomposing the boundary value problem of drying into parts for which an
explicit solution is readily available. The mathematical form differs frommodels developed
using either the concept of equivalent pore pressure or average pore pressure. Instead of
pressure averaging, the extent of weakening of the solid due to void inclusions, a material
parameter, is found to be critical for the proper predictions of the volumetric strains. The
model is applicable to drying under conditions where multi-layer adsorption of liquid per-
sists, i.e. where the effects of solid surface energy are negligible, and where capillary pres-
sure is the primary loading stimulus. A particular (and simple) form of the model is
compared with experimental data for partially dried cement paste and VycorTM glass, and
is shown to provide a much better agreement than previous models based on average pore
pressure. Implications to the poromechanics and the effective stress of partially saturated
porous media are discussed.

! 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The constitutive behavior of porous materials has been
studied extensively. In their pioneering works, Paul Fillun-
ger in the 1910s and Karl von Terzaghi in the 1920s
explored the influence of pore fluid primarily on strength,
but also on one-dimensional deformation of soils (see
review by de Boer (1992)). In the late 1930s and 1940s,
Biot (1941) developed a linear theory of poroelasticity.
Since that time, both drained and undrained elastic behav-
iors (the two limit cases) of fluid-filled porous materials
have been well grounded. The extension of Biot’s theory
to partially saturated porous materials has essentially re-
mained unchallenged in the elastic region since Bishop
(1959) introduced the concept of average pore pressure;
and yet satisfactory agreement with experimental results
has not been found even in relatively simple elastic mate-
rials such as VycorTM glass (Bentz et al., 1998). And while

constitutive modelling of partially saturated materials
continues to be a rich subject of ongoing research
(e.g. Loret and Khalili, 2002; Gallipoli et al., 2003), with a
comprehensive review on the subject given by Gens et al.
(2007), the elastic formulation introduced by Bishop
(1959) is seldom re-examined. Notable exceptions can be
found in the contribution by Khalili et al. (2004) as well
as in the models that are based on the assumption of
multiple scales within the porous material (e.g. Chateau
et al., 2002; Coussy and Brisard, in press).

The authors’ modelling experience shows that experi-
mental results of elastic shrinkage during drying of hard-
ened cement paste are consistently and significantly
greater than predictions by present formulations. Coussy
et al. (2004) recently addressed the lack of agreement by
modifying the capillary stress contribution to include an
additional surface energy term. However, above 50%
relative humidity (RH) capillary stresses should dominate
surface energy effects due to multi-layer adsorption on
the surfaces of emptied pores, and therefore it should be
possible to obtain an accurate model using only the
Kelvin–Laplace formulation for capillary stress.
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Here, a constitutive model is developed for partially sat-
urated media subjected to drying, where pore pressure is
known a priori. VycorTM glass and hardened portland ce-
ment paste (OPC) dried to various relative humidities are
used as model materials. Cement paste in particular pro-
vides a unique model material because it has pores that
span the nanometer to micron size range, allowing sub-
stantial variation in pore pressure due to capillary forces
and fraction of pores filled. Thus, both the quantity of filled
pores and pore pressure can be varied by drying to specific
vapour partial pressures. Water saturation, the fractional
quantity of water-filled pores, is determined by weight loss
and the pressure is governed by the Kelvin–Laplace
equation.

2. General theory—effective stress and constitutive law

2.1. Fully saturated porous media

The geomechanics community has developed the con-
cept of ‘effective stress’ to model the behavior of soils. This
facilitates computations by incorporating the influence of
pore pressure, p, as well as external loads, rij, into a single
term, known as the ‘effective stress’, r0

ij. The problem of a
fully saturated porous media is then treated like any other
‘dry’ continuum problem, such that:

r0
ij ¼ rij " fpdij ð1Þ

Here, the positive values of the stress and pore pressure
indicate compression. Parameter f reflects the fact that the
pore pressure does not equally influence high and low
porosity materials. Disagreement over its value permeated
the literature well after Fillunger’s and Terzaghi’s introduc-
tion of effective stress and several different expressions for
isotropic materials were proposed (see Table 1).

Terzaghi (1923) originally argued that f should be equal
to the porosity, /%, so that in the non-porous material the
effect of pore pressure would vanish (Garg and Nur,
1973); and yet experimentally, he found f ’ 1 for several
porous materials (Nur and Byerlee, 1971). Geertsma
(1957), and later Skempton (1961), independently defined
f in terms of Kb, the (drained) bulk modulus of a porous
material, and Ks, the bulk modulus of the solid or the grain.
In this form, f is often referred to as the Biot coefficient.
Suklje (1969) proposed another expression based on
porosity, although rigorous proof was not provided. Nur
and Byerlee (1971) later confirmed the result of Geertsma
using a uniqueness theorem for the stress boundary value
problem. For a general case of non-isotropic materials, the
value of f depends on the constitutive material matrix
(Zienkiewicz et al., 1999).

It is now instructive to write the constitutive equations
for an isotropic fluid-saturated porous solid (Biot, 1962),

where lb and kb are Lamé’s constants of a dry material
and ev is a volumetric strain defined as ev ¼ exx þ eyy þ ezz:

rxx " ð1" Kb=KsÞp ¼ 2lbexx þ kbev
ryy " ð1" Kb=KsÞp ¼ 2lbeyy þ kbev
rzz " ð1" Kb=KsÞp ¼ 2lbezz þ kbev
rxy ¼ lbexy
ryz ¼ lbeyz
rzx ¼ lbezx ð2Þ

From the constitutive equations, it is evident that pore
pressure influences only normal strains (not shear), and
hence only volumetric deformation (and not deviatoric).
Physically, this conclusion also naturally stems from the
fact that a fluid by definition cannot resist shear.1 Thus,
absent of externally applied deviatoric stresses, the constitu-
tive Eq. (2) can be reduced to Eq. (3), where a volumetric
stress, !r, is defined as !r ¼ ð1=3Þðrxx þ ryy þ rzzÞ and where
the bulk modulus can be expressed in terms of the Lamé’s
constants of the dry material, i.e. Kb ¼ ð1=3Þð2lb þ 3kbÞ:

!r" ð1" Kb=KsÞp ¼ Kbev ð3Þ

It is often convenient to reorganize Eq. (3) and express
the volumetric strain in terms of the applied stresses, as
shown in Eq. (4). The latter constitutive equation appears
to have been first published byMackenzie (1950), although
not in the context of the effective stress formulation.

ev ¼
!r
Kb

" p
1
Kb

" 1
Ks

! "
ð4Þ

Thus far, only the drained and undrained responses of
saturated materials have been examined. The saturated
drained response corresponds to a state of zero excess pore
pressure throughout the pore space. In this case pore fluid
can flow in and out of the pore space without restriction
and the material therefore deforms as if the pore fluid
is not present. In the case of the saturated undrained
response, fluid drainage is impeded and the excess pore
pressure is finite.

2.2. Partially saturated porous media

In partially saturated porous materials, more than one
fluid occupies the pore space and at least one fluid is under
a finite pressure. The discussion here is limited to cases
where air and water occupy all the porosity. For the major-
ity of proposed formulations, the constitutive laws for the
partially saturated system can be found directly from the
fully saturated system. This is achieved by replacing the
pore pressure term p that appears in Eq. (4) with an effec-
tive pore pressure obtained by averaging the pressure of all
the fluid constituents.

The first expression was developed by Bishop (1959),
who averaged the pore pressures according to the contact
area, v, between the fluid and the solid. Because of the
inherent difficulty in quantifying the effective fluid contact
area, v is usually expressed as some function of the degree

Table 1
Proposed f coefficients in ‘effective stress’ formulation Eq. (1).

f ¼ / Terzaghi (1923)
f ¼ 1" ðKb=KsÞ Geerstma (1957)/Biot (1962)
f ¼ 1" ð1" /ÞðKb=KsÞ Suklje (1969)

1 This is true under quasi-static loading, i.e. where the shear stress
components that result from viscous effects in a fluid are negligibly small.

320 I. Vlahinić et al. /Mechanics of Materials 41 (2009) 319–328



Author's personal copy

of fluid saturation, S, a quantity that can be conveniently
measured, such that v ¼ vðSÞ for each fluid phase. The
effective areas of water and air are related, i.e.
vw þ va ¼ 1, and as a result the effective pore pressure
can be described in terms of the effective water contact
area only, vw, commonly referred to as the Bishop
parameter:

p ¼ vwpw þ ð1" vwÞpa ð5Þ

Instead of averaging the fluid contact areas, the formu-
lation can be simplified by direct volume averaging. In his
Ph.D. Thesis, this approach lead Schrefler to the same
expression, with vwðSwÞ ¼ Sw where Sw is the degree of
water saturation, i.e. the volume fraction of pore space
occupied by water; this work was later published by
Lewis and Schrefler (1987). Hutter et al. (1999) came to a
similar conclusion based on the thermodynamic theory of
mixtures. This form has since been adopted by several
investigators (e.g. Gallipoli et al., 2003; Coussy, 2004),
and will be employed in this work for the purposes of mod-
el comparison. This is not to say that other expressions
cannot be found in the literature, although they are typi-
cally derived on an empirical basis.

Absent of externally applied deviatoric stress, the con-
stitutive law for a partially saturated system based on
the effective pressure concept is shown below.

ev ¼
!r
Kb

" ðSwpw þ ð1" SwÞpaÞ
1
Kb

" 1
Ks

! "
ð6Þ

2.3. Generating pore pressures in a partially saturated system

In a porous material, partial saturation can be intro-
duced in several ways. Starting with a saturated specimen,
load cells can be coupled with pumps to induce water
egress and/or air entry and thus provide a great deal of
control over the fluid phases (e.g. Sun et al., 2004). Instead
of using pumps to generate suction pressures, water egress
can also be induced via reverse osmosis. Furthermore, elec-
trolysis (the ionization of hydrogen and oxygen when elec-
tric current is passed through the water) has been shown
to allow for partial dewatering of the soils by introducing
gas into the pore spaces (Yegian et al., 2007).

In contrast to the above mentioned experimental meth-
ods, drying provides perhaps the simplest way of generat-
ing partial saturation in a porous material. As pore water is
removed by lowering the external relative humidity, capil-
laries form at the fluid–fluid interface and control the value
of the pore pressure. This means that the pore pressure
need not be experimentally measured as, at equilibrium,
it can be solved a priori via the Kelvin–Laplace equation
shown in Eq. (7), with radius of meniscus, rm, defined in
Eq. (8) and variables described in Table 2.

pc ¼ "ðRT=MÞlnðhÞ ð7Þ
rm ¼ 2c=pc ð8Þ

In the case of the materials examined in this work, the
two fluids are water and air, while the corresponding cap-
illary pressure, pc , is defined as the difference between air
pressure and water pressure, i.e. pc ¼ pa " pw. Furthermore,

jpaj ' jpwj as the absolute value of the pressure in the
water quickly exceeds atmospheric pressure during drying,
climbing above 10 MPa (100 atm) at only 92% RH. Consid-
ering now the case of no external load, the constitutive law
Eq. (6) reduces to:

ev ¼ Swpc
1
Kb

" 1
Ks

! "
ð9Þ

Bentz et al. (1998) applied Eq. (9) to VycorTM glass and
found that it significantly underestimates the measured
deformations below 80% relative humidity.

3. New constitutive formulation—drying of a partially
saturated system

3.1. Constitutive law for a fully saturated porous system

Following the method of Nur and Byerlee (1971), we
first derive the constitutive law for a fully saturated porous
system. The porous system is composed of a linear elastic
solid with connected pores of arbitrary shape. The pores
are assumed homogeneously distributed.

For simplicity, we consider the porous system subject to
a uniform pore pressure p ¼ pc and free of any external
loads. This boundary value problem is largely intractable
on its own, but becomes tractable when decomposed into
individual parts for which an explicit solution is readily
available. Hence we consider a convenient superposition
of stresses, as shown in Fig. 1a. We first apply an external
hydrostatic compression !r ¼ pc , which results in a strain of
pc=Kb (note that compression is defined positive). Next, we
apply an external hydrostatic pressure !r ¼ "pc and an
equal pore pressure p ¼ "pc . This results a uniform stress
in the solid (e.g. Love, 1944, p.86) and a strain equal to
"pc=Ks.

Since we assume the porous system exhibits linear elas-
tic behavior, the strain fields resulting from the two steps
can be added and the constitutive law reduced to:

ev ¼ pc
1
Kb

" 1
Ks

! "
ð10Þ

Invoking a uniqueness theorem for the stress boundary
value problem, Nur and Byerlee (1971) used the preceding
superposition of stresses to deduce a theoretically exact
expression for the effective stress. Note that Eq. (10) is
identical to Eq. (4), absent of externally applied loads.

3.2. Constitutive law for a partially saturated porous system

We now apply a similar strategy to a partially saturated
porous system, where only select pores are subject to a

Table 2
Description and constants used in Kelvin–Laplace Eq. (7).

Constant Symbol Value unit

Surface tension c 0.0728 N/m
Molar volume M 1.802 ( 10"5 m3/mol
Univ. gas constant R 8.314 Nm/Kmol
Abs. temperature T 293 K (OPC)

284 K (glass)
Relative humidity h 0–100%
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uniform pore pressure p ¼ "pc. Conceptually, we define a
boundary of a new ‘effective solid’ delineated by the sur-
faces of pores that apply pressure, i.e. the remaining full
pores. In this manner, we can reduce a partially saturated
system to a fully saturated system, provided we update
the material constants of the new solid. Physically, the load
imposed by the capillaries is still carried by the solid,
although the solid is now weakened and behaves as if it
were porous itself.

To arrive at the solution, we similarly decompose the
boundary value problem described above into two loading
steps as shown in Fig. 1b. In the first step, we apply posi-
tive (normal) tractions !r ¼ pc on the external boundary
of the porous body. It is apparent that under this loading,
the volumetric strain is equivalent to that caused by exter-
nal load pc in a fully drained porous system and is equal to
pc=Kb regardless of the degree of drying. In the second step,
we impose equal tractions on internal and external bound-
aries. This results a uniform state of stress in the effective
(weakened) solid and strain of "pc=K . The ‘effective bulk
modulus’, K describes the bulk modulus of the effective so-
lid and varies during drying. It can be conveniently ex-
pressed in terms of the degree of water saturation, Sw, as
the volume of water-filled and empty pores are closely re-
lated. Finally, combining the strain fields, the constitutive
law of a partially saturated system reduces to:

ev ¼ pc
1
Kb

" 1
KðSwÞ

 !
ð11Þ

Before proceeding, a brief check of the behavior at ex-
tremes should be performed. In the case of zero saturation,

water occupies negligible porosity. Hence, K ! Kb as evi-
dent from Fig. 1b, and the volumetric strain given by Eq.
(11) reduces to zero as expected. In the case of full satura-
tion, water occupies all the pores, K ! Ks, and Eq. (11) cor-
rectly reduces to Eq. (10).

Similar linear superposition of stresses can be estab-
lished for systems that include external loads as well as
two or more fluid phases where each fluid is under finite
pressure. Presently, for simplicity, we include only a 2-
phase fluid system free of external boundary stresses and
assume the influence of the gas phase (air) to be
inconsequential.

From Eq. (11), it is clear that the constitutive law for
a partially saturated system does not necessitate the use
of pressure averaging over all fluid constituents, in direct
contrast to Eq. (9). Rather, the extent of weakening of
the effective solid skeleton, a material parameter, must
be deduced to determine the volumetric deformation.
This is consistent with the experimental observation
that the Bishop parameter v is often found to be
strongly influenced by the material fabric (Coleman,
1962).

It should also be noted that in the geomechanics com-
munity, it is customary to assume that the solid or grain
is incompressible. In a fully saturated system, this assump-
tion has a clear meaning, namely that Kb ' Ks when
Sw ¼ 1. As such, the assumption also allows for a natural
simplification of Eq. (10). In a partially saturated system,
however, the assumption of solid incompressibility does
not easily simplify Eq. (11) because, in general, the effec-
tive bulk modulus K cannot be assumed incompressible
even if Kb ' Ks. This is because even a few pores can give

Fig. 1. Stress superposition schematic of (a) fully saturated and (b) partially saturated system. Capillary pressure, pc , is shown to act on the surface of the
internal solid boundary. Influence of atmospheric air pressure is assumed inconsequential.
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rise to an appreciable compressibility in an otherwise
incompressible medium.

3.3. Quantifying the loss of stiffness of the effective solid

Before analyzing the influence of void inclusions on bulk
properties of the effective solid, it is useful to relate how the
porosity of the effective solid varies as a function of the de-
gree of saturation. To this end, we define a volume fraction,
na, of the solid, water, and air phases, with a ¼ s;w; a corre-
spondingly.We further note that the degree of (water) satu-
ration can be expressed as Sw ¼ nw=ðnw þ naÞ and that the
fractionof thematerialoccupiedby theair andwaterphases,
the total porosity, is given by /% ¼ nw þ na. At any stage of
drying, the porosity of the effective solid, u, then amounts
to u ¼ na=ðns þ naÞ (see Fig. 1b) and in terms of the degree
of saturation simplifies to:

uðSwÞ ¼
ð1" SwÞ/%

1" Sw/%
where 0 6 uðSwÞ 6 /% ð12Þ

Now only the influence of porosity on the solid com-
pressibility remains to be quantified. Before proceeding,
it should be mentioned that what is referred to as porosity
in the effective solid is in fact the space that is occupied by
the gas phase (air). While it may be argued that air may
offer a role of structure and thus limit the compressibility
of the effective solid, this role is largely negligible; the
compressibility of a solid is typically orders of magnitude
less than that of gas. Therefore, for the purpose of estimat-
ing the effective solid properties, the gas (air) phase may
be treated as a void or a cavity rather than a material phase
with finite compressibility.

The experimentally derived relationships can certainly
provide the solid properties for varying values of porosity.
Oftentimes, however, such relationships are not readily
available and theoretical approaches may need to be em-
ployed. The simple rule of mixtures can establish upper
and lower bounds for parallel (Voight) and series (Reuss)
configurations. Unfortunately, as void inclusions are infi-
nitely compressible, the lower bound estimate invariably
yields K ¼ 0 for any value of porosity, a conclusion that
also applies to the classic Hashin–Strickman lower bound
(Hashin, 1983).

Using a concept of ‘averaged stress’, many successful
micromechanical schemes have been built on the founda-
tions of the Eshelby (1957) tensor. Among these, perhaps
the most prominent are the Mori–Tanaka (e.g. Mori and
Tanaka, 1973; Weng, 1984) and self-consistent (e.g. Her-
shey, 1954) approximations. The former have proven use-
ful in a variety of composite materials while the latter
have found success with the porous materials whose skel-
eton is polycrystalline or granular; for example, Constan-
tinides and Ulm (2007) recently found the self-consistent
scheme useful in modeling the elastic behavior of ce-
ment-based materials at the lower material scales. For a
more detailed treatment of the aforementioned schemes
(and others), Christensen (1990) provides a good overview
and comparison.

Predictions can be greatly improved when values of
Kb andKs are established experimentally and used as

bounds thereafter. From Fig. 2, it is evident that a straight
line between the two experimentally measured moduli
yields a first-order estimate of the effective properties for
the porous material in question. In this regard, low poros-
ity materials enjoy an inherent advantage: as porosity de-
creases, the first-order estimate approaches the true
properties of the effective medium. The experimentally
aided estimate of K is given by:

K ) Ks "
Ks " Kb

/%
uðSwÞ ð13Þ

It should be noted that Eq. (13) may not provide a good
estimate for solids whose effective properties are affected
greatly when voids are introduced. One such limitation
may be especially prominent in solids often referred to as
‘‘incompressible” for which Kb ' Ks as noted earlier. For
these materials, voids clearly have a detrimental effect on
the overall volumetric stiffness, as evidenced by the very
fact that Kb is orders of magnitude smaller than Ks. A large
loss of stiffness can be captured by micromechanical esti-
mates if highly irregular pore shapes, e.g. crack-like cavi-
ties, or a high concentration of voids are present. In such
cases, a better estimate than the one shown in Eq. (13)
should be used for more accurate predictions of volumetric
deformations via Eq. (11); however, this is beyond the
scope of this work.

4. Experimental comparison

4.1. Drying strains of hardened cement paste on second
drying

Our formulation can be perhaps most easily compared
against theexperimental resultsof apartiallydriedmaterial,
whichprovides favorable conditions for several reasons. The
induced capillary stresses are purely hydrostatic. For a

Fig. 2. Effect of void inclusions on elastic properties of a solid. In absence
of an actual relationship, a first-order estimate of the properties of the
‘‘effective solid” can be established using the experimentally measured
values of the drained bulk modulus Kb and the solid bulk modulus Ks .
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homogeneous and isotropic materials the deformations
then translate to uniform strains in all directions, avoiding
a necessity of volumetric measurements. Linear deforma-
tion, i.e. drying shrinkage, in any one direction equates to
1=3 of the total volumetric deformation. Differential shrink-
age, which gives rise to cracking, can be avoided by slow
step-wise drying, i.e. by gradually lowering the relative
humidity to the desired final value, and by the use of speci-
mens with small cross section.

Because a new equilibrium can be obtained for each
partial saturation, only these values of length change at
each partial vapour pressure need to be recorded exper-
imentally. At equilibrium, exchange of pore liquid with
the environment also stops. By recording weight differ-
ence between successive relative humidity points,
preferably for the entire range of saturation states, the
degree of saturation Sw in the porous system may be
interpolated.

It is very important to note that hardened cement paste
does not deform elastically the first time it is dried as the
first drying cycle certainly induces permanent dimensional
changes. However, each successive cycle is nearly fully
reversible in terms of water sorption and shrinkage, as
shown experimentally by e.g. Helmuth and Turk (1967),
Verbeck et al. (1968), and others. It is on this basis that
elastic shrinkage formulations may be compared against
experimental data using the 2nd drying cycle of pastes.

Published data on 2nd drying of cement paste is scarce.
Recent experiments at Northwestern are starting to fill this
void. For example, data on pastes with water to cement
ratio by mass of 0.5 has been acquired by Gevrenov
(2005). The water retention curve2 is displayed in Fig. 3;
each data point is an aggregate of measurements from
several specimens.3

4.1.1. Material properties of hardened cement paste
Before comparing shrinkage models with experiments,

a brief review of available data on elastic constants is
necessary, as their values are not readily available. Direct
measurements of the bulk modulus of the solid constitu-
ent Ks of cement paste with varying w/c ratios and ages
were performed by Grasley et al. (2006). A small scatter
of data was observed, with values of Ks in the range of
40–50 GPa. Fortunately, such variation does not result
in significant changes in the model predictions of shrink-
age strain (up to 5%). Therefore, Ks ¼ 45 GPa is used
here.

Values of Kb, on the other hand, significantly influence
the final shrinkage values and, therefore must be used
judiciously. Grasley et al. (2006) calculate Kb within the
range of 8.3–9.0 GPa, using an approach presented in
its companion publication (Scherer, 2006). Estimates of
Kb can also be made based on available tests of Young’s

modulus and Poisson’s ratio. Measurements by Ghosh
and Timusk (1974), which are consistent with those of
Feldman (1968), show Eb ’ 12 GPa for Young’s modulus
of hardened paste with w=c ¼ 0:5. Poisson’s ratio, as re-
ported by Parrott (1974) for w=c ¼ 0:5, was shown to
vary between mb ¼ 0:220—0:275, depending on the de-
gree of saturation. These numbers correspond to
Kb ¼ 6:9—8:6 GPa, slightly lower than those estimated
by Grasley et al. (2006). Because of the comparatively
large effect of bulk modulus on final shrinkage predic-
tions, the two extremes of Kb ¼ 7andKb ¼ 9 GPa are in-
cluded in our predictions.

How bulk modulus varies with porosity remains uncer-
tain. At present, the only known studies of the influence of
porosity on paste modulus were performed by Feldman
(1968) who found that hardened cement paste exhibits a
semi-logarithmic relationship between elastic modulus
and porosity. Unfortunately, the published data set con-
tains two significant shortcomings:

(1) The author fails to indicate the method with which
porosity of paste was measured. This issue is of crit-
ical importance due to sensitivity of results to exper-
imental methods and controversies over methods of
measuring capillary porosity (Jennings, 2008). Sensi-
tivity lies in the dominant constituent of hardened
cement paste, calcium silicate hydrate (C–S–H)
which is highly hydrophylic and contains structural
water.

(2) Modulus data in the porosity range below 20% was
not measured directly, a range most useful at pres-
ent. Instead, it was interpolated from higher porosity
cement paste samples.

For these reasons, applicability of Feldman’s conclu-
sions to this work remains uncertain. Instead, an interpola-

Fig. 3. Water retention data for VycorTM glass (Corning 7930) and
hardened cement paste (2nd drying, 56 days old, w=c ¼ 0:5) based on
experiments by Amberg and McIntosh (1952), Gevrenov (2005) respec-
tively. In VycorTM glass water retention is fully reversible for all drying
cycles while in hardened cement paste it is nearly fully reversible after
the first drying cycle. Percent saturation was interpolated from the
weight the samples lost on drying to specific relative humidities. See text
for more details.

2 The water retention curve is shown as a function of relative humidity.
From the displayed data, the values of the capillary pressure may be
deduced via Eq. (7).

3 Data on the 1st drying cycle is available for comparison in literature. In
particular, careful measurements by Roper (1966) compare favorably to
those of Gevrenov (2005), where both 1st and 2nd drying cycles are
obtained using the same experimental methods. This provides additional
confidence in the referenced data set.
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tion of effective bulk modulus based on the experimental
values of Kb and Ks will be used. For detailed discussion
of the method, refer to Section 3.3.

4.1.2. Types of water in cement paste and applicability to
capillary tension

Water plays a critical role in hardened cement paste,
and its presence (or lack thereof) defines essentially all of
its material properties. For this reason, it is important to
address the influence of different water types.

Due to the chemical properties and hydrophilic nature
of C–S–H, not all water remaining in hardened cement
paste during drying is under hydrostatic stress. Chemically
combined water in C–S–H is, in fact, part of the solid struc-
ture.4 It is non-evaporable, and certainly not subject to
capillary pressures. Water that is adsorbed onto highly
hydrophilic layers and surfaces of C–S–H also does not
maintain all the properties of bulk water due to solid sur-
face forces.

Beyond the reach of surface forces, water in pores be-
haves as bulk and thus maintains the full capillary pressure
pc imposed by the meniscus. It is established experimen-
tally that on average, one molecular layer of water coats
the surfaces of hardened cement paste at 11% RH, and
two layers at 35% RH ( Badmann et al., 1981; Jennings,
2008). Adsorption of additional layers results in negligible
change in solid surface energy (e.g. Mindess and Young,
1981, p.490). This suggests that, during drying, an estimate
of water subjected to capillary stress can be obtained by
measuring the water that evaporates from the sample be-
tween full saturation and 35% relative humidity. The de-
gree of water saturation can then be estimated by
dividing the current weight change of the sample from sat-
uration (100% RH) by the weight change on drying to 35%
RH.

In this work, we define 33% RH as a zero saturation
point. This value is used simply for convenience because
it is part of the referenced data set. In addition, we find
the total (capillary) porosity to be /% ¼ 0:28 (Tennis and
Jennings, 2000).

4.2. Drying strains of VycorTM glass

In contrast to hardened cement paste, VycorTM glass
(Corning 7930) has an extremely narrow distribution of
pore sizes, with an overwhelming majority of the pores
on the order of nanometers and with the pores of micron
size nearly entirely absent ( Nordberg, 1944; Scherer,
1986). This provides a distinct model material in which
the separation of scale between the different porous re-
gions is largely absent.

Due to its morphology, the porous glass tends to retain
the saturating liquid during the initial stages of drying
while precipitously losing much of the liquid in a narrow
range of relative humidity values, as evident by the water
retention data displayed in Fig. 3. Desorption and adsorp-
tion isotherms also start to merge near the lower end of
this range, indicating a loss of capillaries. The detailed dry-

ing experiments by Amberg and McIntosh (1952) place the
loss of capillary stability near 60% relative humidity.

The desorption isotherms of VycorTM glass are also
fully reversible for all drying cycles, as shown by Nord-
berg (1944), Amberg and McIntosh (1952), and others,
suggesting that all measured strains are fully elastic.
The dynamic Young’s and shear moduli were measured
by Scherer (1986) who found that Eb ¼ 14:7 GPa and
Gb ¼ 6:34 GPa respectively; this corresponds to
Kb ¼ 7:2 GPa. In the literature, no indication exists that
anyone has ever directly measured the properties of
the glass skeleton. The work by Bentz et al. (1998) sug-
gest values of Es ¼ 45 GPa and ms ¼ 0:1 for the Young’s
modulus and Poisson’s ratio of the solid respectively
based on micromechanical analysis, while Amberg and
McIntosh (1952) suggest values of Es ¼ 40 GPa and
ms ¼ 0:25. Presently, we use ms ¼ 0:20, a value that is typ-
ical of most glass types, along with an average of the re-
ported values of Young’s moduli; this yields
Ks ) 23:6 GPa. The manufacturer reports a total porosity
value of /% ¼ 0:28.

The composition of VycorTM glass is fundamentally dif-
ferent than that of cement paste, in that water is not an
integral part of the solid phase. Here we define a zero sat-
uration point at 5% relative humidity, where on average
slightly more than one molecular layer coats the surface
of the glass (Emmett, 1942); this RH point is also a conve-
nient part of the referenced data set. As very little water is
lost from VycorTM glass at such low humidity values, the
influence of the zero saturation value on the predicted val-
ues of strain is small.

4.3. Predictions of the proposed drying model

Combining the proposed constitutive law given in Eq.
(11) with the expressions for pc and K defined in Eqs. (7),
(12) and (13), the drying shrinkage in any one direction re-
duces to Eq. (14). Similarly, the drying shrinkage based on
the constitutive law using an averaged pore pressure Eq.
(9) together with Eq. (7) reduces to the classic Biot-Bishop
constitutive law Eq. (15):
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In Figs. 4 and 5, we compare the predictions5 of our new
formulation Eq. (14), with that of the classic averaged pore
pressure model Eq. (15). The proposed model exhibits much
better agreement with experimental data for two very dis-
tinct materials. That the pore structures of the materials
greatly differ from each other is evident by the fraction of
water each material retains at a specific relative humidity
point, as shown by the water retention data in Fig. 3. The

4 The water content of solid C–S–H was recently determined by Allen
et al. (2007).

5 The predictions are based on the first-order estimate of the effective
solid properties, aided by the experimentally measured bounds (see Section
3.3). This estimate may need to be improved if porosity is found to
significantly influence the overall volumetric stiffness of the effective solid.
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predicted strain values for Kb ¼ 7 and Kb ¼ 9 GPa fall on
either side of the data in cement paste and the predicted
strain values for VycorTM glass are able to better capture
the trend of the measured data.

Figs. 4 and 5 also show the extent to which the classic
model Eq. (15) underpredicts experimental measurements.
The disagreement is especially prominent when the mate-
rials are truly partially saturated. This approximately cor-
responds to relative humidity range below 75% in both
materials, precisely the range in which capillary mecha-
nisms should be the most dominant. While the proposed
model still appears to underpredict the large drying strains
captured by the experiments, albeit somewhat less so in
the case of hardened cement paste, the improvement over
the classic model is readily apparent.

Recently, a new formulation was proposed by Coussy
et al. (2004) that accounts for the effects of surface energy

in cementitious materials. It was suggested that surface
energy serves to augment capillary effects, resulting in
deformations up to 30% greater than those predicted by
the classic Biot-Bishop model at 50% relative humidity.
However in light of the discussion in Section 4.1.2, the con-
tribution of the solid surface energy to deformation is
likely negligible above 50% relative humidity due to the
presence of adsorbed water.

It should further be added that it has long been recog-
nized that the complete mechanical behavior of partially
saturated materials cannot be described adequately via
use of the effective stress alone (a tensorial variable) and
that an additional variable (a scalar) is often required. In
the case of the elastic material behavior, the need for an
additional scalar variable largely stems from the observa-
tions that capillary pressure appears to augment the force
of contact between the adjacent particles or grains (e.g.
Bishop and Eldin, 1950). As the (normal) contact force be-
tween grains increases due to capillary pressure, so does
the ability of the grains in contact to withstand shear
forces (and sometimes higher tensile stresses). It is noted
that while for some materials this effect is extremely
important (e.g. one can build castles out of partly wet sand
whereas a highly saturated sand and even dry sand crum-
bles under its own weight) for others it is less so (e.g. rel-
ative humidity appears not to affect the shear strength of
cement paste, although it does affect fracture properties
(Beaudoin, 1982).

In this work, we present a new constitutive model for
the volumetric response of a porous material during dry-
ing. From the macroscopic arguments, we suggest a mod-
ification to the classic form of the constitutive law, and by
extension to the classic form of the effective stress, gener-
ally a tensorial variable. The increase in shear resistance
due to capillaries is inherently a micromechanical phe-
nomenon and is not captured by the present formulation
just as it is not captured by the classic Biot-Bishop expres-
sion herein described. In the simplest way, the increased
shear resistance can often be accounted for via an addi-
tional (scalar) variable which depends on the capillary
pressure (suction) as introduced by e.g. Gallipoli et al.
(2003). In the case of inelastic material behavior, addi-
tional considerations are likely needed. The basic argu-
ments present in this work intend to illuminate the
subject in the context of linear elasticity, which forms a
theoretical basis for the more advanced constitutive
models.

5. Conclusion

By decomposing a boundary value drying problem, a
new constitutive model is developed to predict the elastic
shrinkage due to capillary stresses during drying of a por-
ous material. The model is valid under conditions where
solid surface energy does not play an important role in
deformations and where capillary stresses due to air–
water menisci are present. For materials discussed in this
work, this translates to relative humidity values above
about 50% and 60% for hardened cement paste and VycorTM

glass, respectively.

Fig. 5. Experimental data for VycorTM glass (Amberg and McIntosh, 1952)
with predicted drying shrinkage curves. Each model is shown for
K = 7.2 GPa and Ks = 19 GPa, modulus of the bulk and the solid skeleton,
respectively. Zero-point bulk water saturation is assumed at 5%; an exact
value is of little influence on predicted strain values in glass.

Fig. 4. Experimental data for 56-day-old paste Gevrenov, 2005 with
predicted drying shrinkage curves. Each model is shown for K = 7 GPa and
K = 9 GPa, i.e. limits of reported bulk modulus values; Ks = 45 GPa. Zero-
point bulk water saturation is assumed at 33%.
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Thepredictions of the newmodelwere evaluated against
experimental measurements of linear drying strains. Hard-
ened cement paste and VycorTM glass were chosen as model
materials for their distinct pore size distributions and rela-
tively large shrinkage strains that ease collection of experi-
mental data. Additionally, cement paste exhibits nearly
elastic behavior during the 2nd drying cycle and VycorTM

glass during all drying cycles. Good agreement was found
above50% relativehumidity for cementpaste,while thepre-
dictions were much improved above 60% for porous glass,
without use of any other energy terms, whereas the classic
model based on average pore pressure significantly under-
predicts the measured drying strains for both materials.

The form of effective stress in partially saturated porous
media is also discussed in light of the present formulation.
It is found that a constitutive relation for a porous system
infiltrated by more than one fluid does not necessitate pore
pressure averaging, as is the case for all previous formula-
tions. Instead, a material parameter needs to be evaluated,
the extent of weakening of the ‘‘effective solid” that results
from partial emptying of pores (this is in agreement with
experimental observations that the Bishop parameter v is
often found to be strongly influenced by the material fab-
ric). In turn, it is required that the influence of voids on
the solid properties are known. Presently, we estimate
these properties with the help of experimentally measured
limit values. Improved estimates of the effective solid
properties may be needed for materials containing a solid
phase whose compressibility is significantly affected by
the presence of the voids.
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